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Abstract. This paper provides eight new generalized convolutions of the Hartley
transforms and considers the applications. In particular, normed ring structures of
linear space L1(�d) are constructed, and a necessary and sufficient condition for the
solvability of an integral equation of convolution type is obtained with an explicit
formula of solutions in L1(�d). The advantages of the Hartley transforms and the
convolutions constructed in the paper over that of the Fourier transform are discussed.

1 Introduction The Hartley transform first proposed in 1942 is defined as

(H1f)(x) =
1√
2π

∫ +∞

−∞
cas(xy)f(y)dy,

where f(x) is a function (real or complex) defined on R, and the integral kernel, known as
the cosine-and-sine or cas function, is defined as cas xy := cos xy + sinxy (see [2, 16]). The
Hartley transform is a spectral transform closely related to the Fourier transform, as the

kernels of the Hartley transform is often written as cas(xy) =
1 − i

2
eixy +

1 + i

2
e−ixy, and

the kernel of the Fourier transform is: e−ixy =
1 − i

2
cas(xy) +

1 + i

2
cas(−xy). However,

the Hartley transform of a real-valued function is real-valued rather than complex as is
the case of the Fourier transform. Therefore, the Hartley transform has some advantages
over the Fourier transform in the analysis of real signals as it avoids the use of complex
arithmetic. Namely, the use of the Hartley transform for solving numerical solutions of
problems also brings about some advantages as computers prefer real numbers. Actually,
the Hartley transform is getting of greater importance in telecommunications and radio-
science, in signal processing, image reconstruction, pattern recognition, and acoustic signal
processing (see [2, 3, 4, 16, 20, 33] and references therein). There are the delightful books
[2, 3, 22] involved in the one-dimensional and two-dimensional Hartley transforms and
the practical problems. However, there is a profound lack of systematically theoretical
studies covering the multi-dimensional Hartley transform, except for the parts in [2, 22]
and the interesting book of engineerings [3] that are involved in the one-dimensional and
two-dimensional Hartley transforms and the practical problems.

In what follows, the multi-dimensional Hartley transform is defined as

(H1f)(x) =
1

(2π)
d
2

∫
Rd

cas(xy)f(y)dy,
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where (xy) :=<x, y> . For the briefness of notations in the paper, we consider additionally
the transform

(H2f)(x) =
1

(2π)
d
2

∫
Rd

cas(−xy)f(y)dy.

Obviously,

(H1f)(x) = (H2f)(−x), and (H1f(−y))(x) = (H2f(y))(x).(1.1)

We therefore may call H1, H2 the Hartley transforms.
The main aim of this paper is to obtain generalized convolutions for H1, H2 and solve

some integral equations of convolution type.
The paper is divided into three sections and organized as follows.
Section 2 is the main aim of this paper. Subsection 2.1 recalls some basic operational

properties of the Hartley transforms that are useful for proving the theorems in Sections 2,
3. In Subsection 2.2, Theorem 2.4 provides eight new generalized convolutions for H1, H2.

Section 3 considers the applications for constructing normed ring structures of L1(Rd),
and solving integral equations of convolution type. In particular, Subsection 3.1 shows that
the space L1(Rd), equipped with each of the constructed convolutions, becomes a normed
ring with no unit. Subsection 3.2 investigates the integral equations with the kernel of
Gaussian type. Under the normally solvable conditions, Theorem 3.2 gives a necessary and
sufficient condition for the solvability of an integral equation of convolution type, and obtain
the explicit solutions in L1(Rd) of the equation.

2 Generalized convolutions

2.1 Operational properties of the Hartley transforms Let < x, y > denote the
scalar product of x, y ∈ Rd, and |x|2 =< x, x > . Denote by α = (α1, . . . , αd) the multi-
index, i.e. αk ∈ Z+, k = 1, . . . , d, and |α| = α1 + · · · + αd. Let S denote the set of all
functions infinitely differentiable on R

d such that

sup
|α|≤N

sup
x∈Rd

(1 + |x|2)N |(Dα
x f)(x)| < ∞

for N = 0, 1, 2, . . . . (see [24]).
The classical multi-dimensional Hermite function Φα(x) is defined by

Φα(x) := (−1)|α|e
1
2 |x|2Dα

xe−|x|2 (see [23, 31]).

To begin with, we provide a theorem related to the Hermite functions which is useful for
proving the theorems in the paper.

Theorem 2.1 ([32]). Let |α| = 4m + k, m ∈ N, k = 0, 1, 2, 3. Then

(H1Φα)(x) =

{
Φα(x), if k = 0, 1
−Φα(x), if k = 2, 3.

(2.1)

and

(H2Φα)(x) =

{
Φα(x), if k = 0, 3

−Φα(x), if k = 1, 2,
(2.2)
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Proof. Let F,F−1 denote the Fourier, and the Fourier inverse transforms

(Fg)(x) =
1

(2π)
d
2

∫
Rd

e−i<x,y>g(y)dy, (F−1g)(x) =
1

(2π)
d
2

∫
Rd

ei<x,y>g(y)dy,

respectively. We first prove a result on the Fourier transform of the Hermite functions
similar to (2.1), (2.2). Namely, two following identities hold

(FΦα)(x) = (−i)|α|Φα(x), and (F−1Φα)(x) = (i)|α|Φα(x)(2.3)

([31, Theorem 57]). Now let us prove the first identity in (2.3). We have the formula

1

(2π)
d
2

∫
Rd

e±i<x,y>− 1
2 |x|2dx = e−

1
2 |y|2(2.4)

([24, Lemma 7.6]). Obviously,

Dα
xe

1
2 |x−iy|2 = (i)|α|Dα

y e
1
2 |x−iy|2 .(2.5)

Since the function e−
1
2 |x|2 belongs to S, we can integrate by parts |α| times, and use (2.4),

(2.5) to have∫
Rd

Φα(x)e−i<x,y>dx = (−1)|α|
∫

Rd

e−i<x,y>e
1
2 |x|2Dα

xe−|x|2dx =∫
Rd

e−|x|2Dα
x

(
e

1
2 |x|2e−i<x,y>

)
dx = e

1
2 |y|2

∫
Rd

e−|x|2Dα
x

(
e

1
2 |x−iy|2

)
dx =

e
1
2 |y|2

∫
Rd

e−|x|2(i)|α|Dα
y

(
e

1
2 |x−iy|2

)
dx = e

1
2 |y|2(i)|α|Dα

y

(∫
Rd

e−|x|2e
1
2 |x−iy|2dx

)

= e
1
2 |y|2(i)|α|Dα

y

(∫
Rd

e−i<x,y>− 1
2 |x|2e−

1
2 |y|2dx

)
=(2π)

d
2 (i)|α|e

1
2 |y|2Dα

y

(
e−|y|2

)
= (2π)

d
2 (−i)|α|

(
(−1)|α|e

1
2 |y|2Dα

y e−|y|2
)

= (2π)
d
2 (−i)|α|Φα(y).

The first identity in (2.3) is proved. The second one may be proved in the same way.
We now prove (2.1), (2.2). As the operators are defined on S, we have

H1 =
1
2
[F + F−1] +

1
2i

[F−1 − F ], and H2 =
1
2
[F + F−1] − 1

2i
[F−1 − F ].(2.6)

It follows that

(H1Φα)(x) =
1
2i

[
(−i)|α|i + (i)|α|+1 + (i)|α| − (−i)|α|

]
Φα(x),

and

(H2Φα)(x) =
1
2i

[
(−i)|α|i + (i)|α|+1 − (i)|α| + (−i)|α|

]
Φα(x),

Calculating the coefficients in the right sides of two last identities, we get (2.1), and (2.2).
The theorem is proved.

Remark 2.1. Different from the Fourier and the Fourier inverse transforms, the Hart-
ley transforms of the Hermite functions are the Hermite functions multiplied by the real
constants.
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Theorem 2.2 (inversion theorem, [2, 32]). Assume that f ∈ L1(Rd) and H1f ∈ L1(Rd).
Put

f0(x) :=
1

(2π)
d
2

∫
Rd

(H1f)(y) cas(xy)dy.(2.7)

Then f0(x) = f(x) for almost every x ∈ R
d.

Proof. By using the identities (2.6) and F 4 = I (see [24, Theorem 7.7]), we can easily prove
that the Hartley transforms H1 and H2 are the continuous, linear, one-to-one mappings of
S onto S, and they are their own inverses, i.e. H2

1 = I, H2
2 = I.

Now let g ∈ S, and f ∈ L1(Rd) be given. Using Fubini’s theorem, we get∫
Rd

f(x)(H1g)(x)dx =
∫

Rd

g(y)(H1f)(y)dy.(2.8)

Inserting g = H1(H1(g)) into the right-side of (2.8) and using Fubini’s theorem, we obtain∫
Rd

f(x)(H1g)(x)dx =
1

(2π)
d
2

∫
Rd

(∫
Rd

(H1g)(x) cas(xy)dx

)
(H1f)(y)dy

=
∫

Rd

(H1g)(x)

(
1

(2π)
d
2

∫
Rd

(H1f)(y) cas(xy)dy

)
dx =

∫
Rd

f0(x)(H1g)(x)dx.

As it is proved above, the functions H1g cover all of S. We then have∫
Rd

(f0(x) − f(x))Φ(x)dx = 0(2.9)

for every Φ ∈ S. Since S is dense in L1(Rd), we get f0(x) − f(x) = 0 for almost every
x ∈ Rd. The theorem is proved.

Corollary 2.1 (uniqueness theorem). If f ∈ L1(Rd) and if Hf = 0 in L1(Rd), then
f = 0 in L1(Rd).

Let C0(Rd) denote the supremum-normed Banach space of all continuous functions on
R

d vanishing at infinity. By using (2.6) and Theorem 7.5 in [24], it is possible to prove the
following lemma.

Theorem 2.3 (Riemann-Lebesgue lemma). Transform H1 is a continuous linear map
from L1(Rd) to C0(Rd).

2.2 Generalized convolutions The theory of convolutions of integral transforms has
been developed for a long time, and is applied in many fields of mathematics. In recent
years, many papers on the convolutions, generalized convolutions, and polyconvolutions for
the well-known transforms, most notably those by Fourier, Mellin, Laplace, Hankel, and
their applications have been published (see [1, 5, 6, 7, 8, 12, 13, 14, 25, 26, 27, 28, 29, 30, 32]).
This subsection provides eight new generalized convolutions for the Hartley transforms.

The nice idea of generalized convolution focuses on the factorization identity. We now
deal with the concept of convolutions.

Let U1, U2, U3 be the linear spaces on the field of scalars K, and let V be a commutative
algebra on K. Suppose that K1 ∈ L(U1, V ), K2 ∈ L(U2, V ), K3 ∈ L(U3, V ) are the linear
operators from U1, U2, U3 to V respectively. Let δ denote an element in algebra V.
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Definition 2.1 ([7, 18, 19]). A bilinear map ∗ : U1 × U2 :−→ U3 is called the convo-
lution with weight-element δ for K3, K1, K2 (that in order) if the following identity holds
K3(∗(f, g)) = δK1(f)K2(g), for any f ∈ U1, g ∈ U2. The above identity is called the factor-
ization identity of the convolution.

The image ∗(f, g) is denoted by f
δ∗

K3,K1,K2
g. If δ is the unit of V, we say briefly the

convolution for K3, K1, K2. In the case of U1 = U2 = U3 and K1 = K2 = K3, the convolution

is denoted simply by f
δ∗

K1
g, and by f ∗

K1
g if δ is the unit of V. The factorization identities

play a key role of many applications.
In what follows, we consider U1 = U2 = U3 = L1(Rd) with the integral in Lebesgue’s

sense, and V is the algebra of all measurable functions (real or complex) on Rd.

Put γ(x) := e−
1
2 |x|2. By using γ(x) = γ(−x), we have∫

Rd

sin(xy)γ(y)dy = 0, and (Fγ)(x) = (F−1γ)(x) = γ(x)

(see [24, Lemma 7.6]). It is easy to prove that

(H1γ)(x) = γ(x), and (H2γ)(x) = γ(x).(2.10)

The following lemma is useful for proving the proceeding theorem in this subsection.

Lemma 2.1. The following identity holds:

e−
1
2 |x|2

(2π)d

∫
Rd

∫
Rd

f(u)g(v)[cosx(u + v) + sin x(u + v)]dudv =

1

(2π)
3d
2

∫
Rd

cas(xy)dy

∫
Rd

∫
Rd

f(u)g(v) e−
|y−u−v|2

2 dudv.

Proof. Using the identities (2.10), we have

e−
1
2 |x|2

(2π)d

∫
Rd

∫
Rd

f(u)g(v)[cos x(u + v) + sin x(u + v)]dudv

=
1

(2π)
3d
2

∫
Rd

cas(xt)e
−|t|2

2 dt

∫
Rd

∫
Rd

cos x(u + v)f(u)g(v)dudv

+
1

(2π)
3d
2

∫
Rd

cas(−xt)e
−|t|2

2 dt

∫
Rd

∫
Rd

sin x(u + v)f(u)g(v)dudv =

1

(2π)
3d
2

∫
Rd

∫
Rd

∫
Rd

[
cas(xt) cos x(u + v) + cas(−xt) sin x(u + v)

]
f(u)g(v) ×

e−
|t|2
2 dtdudv =

1

(2π)
3d
2

∫
Rd

cas x(t + u + v)e−
|t|2
2 dt

∫
Rd

∫
Rd

f(u)g(v)dudv

=
1

(2π)
3d
2

∫
Rd

cas(xy)dy

∫
Rd

∫
Rd

f(u)g(v)e−
|y−u−v|2

2 dudv.

The lemma is proved.

Theorem 2.4 below presents four generalized convolutions with the weight-function γ for
the transforms H1, H2.
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Theorem 2.4. If f, g ∈ L1(Rd), then each of the integral transforms (2.11), (2.12), (2.13),
(2.14) below is the generalized convolution:

(f
γ∗

H1
g)(x) =

1
2(2π)d

∫
Rd

∫
Rd

f(u)g(v)
[− e−

|x+u+v|2
2

+ e−
|x+u−v|2

2 + e−
|x−u+v|2

2 + e−
|x−u−v|2

2
]
dudv,(2.11)

(f
γ∗

H1,H2,H2
g)(x) =

1
2(2π)d

∫
Rd

∫
Rd

f(u)g(v)
[
e−

|x+u+v|2
2

+ e−
|x+u−v|2

2 + e−
|x−u+v|2

2 − e−
|x−u−v|2

2
]
dudv,(2.12)

(f
γ∗

H1,H2,H1
g)(x) =

1
2(2π)d

∫
Rd

∫
Rd

f(u)g(v)
[
e−

|x+u+v|2
2

+ e−
|x+u−v|2

2 − e−
|x−u+v|2

2 + e−
|x−u−v|2

2
]
dudv,(2.13)

(f
γ∗

H1,H1,H2
g)(x) =

1
2(2π)d

∫
Rd

∫
Rd

f(u)g(v)
[
e−

|x+u+v|2
2

− e−
|x+u−v|2

2 + e−
|x−u+v|2

2 + e−
|x−u−v|2

2
]
dudv.(2.14)

Proof. Let us first prove (f
γ∗

H1
g) ∈ L1(Rd). Indeed, we have

∫
Rd

|(f γ∗
H1

g)|(x)dx ≤ 1
2(2π)d

∫
Rd

∫
Rd

∫
Rd

|f(u)||g(v)|e− |x+u+v|2
2 dudvdx

+
1

2(2π)d

∫
Rd

∫
Rd

∫
Rd

|f(u)||g(v)|e− |x+u−v|2
2 dudvdx

+
1

2(2π)d

∫
Rd

∫
Rd

∫
Rd

|f(u)||g(v)|e− |x−u+v|2
2 dudvdx

+
1

2(2π)d

∫
Rd

∫
Rd

∫
Rd

|f(u)||g(v)|e− |x−u−v|2
2 dudvdx < +∞.

The same line of proof works for the integral transforms (2.12), (2.13), (2.14). Therefore,
it suffices to prove the factorization identities for these transforms.
We now prove the factorization identity of the convolution (2.11). Using Lemma 2.1 and
replacing u with −u, and v with −v, when it is necessary, we have

γ(x)(H1f)(x)(H1g)(x) =
e−

|x|2
2

(2π)d

∫
Rd

∫
Rd

f(u)g(v) cas(xu) cas(xv)dudv

= − e−
|x|2
2

2(2π)d

∫
Rd

∫
Rd

f(u)g(v)[cosx(u + v) − sinx(u + v)]dudv

+
e−

|x|2
2

2(2π)d

∫
Rd

∫
Rd

f(u)g(v)[cosx(u − v) − sin x(u − v)]dudv

+
e−

|x|2
2

2(2π)d

∫
Rd

∫
Rd

f(u)g(v)[cosx(u − v) + sin x(u − v)]dudv

+
e−

|x|2
2

2(2π)d

∫
Rd

∫
Rd

f(u)g(v)[cosx(u + v) + sin x(u + v)]dudv

=
1

2(2π)3d/2

∫
Rd

cas(xy)
∫

Rd

∫
Rd

f(u)g(v)
[− e−

|y+u+v|2
2 + e−

|y+u−v|2
2
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+ e−
|y−u+v|2

2 + e−
|y−u−v|2

2
]
dudvdy = H1(f

γ∗
H1

g)(x),

as desired.
Proof of the factorization identities for the convolutions (2.12), (2.13), (2.14). We write

f̌(x) := f(−x), ǧ(x) := g(−x). Using the factorization identity of the convolution (2.11)
and replacing u with −u, v with −v, we obtain

γ(x)(H2f)(x)(H2g)(x) = γ(x)(H1f̌)(x)(H1ǧ)(x) = H1

(
f̌

γ∗
H1

ǧ
)
(x) =

1
2(2π)3d/2

∫
Rd

cas(xy)dy

∫
Rd

∫
Rd

f(−u)g(−v)
[− e−

|y+u+v|2
2 + e−

|y+u−v|2
2

+ e−
|y−u+v|2

2 + e−
|y−u−v|2

2
]
dudv = H1(f

γ∗
H1,H2,H2

g)(x).

Similarly, the factorization identities for the convolutions (2.13), (2.14) can be proved. The
theorem is proved.

Corollary 2.2. If f, g ∈ L1(Rd), then each of the integral transforms (2.4a), (2.5a), (2.6a),
(2.7a) below defines the generalized convolution:

(f
γ∗

H2
g)(x) =

1
2(2π)d

∫
Rd

∫
Rd

f(u)g(v)
[− e−

|x+u+v|2
2

+ e−
|x+u−v|2

2 + e−
|x−u+v|2

2 + e−
|x−u−v|2

2
]
dudv,(2.4a)

(f
γ∗

H2,H1,H1
g)(x) =

1
2(2π)d

∫
Rd

∫
Rd

f(u)g(v)
[
e−

|x+u+v|2
2

+ e−
|x+u−v|2

2 + e−
|x−u+v|2

2 − e−
|x−u−v|2

2
]
dudv,(2.5a)

(f
γ∗

H2,H1,H2
g)(x) =

1
2(2π)d

∫
Rd

∫
Rd

f(u)g(v)
[
e−

|x+u+v|2
2

+ e−
|x+u−v|2

2 − e−
|x−u+v|2

2 + e−
|x−u−v|2

2
]
dudv,(2.6a)

(f
γ∗

H2,H2,H1
g)(x) =

1
2(2π)d

∫
Rd

∫
Rd

f(u)g(v)
[
e−

|x+u+v|2
2

− e−
|x+u−v|2

2 + e−
|x−u+v|2

2 + e−
|x−u−v|2

2
]
dudv.(2.7a)

Proof. By (2.11), we have
(
H1(f

γ∗
H1

g)
)
(x)= γ(x)(H1f)(x)(H1g)(x). Replacing x with −x in

this identity and using (1.1), we obtain (2.4a). In the same way as above, the convolutions
(2.5a), (2.6a), (2.7a) can be proved.

3 Applications

3.1 Normed ring structures on L1(Rd) In the theory of normed rings, the multipli-
cation of two elements can be a convolution. This section proves that L1(Rd), equipped
with each of the convolution multiplications in Section 2 and an appropriate norm, be-
comes a normed ring. Some of them are commutative. Also, the space L1(Rd) could be a
commutative Banach algebra.

Definition 3.1 (see Naimark [21]). A vector space V with a ring structure and a vector
norm is called the normed ring if ‖vw‖ ≤ ‖v‖‖w‖, for all v, w ∈ V.
If V has a multiplicative unit element e, it is also required that ‖e‖ = 1.
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Let X denote the linear space L1(Rd). For the convolutions in Theorem 2.4 the norm
for f ∈ X is chosen as

‖f‖ =
2

(2π)
d
2

∫
Rd

|f(x)|dx.

Theorem 3.1. X, equipped with each of the convolution multiplications in Theorem 2.4,
becomes a normed ring having no unit. Moreover,

(a) The convolution multiplications (2.11) and (2.12) are commutative.
(b) The convolution multiplications (2.13) and (2.14) are non-commutative.

Proof. The proof for the first statement is divided into two steps.
Step 1. X has a normed ring structure. It is clear that X, equipped with each of

those convolution multiplications, has a ring structure. We have to prove the multiplicative
inequality. We now prove the inequality for (2.11). The other cases can be proved similarly.
Using the following formula∫

Rd

e−
|x±u±v|2

2 dx = (2π)
d
2 (u, v ∈ R

d),

we have

2

(2π)
d
2

∫
Rd

|f γ∗
H1

g|(x)dx ≤ 1

(2π)
3d
2

∫
Rd

∫
Rd

∫
Rd

|f(u)||g(v)|
[
e−

|x+u+v|2
2 + e−

|x+u−v|2
2

+e−
|x−u+v|2

2 + e−
|x−u−v|2

2

]
dudvdx ≤ 4

(2π)d

( ∫
Rd

|f(u)|du
)(∫

Rd

|g(v)|dv
)

=
( 2

(2π)
d
2

∫
Rd

|f(u)|du
)( 2

(2π)
d
2

∫
Rd

|g(v)|dv
)
.

Thus, ‖f γ∗
H1

g‖ ≤ ‖f‖.‖g‖.
Step 2. X has no unit. For briefness of our proof, let us use the abbreviation f∗g

for f
γ∗

H1
g, f

γ∗
H1,H2,H2

g, f
γ∗

H1,H2,H1
g, or f

γ∗
H1,H1,H2

g. Suppose that there exists an e ∈ X

such that f = f ∗ e = e ∗ f for every f ∈ X. We then have Φ0 = Φ0 ∗ e = e ∗ Φ0. By
the factorization identity of convolutions, we get HjΦ0 = γHkΦ0Hle, where Hj ,Hk,Hl ∈
{H1, H2} (e.g. Hj = Hk = H1, etc). By using Theorem 2.1 and Φ0(x) �= 0 for every x ∈ Rd,
γ(x)(Hle)(x) = 1 for every x ∈ Rd. The last identity fails, as lim

x→∞
[
γ(x)(Hle)(x)

]
= 0.

Hence, X has no unit.
We now prove the last statements of the theorem.
(a) Obviously, convolution multiplications (2.11) and (2.12) are commutative.
(b) Consider the convolution multiplication (2.13). Choose the multi-indexes α, β so

that |α| = 4m, |β| = 4n + 1. Using the factorization identity and Theorem 2.1, we get
H1(Φα

γ∗
H1,H2,H1

Φβ) = γΦαΦβ , and H1(Φβ
γ∗

H1,H2,H1
Φα) = −γΦαΦβ . It follows that (Φα

γ∗
H1,H2,H1

Φβ)(x) �≡ 0, (Φβ
γ∗

H1,H2,H1
Φα)(x) �≡ 0, and H1(Φα

γ∗
H1,H2,H1

Φβ) = −H1(Φβ
γ∗

H1,H2,H1
Φα). By

Corollary 2.1, Φα
γ∗

H1,H2,H1
Φβ �= Φβ

γ∗
H1,H2,H1

Φα. Thus, the convolution multiplication (2.13)

is not commutative.
The non-commutativity of the convolution multiplication (2.14) is proved in the same way.
The theorem is proved.
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3.2 Integral equations with the kernel of Gaussian type Consider the equation

λϕ(x) +
2

(2π)d

∫
Rd

∫
Rd

[
k1(u)e

−|x+u+v|2
2 + k2(u)e

−|x−u−v|2
2

]
ϕ(v)dudv = p(x).(3.1)

where λ ∈ C is predetermined, k1(x), k2(x), p(x) are given, and ϕ(x) is to be determined. In
what follows, given functions are assumed to belong to L1(Rd), and unknown function will
be determined there; the functional identity f(x) = g(x) means that it is valid for almost
every x ∈ Rd. However, if the functions f, g are continuous, there should be emphasis that
the identity f(x) = g(x) is true for every x ∈ Rd.

In equation (3.1), the function

K(x, v) =
2

(2π)
d
2

∫
Rd

[
k1(u)e

−|x−u+v|2
2 + k2(u)e

−|x−u−v|2
2

]
du(3.2)

is considered as the kernel. It is easily seen that if the functions k1(u), k2(u) in (3.2) are of
the Gaussian type, so is K(x, v).
Convolution integral equations with Gaussian kernels have some applications in Physics,
Medicine and Biology (see [9, 10, 11]).

Write:

A(x) := λ − γ(x)(H1k1)(x) + γ(x)(H2k1)(x) + γ(x)(H1k2)(x) + γ(x)(H2k2)(x);
B(x) := γ(x)(H2k1)(x) + γ(x)(H1k1)(x) − γ(x)(H2k2)(x) + γ(x)(H1k2)(x);

DH1,H2(x) := A(x)A(−x) − B(x)B(−x);
DH1(x) := A(−x)(H1p)(x) − B(x)(H2p)(x);
DH2(x) := A(x)(H2p)(x) − B(−x)(H1p)(x).(3.3)

Theorem 3.2. Assume that DH1,H2(x) �= 0 for every x ∈ Rd, and
DH1

DH1,H2

∈ L1(Rd).

Equation (3.1) has solution in L1(Rd) if and only if

H1

(
DH1

DH1,H2

)
∈ L1(Rd).(3.4)

If condition (3.4) is satisfied, then the solution of (3.1) is given in an explicit form ϕ(x) =
H1

(
DH1

DH1,H2

)
.

Proof. From convolutions (2.11), (2.12), (2.13), (2.14) it follows that

2
(2π)d

∫
Rd

∫
Rd

e
−|x+u+v|2

2 f(u)g(v)dudv = −(f
γ∗

H1
g)(x)

+ (f
γ∗

H1,H2,H2
g)(x) + (f

γ∗
H1,H1,H2

g)(x) + (f
γ∗

H1,H2,H1
g)(x),

and

2
(2π)d

∫
Rd

∫
Rd

e
−|x−u−v|2

2 f(u)g(v)dudv = (f
γ∗

H1
g)(x)

− (f
γ∗

H1,H2,H2
g)(x) + (f

γ∗
H1,H1,H2

g)(x) + (f
γ∗

H1,H2,H1
g)(x).
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Using the factorization identities of those convolutions, we get

(3.5) H1

(
2

(2π)d

∫
Rd

∫
Rd

e
−|x+u+v|2

2 f(u)g(v)dudv

)
(x) = γ(x)

[
− (H1f)(x)(H1g)(x)

+ (H2f)(x)(H2g)(x) + (H1f)(x)(H2g)(x) + (H2f)(x)(H1g)(x)
]
,

and

(3.6) H1

(
2

(2π)d

∫
Rd

∫
Rd

e
−|x−u−v|2

2 f(u)g(v)dudv

)
(x) = γ(x)

[
(H1f)(x)(H1g)(x)

− (H2f)(x)(H2g)(x) + (H1f)(x)(H2g)(x) + (H2f)(x)(H1g)(x)
]
.

Necessity. Suppose that equation (3.1) has a solution ϕ ∈ L1(Rd). Applying H1 to both
sides of (3.1) and using (3.5), (3.6), we obtain

A(x)(H1ϕ)(x) + B(x)(H2ϕ)(x) = (H1p)(x),(3.7)

where A(x),B(x) are defined as in (3.3). In equation (3.7), replacing x with −x, we get
the system of two linear equations{

A(x)(H1ϕ)(x) + B(x)(H2ϕ)(x) = (H1p)(x)
B(−x)(H1ϕ)(x) + A(−x)(H2ϕ)(x) = (H2p)(x),

(3.8)

where (H1ϕ)(x), (H2ϕ)(x) are the unknown functions. The determinants of (3.8) are defined
as in (3.3). By DH1,H2(x) �= 0 for every x ∈ Rd, we get (H1ϕ)(x) = DH1(x)

DH1,H2 (x) . We now

can apply Theorem 2.2 to obtain ϕ(x) = H1

( DH1

DH1,H2

)
(x). Thus, H1

( DH1

DH1,H2

)
∈ L1(Rd).

The necessity is proved.
Sufficiency. Obviously, DH2 (x)

DH1,H2 (x) = DH1(−x)

DH1,H2 (−x) . It follows that DH2 (x)

DH1,H2 (x) ∈ L1(Rd).

It is easy to prove that H1

(
DH1

DH1,H2

)
(x) = H2

(
DH2

DH1,H2

)
(x). Consider the function

ϕ(x) = H1

(
DH1

DH1,H2

)
(x) = H2

(
DH2

DH1,H2

)
(x).

This implies ϕ ∈ L1(Rd). By Theorem 2.2,

(H1ϕ)(x) =
DH1(x)

DH1,H2(x)
, and (H2ϕ)(x) =

DH2(x)
DH1,H2(x)

.

Hence, two functions (H1ϕ)(x), (H2ϕ)(x) together fulfill (3.8). We thus have

A(x)(H1ϕ)(x) + B(x)(H2ϕ)(x) = (H1p)(x).

This equation coincides with exactly the equation

H1

(
λϕ(x) +

2
(2π)d

∫
Rd

∫
Rd

[
k1(u)e

−|x+u+v|2
2

+k2(u)e
−|x−u−v|2

2

]
ϕ(v)dudv

)
(x) = (H1p)(x).

By Theorem 2.2, ϕ(x) fulfills equation (3.1) for almost every x ∈ Rd. The theorem is
proved.
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In the general theory of integral equations, the requirement that DH1,H2(x) �= 0 for every
x ∈ Rd as in Theorem 3.2 is the normally solvable condition of the equation.

It is known that (3.1) is a Fredholm integral equation of first kind if λ = 0, and that of
second kind if λ �= 0. For the second kind, Proposition 3.1 below is the illustration of the
conditions appearing in Theorem 3.2.

Proposition 3.1. Let λ �= 0.

(i) DH1,H2(x) �= 0 for every x outside a ball with a finite radius.

(ii) Suppose that k1, k2, p ∈ L1(Rd). If DH1,H2(x) �= 0 for every x ∈ R
d, and if H1p ∈

L1(Rd), then
DH1

DH1,H2

∈ L1(Rd).

Proof. (i) By the Riemann-Lebesgue lemma for the Hartley integral transforms, it is easily
seen that the function DH1,H2(x) is continuous on Rd and lim

|x|→∞
DH1,H2(x) = λ2. Now

the part (i) follows from λ �= 0 and the continuity of DH1,H2 .
(ii) By the continuity of DH1,H2 and lim

|x|→∞
DH1,H2(x) = λ2 �= 0, there exist R > 0, ε1 > 0

so that inf
|x|>R

|DH1,H2(x)| > ε1. Since DH1,H2 does not vanish in the compact set S(0, R) =

{x ∈ Rd : |x| ≤ R}, there exists ε2 > 0 so that inf
|x|≤R

|DH1,H2(x)| > ε2. We then have

sup
x∈Rd

1
|DH1,H2(x)| ≤ max{ 1

ε1
,

1
ε2
} < ∞. It follows that the function

1
|DH1,H2(x)| is con-

tinuous and bounded on Rd. Therefore,
DH1

DH1,H2

∈ L1(Rd), provided DH1 ∈ L1(Rd). We

shall prove that if H1p ∈ L1(Rd), then DH1 ∈ L1(Rd). Indeed, as (H2p)(x) = (H1p)(−x),
H2p ∈ L1(Rd). Since the functions A(x),B(x) are continuous and bounded on Rd and
H1p, H2p ∈ L1(Rd), we have DH1 ∈ L1(Rd). The proposition is proved.

Remark 3.1. The equation with four terms in kernel

λϕ(x) +
1

(2π)d

∫
Rd

∫
Rd

[
k1(u)e

−|x+u+v|2
2 + k2(u)e

−|x−u+v|2
2

+ k3(u)e
−|x+u−v|2

2 + k4(u)e
−|x−u−v|2

2

]
ϕ(v)dudv = p(x)

can be reduced to an equation of the form (3.1) by changing variable u by −u in the
second and third terms of the inner integral functions, and grouping k2(−u), k3(−u) with
k1(u), k4(u), respectively.

Comparison. a) By constructing some generalized convolutions, the papers [19, 25, 26,
27, 28, 29, 30] solved their integral equations. By using the Wiener-Lèvy theorem, those
papers provided the sufficient conditions for the solvability and obtained the implicit solu-
tions of those equations (see ones more [15, 17]).
By means of the normally solvable conditions of system of functional equations, the general-
ized convolutions for H1, H2 in Theorem 2.4 work out the necessary and sufficient condition
and the explicit solutions of the equations.

b) The Hartley transforms have the additional advantage of being their own inverses.
The convolution transforms in Theorem 2.4 and their corollaries do not contain any complex
coefficient. Therefore, if the objects in integral equations are real-valued, then the use of
generalized convolutions in those theorems and the inverse Hartley transforms brings about
the remarkable advantage computationally over that of Fourier’s.
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