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Abstract. We consider the following transportation problem with both random and
fuzzy factors. There exist m supply points and n demand points. For each route
between supply point and demand point, unit transportation cost is a random variable
according to a normal distribution and existence possibility denoting the preference
choosing this route is attached. The probability that the total transportation cost
is not greater than the budget F should be not less than the fixed probability level.
Under the above setting, we seek transportation pattern minimizing F and maximizing
the minimal preference among the routes used in a transportation. Since usually
there is no transportation pattern optimizing two objectives at a time, we propose a
solution algorithm to find some non-dominated transportation patterns after defining
non-domination. Finally we discuss the further research problems.

1. Introduction. The purpose of traditional transportation problem is to determine the
optimal transportation pattern of a certain good from supplies to demand customers so that
the total transportation cost becomes minimum. It is investigated by many researchers and
known as Hitchcock Koopman transportation problem. Typical solution methods are that
of using maximum flow algorithm [3], Hungarian method [5] and combinatorial one [10] etc.
This paper extends the classical transportation problem by considering preference of arc in a
transportation route and randomness of unit transportation cost of each route. Randomness
means that transportation cost may change according to many factors. So bi-criteria are
taken into account in this paper. One is to maximize the minimal preference among the
routes used in a transportation. Under the condition that the probability such that the total
transportation cost is not over the budget F is not below the prescribed level, minimizing
the budget F is the other criterion. But usually there exists no solution that optimizes two
objectives at a time. So we seek some non-dominated transportation patterns after defining
non-domination. Our model is extension of our previous models [2, 7, 9, 11, 12]. As for
another fuzzy version, we have considered competitive transportation problem also in order
to cope with an actual situation [6]. While Ahuja et al. [1] have considered a random
transportation problem and proposed an efficient solution algorithm. Their algorithm is
very useful to our problem in order to construct an efficient solution algorithm.

Section 2 formulates our problem and defines non-domination. Section 3 proposes an
efficient algorithm to find non-dominated transportation patterns. Finally Sections 4 con-
cludes this paper and discusses further research problems.

2. Problem Formulation. In this paper, we focus on the following bi-criteria transporta-
tion problem on a fuzzy network.
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(1) There exist a set of m supply points S = {s1, s2, · · · , sm} and a set of n demand
points T = {t1, t2, · · · , tn}.

(2) Edges set A is a set of route connecting each supply point si with each demand point
tj denoted by (i, j), i = 1, 2, · · · , m, j = 1, 2, · · · , n. The total upper limit provided
from each supply point si is ai and the total lower limit to each demand point tj is
bj . Further we assume that these ai, bj are positive integers and

∑m
i=1 ai ≥

∑n
j=1 bj .

(3) For each route from si to tj , positive cost cij for unit transportation of a good is
a random variable according to the normal distribution N(mij , σ

2
ij) and they are

independent each other. Further preference of the route is also attached and it is
denoted by µij ∈ (0, 1]. It reflects on the satisfaction degree using this route. We
denote the transportation quantity using the route (i, j) with fij and assume that
these fij are integer decision variables.

(4) As for total cost
∑m

i=1

∑n
j=1 cijfij , the following chance constraint is attached:

Pr{
m∑

i=1

n∑
j=1

cijfij ≤ F} ≥ α

where α > 1/2 and F is also a decision variable denoting the budget to be minimized.

(5) We consider bi-criteria. One is to maximize the minimal preference among the used
route. The other is to minimize the budget F . Generally speaking, there exists no
transportation pattern optimizing bi-criteria at a time and so we seek non-dominated
patterns which definition is given soon after the formulation of our problem.

¿From above setting, the transportation problem is formulated as follows:

TP : Minimize F

Maximize min
i,j
{µij | fij > 0}

subject to Pr{
m∑

i=1

n∑
j=1

cijfij ≤ F} ≥ α

n∑
j=1

fij ≤ ai, i = 1, 2, · · · , m

m∑
i=1

fij ≥ bj , j = 1, 2, · · · , n

fij : nonnegative integer, i = 1, 2, · · · , m, j = 1, 2, · · · , n

Since

Pr{
m∑

i=1

n∑
j=1

cijfij ≤ F} ≥ α⇔ Pr{

m∑
i=1

n∑
j=1

cijfij −
m∑

i=1

n∑
j=1

mijfij√
m∑

i=1

n∑
j=1

σ2
ijf

2
ij

≤
F −

m∑
i=1

n∑
j=1

mijfij√
m∑

i=1

n∑
j=1

σ2
ijf

2
ij

} ≥ α
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and

m�
i=1

n�
j=1

cijfij−
m�

i=1

n�
j=1

mijfij�
m�

i=1

n�
j=1

σ2
ijf2

ij

is a random variable according to the standard normal distri-

bution N(0, 1), the chance constraint is equivalent to the following deterministic constraint

F −
m∑

i=1

n∑
j=1

mijfij√
m∑

i=1

n∑
j=1

σ2
ijf

2
ij

≥ Kα ⇔ F ≥
m∑

i=1

n∑
j=1

mijfij + Kα

√√√√ m∑
i=1

n∑
j=1

σ2
ijf

2
ij

where Kα is the α percentile point of the cumulative distribution function of the standard
normal distribution and note that Kα > 0 since α > 1/2.

Therefore since F should be minimized, this problem is transformed into the following
deterministic equivalent problem P.

P : Minimize
m∑

i=1

n∑
j=1

mijfij + Kα

√√√√ m∑
i=1

n∑
j=1

σ2
ijf

2
ij

Maximize min
i,j
{µij | fij > 0}

subject to
n∑

j=1

fij ≤ ai, i = 1, 2, · · · , m

m∑
i=1

fij ≥ bj, j = 1, 2, · · · , n

fij : nonnegative integer, i = 1, 2, · · · , m, j = 1, 2, · · · , n

Next we define the transportation pattern vector v(f) = (v(f)1, v(f)2) corresponding to
a transportation pattern f = (fij) as follows

v(f)1 =
m∑

i=1

n∑
j=1

mijfij + Kα

√√√√ m∑
i=1

n∑
j=1

σ2
ijf

2
ij , v(f)2 = min

i,j
{µij | fij > 0}.

(Non-dominated Transportation Pattern)
For two transportation patterns fa, f b, if v(fa)1 ≤ v(fb)1, v(fa)2 ≥ v(fb)2 and at

least one inequality holds as a strict inequality, we call fa dominates f b. If there exists no
transportation pattern dominating f , f is called non-dominated transportation pattern.

Now sorting µij , i = 1, 2, · · · , m, j = 1, 2, · · · , n and let the result be

1 ≥ µ1 > µ2 > · · · > µg > 0

where g is the number of different µij . Define a route set

Ak = {(i, j)| µij ≥ µk, i = 1, 2, · · · , m, j = 1, 2, · · · , n}, k = 1, 2, · · · , g

that is, a set of routes that their preference are not less than µk.
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3. Solution Procedure. We solve following sub-problem Pk in order to find non-dominated
transportation patterns.

Pk : Minimize
m∑

i=1

n∑
j=1

mijfij + Kα

√√√√ m∑
i=1

n∑
j=1

σ2
ijf

2
ij

subject to
n∑

j=1

fij ≤ ai, i = 1, 2, · · · , m

m∑
i=1

fij ≥ bj , j = 1, 2, · · · , n

fij : nonnegative integer for (i, j) ∈ Ak, fij = 0 for (i, j) /∈ Ak

Now we introduce the following sub-problem PR
k with positive parameter R in order to

solve Pk.

PR
k : Minimize R

m∑
i=1

n∑
j=1

mijfij + Kα

m∑
i=1

n∑
j=1

σ2
ijf

2
ij

subject to
n∑

j=1

fij ≤ ai, i = 1, 2, · · · , m

m∑
i=1

fij ≥ bj, j = 1, 2, · · · , n

fij : nonnegative integer for (i, j) ∈ Ak, fij = 0 for (i, j) /∈ Ak

Note that feasible regions of transportation pattern are same for both problems Pk and
PR

k . According to the very same manner as [8], we have the following relation between Pk

and PR
k .

Theorem 1 An optimal transportation pattern fR(k) = (fR
ij (k)) for PR

k is also optimal

transportation pattern for Pk if R = 2
√∑m

i=1

∑n
j=1 σ2

ij(f
R
ij (k))2.

So in order to find an optimal transportation pattern for Pk, we consider optimal trans-
portation patterns of problem PR

k by changing R. PR
k is equivalent to the following problem

P
R

k .

P
R

k : Minimize
m∑

i=1

n∑
j=1

CR
ij (fij)

subject to
n∑

j=1

fij ≤ ai, i = 1, 2, · · · , m

m∑
i=1

fij ≥ bj , j = 1, 2, · · · , n

fij : nonnegative integer, i = 1, 2, · · · , m, j = 1, 2, · · · , n
where CR

ij(fij) is piecewise linear convex function and defined as follows:

CR
ij (fij) = (Rmijq + Kασ2

ijq
2) + {Rmij + Kασ2

ij(2q + 1)}(fij − q)
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(q ≤ fij ≤ q + 1), q = 0, 1, · · · , qij(= min{ai, bj})
for (i, j) ∈ Ak and CR

ij (fij) = M (large number) for (i, j) /∈ Ak.
In order to solve this problem, nonnegative condition is relaxed and the following prob-

lem P̃
R

k is considered.

P̃
R

k : Minimize
m∑

i=1

n∑
j=1

CR
ij(fij)

subject to
n∑

j=1

fij ≤ ai, i = 1, 2, · · · , m

m∑
i=1

fij ≥ bj, j = 1, 2, · · · , n

fij ≥ 0, i = 1, 2, · · · , m, j = 1, 2, · · · , n

This problem can be solved by using the algorithm [1]. If the optimal value is less than

M , let an optimal transportation pattern of problem P̃
R

k be (f̃
R

ij(k)). Then we have the
following theorem.

Theorem 2 (f̃
R

ij(k)) is an integer transportation pattern, that is, an optimal solution of
PR

k .

Proof of Theorem 2∑
(i,j)∈Ak

CR
ij (f̃

R

ij(k)) =
∑

(i,j)∈Ak

CR
ij (gij+r0

ij) =
∑

(i,j)∈Ak

{Rmij(gij+r0
ij)+Kασ2

ij(g
2
ij+(2gij+1)r0

ij)}

where f̃
R

ij(k) = gij + r0
ij , gij are nonnegative integers and 0 ≤ r0

ij ≤ 1 for (i, j) ∈ Ak.
Further∑
{j|(i,j)∈Ak}

(gij + r0
ij) ≤ ai, i = 1, 2, · · · , m,

∑
{i|(i,j)∈Ak}

(gij + r0
ij) ≥ bj, j = 1, 2, · · · , n.

Now we consider the following problem P(r) :

P(r) : Minimize
∑

(i,j)∈Ak

{Rmij + Kασ2
ij(2gij + 1)}rij

subject to
∑

{j|(i,j)∈Ak}
rij ≤ ai −

∑
{j|(i,j)∈Ak}

gij , i = 1, 2, · · · , m
∑

{i|(i,j)∈Ak}
rij ≥ bj −

∑
{i|(i,j)∈Ak}

gij , j = 1, 2, · · · , n

0 ≤ rij ≤ 1 for (i, j) ∈ Ak

Note that (rij) are decision variable and P(r) is an usual transportation problem with
each supply quantity ai −

∑
{j|(i,j)∈Ak} gij and each demand quantity bj −

∑
{i|(i,j)∈Ak} gij

though it contains capacity constraint of the flow through the route (i, j). Further note
that (r0

ij) is a feasible solution of P(r). So since these quantities are integers, an optimal
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transportation pattern is integer one if using a flow type algorithm [3]. Thus (f̃
R

ij(k)) is an

integer transportation pattern. Since P̃
R

k is a relaxation of P
R

k and PR
k is equivalent to P

R

k ,

so (f̃
R

ij(k)) is an optimal solution of PR
k .

(Solution Method for Pk)
Solving PR

k by changing R suitably (for example, using a binary method) and checking

whether R = 2
√∑

(i,j)∈Ak
σ2

ij(f
R
ij (k))2 or not, we can find an optimal solution of Pk.

Another method is making an efficient frontier of the space

{(
∑

(i,j)∈Ak

mijfij ,
∑

(i,j)∈Ak

σ2
ijf

2
ij)|

∑
{j|(i,j)∈Ak}

fij ≤ ai, i = 1, 2, · · · , m,

∑
{i|(i,j)∈Ak}

fij ≥ bj, j = 1, 2, · · · , n, fij : nonnegative integer}

and checking transportation patterns corresponding to vertices of the efficient frontier
whether R = 2

√∑
(i,j)∈Ak

σ2
ij(f

R
ij (k))2 or not by using the very similar manner to [4].

Now we are ready to propose the main algorithm for the original problem P.

(Main Algorithm)
Step 1: Set k = 1 and NDT=φ. Go to Step 2.
Step 2: Solve Pk and obtain its optimal transportation pattern f(k) = (fij(k)). If

f(k) is dominated by some transportation patterns in NDT, then go to Step 3 directly.
Otherwise set NDT=NDT∪f(k) and go to Step 3.

Step 3: If k = g, then terminate and NDT is a set of some non-dominated transporta-
tion patterns. Otherwise set k ← max {l, k + 1} (where µl = min

i,j
{µij |fij(k) > 0}) and

return to Step 2.

4. Conclusion. In this paper, we considered a bi-criteria transportation problem on a
fuzzy network and developed an algorithm to find non-dominated solutions. But unfor-
tunately we cannot show the complexity of our method rigorously. Therefore we should
endeavor to construct an efficient procedure by utilizing structure of the problem. Further
we should consider the flexibility of supply quantities and demand quantities, that is, treat
the case

∑m
i=1 ai <

∑n
j=1 bj . This case makes the problem three criteria one and we are

now attacking this case. Anyway, there remain many other network problems with both
fuzzy factors and random factors to be investigated.

Acknowledgement This paper is written for the memorial of Professor Tadashige Ishihara
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