THE PROOF OF INDEPENDENCE OF MARGINALS FOR $k \times l$ CONTINGENCY TABLE

Hisao NAGAO

Received June 16， 2009

Abstract

The purpose of this note is to extend Fisher＇s exact test in 2×2 table to $k \times l$ table．Also a simple numerical example is given in 2×3 table．

1．Preparation At first，we consider the following 2×2 table．

Here we denote A and B are two events and \bar{A} and \bar{B} denote the complement of A and B ，respectively．We repeat n times experiment in which $A \cap B, A \cap \bar{B}, \bar{A} \cap B$ and $\bar{A} \cap \bar{B}$ occur．The N_{11} denotes the number which $A \cap B$ occurs．The other N_{12}, N_{21} and N_{22} are defined similarly．On the other hand，N_{1} ．is sum of N_{11} and $N_{12} . N_{2}$ ．is sum of N_{21} and N_{22} ．That is，N_{1} ．denotes the number the event A occurs and N_{2} ．is the number for \bar{A} ． Similarly $N_{\cdot_{1}}$ and $N_{\cdot_{2}}$ are the number for B and \bar{B} ，respectively．
We consider the testing hypothesis problem whether the events A and B are independent． When n is small，there is Fisher＇s exact test in 2×2 table．To caluculate it，we must show that the random numbers N_{1} ．and $N_{._{1}}$ are independent．As far as the author knows，only one book giving its proof is Kitagawa and Inaba＇s 「統計学通論」written in Japanese and published by Kyoritsu－Pub．Co．（1970）．Their proof is not so readable，but unclear，rather seems to be not collect．We give the proof for a more general case in the next section．

2． $\boldsymbol{k} \times \boldsymbol{l}$ table We consider the generality of 2×2 table．Let Ω be a whole event．Let A_{1}, \cdots, A_{k} be a partition \mathcal{A} of Ω and B_{1}, \cdots, B_{l} be another partition \mathcal{B} of Ω ．We repeat n times experiment．$N_{i j}$ denotes the number which $A_{i} \cap B_{j}$ appears in this experiment． Then we have the following $k \times l$ contigency table．

Key words and phrases．Independence，contingency table，Fisher＇s exact test，probability generating function．

		\mathcal{B}				
\mathcal{A}	B_{1}	\cdots	B_{j}	\cdots	B_{l}	total
A_{1}	N_{11}	\cdots	\cdots	\cdots	$N_{1 l}$	N_{1}
\vdots	\vdots	\cdots	\cdots	\cdots	\vdots	\vdots
A_{i}	\vdots		$N_{i j}$		\vdots	\vdots
\vdots	\vdots	\cdots	\cdots	\cdots	\vdots	\vdots
A_{k}	$N_{k 1}$	\cdots	\cdots	\cdots	$N_{k l}$	N_{k}
total	$N_{\cdot 1}$	\cdots	\cdots	\cdots	$N_{\cdot l}$	n

N_{i}. $=\sum_{j=1}^{l} N_{i j}$ and $N_{\cdot j}=\sum_{i=1}^{k} N_{i j}$. Here N_{i}. represents the number of A_{i} 's occuring and $N_{\cdot j}$ represents the number of B_{j}. We assume that $\operatorname{Pr}\left(A_{i} \cap B_{j}\right)=\operatorname{Pr}\left(A_{i}\right) \operatorname{Pr}\left(B_{j}\right)(i=$ $1, \cdots, k ; j=1, \cdots, l)$. Then we shall show that $\left(N_{1 .}, \cdots, N_{k}\right)$ and $\left(N_{\cdot}, \cdots, N_{\cdot l}\right)$ are independent. Before giving the proof, we put $p_{i}=\operatorname{Pr}\left(A_{i}\right), p_{\cdot j}$
$=\operatorname{Pr}\left(B_{j}\right)$ and $p_{i j}=\operatorname{Pr}\left(A_{i} \cap B_{j}\right)$. Let a_{1}, \cdots, a_{k} and b_{1}, \cdots, b_{l} be positive numbers. We consider the probability generating function of $\left(N_{1 .}, \cdots, N_{k}\right)$ and $\left(N_{\cdot 1}, \cdots, N_{\cdot l}\right)$.

$$
\begin{aligned}
& \mathrm{E}\left(a_{1}^{N_{1}} \cdots a_{k}^{N_{k \cdot} \cdot} b_{1}^{N_{\cdot 1}} \cdots b_{l}^{N_{\cdot l}}\right)=\mathrm{E}\left(\left(a_{1} b_{1}\right)^{N_{11}}\left(a_{1} b_{2}\right)^{N_{12}} \cdots\left(a_{k} b_{l}\right)^{N_{k l}}\right) \\
& =\left(a_{1} b_{1} p_{11}+a_{1} b_{2} p_{12}+\cdots+a_{k} b_{l} p_{k l}\right)^{n} \\
& =\left(a_{1} b_{1} p_{1 \cdot} p_{\cdot 1}+a_{1} b_{2} p_{1} \cdot p_{\cdot 2}+\cdots+a_{k} b_{l} p_{k} \cdot p_{\cdot l}\right)^{n} \\
& =\left(a_{1} p_{1 \cdot}+a_{2} p_{2 \cdot}+\cdots+a_{k} p_{k \cdot}\right)^{n}\left(b_{1} p_{\cdot 1}+b_{2} p_{\cdot 2}+\cdots+b_{l} p_{\cdot l}\right)^{n} \\
& =\sum \frac{n!}{n_{1}!!\cdots n_{k}!}\left(p_{1} \cdot a_{1}\right)^{n_{1} \cdot \cdots\left(p_{k} \cdot a_{k}\right)^{n_{k} \cdot} \times \sum \frac{n!}{n_{\cdot 1}!\cdots n_{\cdot l}!}\left(p_{\cdot 1} b_{1}\right)^{n_{\cdot 1}} \cdots\left(p_{\cdot l} b_{l}\right)^{n \cdot l}}
\end{aligned}
$$

Therefore we have

$$
\begin{aligned}
& \operatorname{Pr}\left(N_{1 \cdot}=n_{1 \cdot}, \cdots, N_{k \cdot}=n_{k \cdot}, N_{\cdot 1}=n \cdot \cdot 1, \cdots, N_{\cdot l}=n_{\cdot l}\right) \\
& =\operatorname{Pr}\left(N_{1 \cdot}=n_{1 .}, \cdots, N_{k \cdot}=n_{k \cdot}\right) \operatorname{Pr}\left(N_{\cdot 1}=n_{\cdot 1}, \cdots, N_{\cdot l}=n_{\cdot l}\right)
\end{aligned}
$$

According to the above formula, we have

$$
\operatorname{Pr}\left(N_{1 .}=n_{1 .}, \cdots, N_{k}=n_{k} .\right)=\frac{n!}{n_{1}!!\cdots n_{k}!}\left(p_{1 \cdot}\right)^{n_{1}} \cdots\left(p_{k \cdot}\right)^{n_{k}}
$$

and

$$
\operatorname{Pr}\left(N_{\cdot 1}=n_{\cdot 1}, \cdots, N_{\cdot l}=n_{\cdot l}\right)=\frac{n!}{n_{\cdot 1}!\cdots n_{\cdot l}!}\left(p_{\cdot 1}\right)^{n_{\cdot 1}} \cdots\left(p_{\cdot l}\right)^{n_{\cdot l}}
$$

Thus we have the following theorem.

Theorem. If $\operatorname{Pr}\left(A_{i} \cap B_{j}\right)=\operatorname{Pr}\left(A_{i}\right) \operatorname{Pr}\left(B_{j}\right)(i=1, \cdots, k ; j=1, \cdots, l)$, we have $\left(N_{1 .}, \cdots, N_{k}\right.$.) and $\left(N_{\cdot 1}, \cdots, N_{\cdot l}\right)$ are independent and the former is multinomial distribution with $\left(p_{1}, \cdots\right.$, p_{k}.) and the latter is the same distribution with $\left(p_{\cdot 1}, \cdots, p_{\cdot l}\right)$.

To get the genelalized result for $k \times l$ table of exact test in 2×2 table, using this theorem, we have

$$
\begin{aligned}
& \operatorname{Pr}\left(N_{i j}=n_{i j}, i=1, \cdots, k ; j=1, \cdots, l \mid N_{i \cdot}=n_{i \cdot}, i=1, \cdots, k, N_{\cdot j}=n_{\cdot j}, j=1, \cdots, l\right) \\
& =\frac{\left(\prod_{i=1}^{k} n_{i}!\right)\left(\prod_{j=1}^{l} n_{\cdot j}!\right)}{n!\left(\prod_{i=1}^{k} \prod_{j=1}^{l} n_{i j}!\right)}
\end{aligned}
$$

3. Numerical example Here we suppose that the following data are given.

These data are artificial numbers. We consider whether A 's and B 's are independent. If these are independent, each value estimated of each cell is as follows;

\mathcal{B}					
\mathcal{A}		B_{1}	B_{2}	B_{3}	total
A_{1}	$14 / 3$	$8 / 3$	$8 / 3$	10	
total	7	4	4	15	

According to Fisher's consideration, we have the following form.

For example, we denote + at $A_{1} \cap B_{1}$, because of $6-14 / 3>0$. Similarly we denote at $A_{2} \cap B_{1}$, because of $1-7 / 3<0$. Thus we get the above table.
By generalizing the consideration of Fisher's 2×2 table, we obtain the following three types as rejection region \mathcal{R}.

$$
\left(\begin{array}{lll}
6 & 3 & 1 \\
1 & 1 & 3
\end{array}\right) \quad\left(\begin{array}{lll}
6 & 4 & 0 \\
1 & 0 & 4
\end{array}\right) \quad\left(\begin{array}{lll}
7 & 3 & 0 \\
0 & 1 & 4
\end{array}\right)
$$

From the result of the above theorem,

$$
\begin{aligned}
\operatorname{Pr}(\mathcal{R}) & =\frac{10!5!7!4!4!}{15!}\left(\frac{1}{6!3!3!}+\frac{1}{6!4!4!}+\frac{1}{7!4!3!}\right) \\
& \approx 3.83 \%
\end{aligned}
$$

When the significance level is 5%, the hypothethis is rejected.

Hisao Nagao
5-1-25-506, Senrioka
Settsu,Osaka 566-0001
Japan
e-mail address: nagao@sb.dcns.ne.jp

