HYPERALGEBRAS AND HYPER-COALGEBRAS

K. DENECKE AND K. SAENGSURA

Received May 15, 2009

ABSTRACT. In this paper we consider hyperalgebras and hyper-coalgebras of type τ , as an analogue of algebras of type τ and coalgebras of type τ (see [10]). Hyperalgebras and hyper-coalgebras are special cases of (F_1, F_2) -systems. Therefore many of the results in this paper will be instances of (F_1, F_2) -system results (see [8]). Nevertheless it is interesting and instructive to consider directly the theory of hyperalgebras and hyper-coalgebras of type τ . The aim of this paper is to create a unified theory of hyperalgebras and hyper-coalgebras which is based on (F_1, F_2) -systems.

1 Introduction Let $\tau = (n_i)_{i \in I}$ be a type, indexed by some set I. A hyperalgebra of type τ is a pair $(A; (f_i^A)_{i \in I})$ consisting of a non-empty set A and a set of finitary hyperoperations $f_i^A : A^{n_i} \to \mathcal{P}(A)$ where n_i is the arity of the hyperoperation f_i^A , A^{n_i} is the n_i -cartesian power of A and $\mathcal{P}(A)$ is the power set of A. We note that sometimes hyperalgebras are defined as pairs $(A; (f_i^A)_{i \in I})$ where f_i^A maps A^{n_i} into the set $\mathcal{P}(A) \setminus \{\emptyset\}$ and hyperalgebras in the sense of our definition are called power algebras. There exists an extended literature on power algebras and hyperalgebras (see e.g. [3], [1], [5]). In these papers one can find different definitions of the algebraic basic concepts, especially of the concept of a homomorphism. We want to give a unified approach which includes also hyper-coalgebras and is based on the concept of a (F_1, F_2) -system.

A hyper-coalgebra of type τ is a system $(A; (g_i^A)_{i \in I})$ consisting of a non-empty set Aand a set of finitary hyper-co-operations $g_i^A : \mathcal{P}(A) \to A^{\sqcup n_i}$, where n_i is the arity of the hyper-co-operation g_i^A and $A^{\sqcup n_i}$ is the n_i -th copower of A. We recall that such copowers are defined by $A^{\sqcup n_i} := \underline{n_i} \times A$ with $\underline{n_i} = \{1, \ldots, n_i\}$. This means that each n_i -ary hyperco-operation g_i^A is uniquely determined by a pair $((g_i^A)_1, (g_i^A)_2)$ of mappings, $(g_i^A)_1$ from $\mathcal{P}(A)$ to $\underline{n_i}$ and $(g_i^A)_2$ from $\mathcal{P}(A)$ to A. Therefore each n_i -ary hyper-co-operation satisfies

$$g_i^A(X) := ((g_i^A)_1(X), (g_i^A)_2(X))$$

for all sets $X \subseteq A$. The concept of a hyper-coalgebra of type τ generalizes that of a coalgebra of type τ (see e.g. [6], [7]).

Let F_1 , $F_2 : Set \to Set$ be functors from the category Set of sets as objects and mappings between sets as morphisms into itself. An (F_1, F_2) -system is a pair $(A; \alpha_A)$ consisting of a non-empty set A and a function $\alpha_A : F_1(A) \to F_2(A)$ (see [8], [10]). If F_1 is the identity functor, then $(A; \alpha_A)$ is called F-coalgebra, and if F_2 is the identity functor, then $(A; \alpha_A)$ is called F-algebra. For the theory of F-coalgebras we refer to [13], [14] or [10].

²⁰⁰⁰ Mathematics Subject Classification. 68Q55, 08A46.

Key words and phrases. (F_1, F_2) -system, hyperalgebra of type τ , hyper-coalgebra of type τ , bisimulation.

Any hyperalgebra of type τ can be regarded as an (F_1, F_2) -system for suitable functors $F_1, F_2: Set \to Set$. The functor F_1 maps sets X to the coproduct, which is in the category Set the disjoint sum $\sum_{i \in I} X^{n_i}$. The functor F_1 takes mappings $f: X \to Y$ to mappings $F_1(f): \sum_{i \in I} X^{n_i} \to \sum_{i \in I} Y^{n_i}$ defined by $(i, (a_1, \ldots, a_{n_i})) \mapsto (i, (f(a_1), \ldots, f(a_{n_i})))$, for all $i \in I$ and $a_1, \ldots, a_{n_i} \in A$. The functor F_2 is the power set functor, that is, F_2 maps sets X to $\mathcal{P}(X)$, and $F_2(f): \mathcal{P}(X) \to \mathcal{P}(Y)$ is defined by $C \mapsto \{f(c) \mid c \in C\}$ for all $C \subseteq X$. Then the type τ hyperalgebra $(A; (f_i^A)_{i \in I})$ is uniquely determined by $(A; \alpha_A)$ where $\alpha_A: F_1(A) \to F_2(A)$ is given by $(i, (a_1, \ldots, a_{n_i})) \mapsto f_i^A(a_1, \ldots, a_{n_i})$, and vice versa.

Similarly, any hyper-coalgebra of type τ can be regarded as an (F_1, F_2) -system that is, the functor F_1 is the power set functor, and the functor F_2 maps sets X to the direct product $\prod_{i \in I} X^{\sqcup n_i}$, and takes mappings $f: X \to Y$ to mappings $F_2(f): \prod_{i \in I} X^{\sqcup n_i} \to \prod_{i \in I} Y^{\sqcup n_i}$ defined by $(k_i, a)_{i \in I} \mapsto (k_i, f(a))_{i \in I}$, where $k_i \in \underline{n_i}$. Then the type τ hyper-coalgebra $(A; (g_i^A)_{i \in I})$ is uniquely determined by $(A; \alpha_A)$ where $\alpha_A : F_1(A) \to F_2(A)$ is given by $X \mapsto (g_i^A(X))_{i \in I}$ for all $X \subseteq A$, and vice versa.

For basic concepts from Category Theory we refer to [12] and [2]. Basic concepts from Universal Algebra can be found in [4], [9] or [11].

2 Hyperalgebras We begin by considering the definition of homomorphic images, subalgebras and congruences of hyperalgebras of type τ . In each case our definition is based on the type τ hyperalgebra structure, and we show that our definition is in fact equivalent to the (F_1, F_2) -system version for the functors F_1 and F_2 defined before. This guarantees to have the "right" definition. We recall that a mapping $\varphi : A \to B$ is a homomorphism from $(A; \alpha_A)$ to $(B; \alpha_B)$ if $\alpha_B \circ F_1(\varphi) = F_2(\varphi) \circ \alpha_A$. Therefore we define homomorphisms of hyperalgebras as follows.

Definition 2.1 Let $\mathcal{A} = (A; (f_i^A)_{i \in I})$ and $\mathcal{B} = (B; (f_i^B)_{i \in I})$ be hyperalgebras of type τ . A mapping $\varphi : A \to B$ is called a homomorphism from \mathcal{A} to \mathcal{B} if $\bar{\varphi} \circ f_i^A = f_i^B \circ \varphi^{n_i}$ for all $i \in I$, where $\bar{\varphi}$ and φ^{n_i} are mappings which are defined by $\bar{\varphi}(X) = \{\varphi(x) \mid x \in X\}$ for all $X \subseteq A$ and $\varphi^{n_i}(a_1, \ldots, a_{n_i}) = (\varphi(a_1), \ldots, \varphi(a_{n_i}))$ for all $a_1, \ldots, a_{n_i} \in A$.

Our definition of homomorphism means that the diagram below commutes.

Example 2.2 Consider the set $A = \{a, b\}$ and its cartesian square $A^2 = \{(a, a), (a, b), (b, a), (b, b)\}$. We define a binary hyperoperation $f^A : A^2 \to \mathcal{P}(A)$ by $(a, a) \mapsto \emptyset$, $(a, b) \mapsto A$, $(b, a) \mapsto \{b\}$ and $(b, b) \mapsto \{a\}$. Now let the set $B = \{u, v\}$ and let $f^B : B^2 \to \mathcal{P}(B)$ be given by $(u, u) \mapsto \{v\}, (u, v) \mapsto \{u\}, (v, u) \mapsto B$ and $(v, v) \mapsto \emptyset$. Consider the mapping $\varphi : A \to B$ given by $a \mapsto v, b \mapsto u$. Then it is easy to see that φ is a homomorphism.

As a result, our definition of homomorphism for type τ hyperalgebras is equivalent to the definition of an (F_1, F_2) -system homomorphism. This tells us that all the results for (F_1, F_2) -systems (see [8]), are valid in the case of type τ hyperalgebras as well. Then we obtain the following results and it is not necessary to reprove them in our new context.

Proposition 2.3 Let $\mathcal{A} = (A; (f_i^A)_{i \in I}), \ \mathcal{B} = (B; (f_i^B)_{i \in I}) \ and \ \mathcal{C} = (C; (f_i^C)_{i \in I}) \ be \ hyperalgebras.$ Then

- (i) If $\varphi : \mathcal{A} \to \mathcal{B}$ and $\psi : \mathcal{B} \to \mathcal{C}$ are homomorphisms, then $\psi \circ \varphi : \mathcal{A} \to \mathcal{C}$ is a homomorphism.
- (ii) If $id_A : A \to A$ is the identity mapping, then id_A is a homomorphism.

Proposition 2.3 shows that the identity mapping id_A is a homomorphism on any type τ hyperalgebra \mathcal{A} and that the composition of two homomorphisms is a homomorphism. The class of all hyperalgebras of type τ therefore forms a concrete category, which we shall call $\mathcal{H}yalg(\tau)$. By the same method, using results for (F_1, F_2) -systems, we see that every bijective homomorphism is an isomorphism in the category-theoretical sense.

Further we have:

Proposition 2.4 Let \mathcal{A} , \mathcal{B} , \mathcal{C} be hyperalgebras and let $f : \mathcal{A} \to \mathcal{B}$, $g : \mathcal{B} \to \mathcal{C}$ be mappings such that $\varphi := g \circ f : \mathcal{A} \to \mathcal{C}$ is a homomorphism. Then

- (i) If f is a surjective homomorphism, then g is also a homomorphism.
- (ii) If g is an injective homomorphism, then f is also a homomorphism.

The so-called Diagram Lemma, well-known for the category Set, extends to the category $\mathcal{H}yalg(\tau)$.

Proposition 2.5 Let \mathcal{A} , \mathcal{B} , \mathcal{C} be hyperalgebras and let $\varphi : \mathcal{A} \to \mathcal{B}$, $\psi : \mathcal{A} \to \mathcal{C}$ be homomorphisms. Let φ be surjective. Then there is a homomorphism $\chi : \mathcal{B} \to \mathcal{C}$ with $\chi \circ \varphi = \psi$ iff Ker $\varphi \subseteq$ Ker ψ .

Subsystems of (F_1, F_2) -systems are defined using homomorphisms, i.e., $(S; \alpha_S)$ is a subsystem of $(A; \alpha_A)$, if the embedding (injection) $\subseteq_S^A: S \hookrightarrow A$ is a homomorphism (see [8]). To define subalgebras of hyperalgebras of type τ , we use the restriction $f_i^A|B :=$ $\{f_i^A(b_1, \ldots, b_{n_i}) \mid b_1, \ldots, b_{n_i} \in B\}$ of a hyperoperation on a set A to a subset B of A.

Definition 2.6 Let $\mathcal{A} = (A; (f_i^A)_{i \in I})$ and $\mathcal{B} = (B; (f_i^B)_{i \in I})$ be hyperalgebras of type τ , with $B \subseteq A$. Then \mathcal{B} is called a sub-hyperalgebra of \mathcal{A} if $f_i^B := f_i^A | B$ for all $i \in I$. We use the notation $\mathcal{B} \leq \mathcal{A}$ to indicate that \mathcal{B} is a sub-hyperalgebra of \mathcal{A} .

From the definition of f_i^B and Definition 2.6, we get that $f_i^B(b_1,\ldots,b_{n_i}) = \emptyset$ iff $f_i^A(b_1,\ldots,b_{n_i}) = \emptyset$ for $b_1,\ldots,b_{n_i} \in B$.

To show that Definition 2.6 is equivalent to the definition of a subsystem for (F_1, F_2) systems, we must verify that the embedding $\varphi : B \to A$ is a homomorphism. But for any $(b_1, \ldots, b_{n_i}) \in B^{n_i}$ and any $i \in I$, we have $\overline{\varphi}(f_i^B(b_1, \ldots, b_{n_i}))$

 $\begin{array}{l} f_i (b_1, \dots, b_{n_i})) \\ = & \bar{\varphi}(f_i^A(b_1, \dots, b_{n_i})) \\ = & f_i^A(b_1, \dots, b_{n_i}) \\ = & f_i^A(\varphi(b_1), \dots, \varphi(b_{n_i})) \\ = & f_i^A(\varphi^{n_i}(b_1, \dots, b_{n_i})), \end{array}$

since $\varphi(b_j) = b_j$ for all $j \in \{1, \ldots, n_i\}$.

$$\begin{array}{c|c} B^{n_i} & \varphi^{n_i} \\ f^B_i = f^A_i | B & (=) \\ \mathcal{P}(B) & \bar{\varphi} & \mathcal{P}(A) \end{array}$$

Example 2.7 Consider the set $A = \{a, b, c\}$ and its cartesian square

$$A^{2} = \{(a, a), (a, b), (a, c), (b, b), (b, a), (b, c), (c, c), (c, a), (c, b)\}.$$

We define a binary hyperoperation $f^A : A^2 \to \mathcal{P}(A)$ by $(a, a) \mapsto \{a, c\}, (a, b) \mapsto \{a, b\}, (a, c) \mapsto \{a, c\}, (b, b) \mapsto \{a, c\}, (b, a) \mapsto \{c\}, (b, c) \mapsto \{a\}, (c, c) \mapsto \{c\}, (c, a) \mapsto \emptyset, (c, b) \mapsto \{b\}$. Then the following systems are sub-hyperalgebras of \mathcal{A} : $(\emptyset; \emptyset), (\{a, c\}; f^A | \{a, c\}), (\{c\}; f^A | \{c\}).$

There is a "subalgebra criterion" for sub-hyperalgebras of type τ , similar to the one for algebras of type τ .

Lemma 2.8 Let $\mathcal{A} = (A; (f_i^A)_{i \in I})$ be a hyperalgebra of type τ and let $B \subseteq A$ be a subset of A. Then the hyperalgebra $(B; (f_i^B)_{i \in I})$ of type τ is a sub-hyperalgebra of $(A; (f_i^A)_{i \in I})$ if and only if B is closed under all the hyperoperations f_i^A for $i \in I$; that is if and only if $f_i^A(b_1, \ldots, b_{n_i}) \in \mathcal{P}(B)$ for all $b_1, \ldots, b_{n_i} \in B$ and all $i \in I$.

Proof: When $(B; (f_i^B)_{i \in I})$ is a sub-hyperalgebra of $(A; (f_i^A)_{i \in I})$, the mapping $f_i^B = f_i^A | B$ is an n_i -ary hyperoperation on B for all $i \in I$. Therefore $f_i^A(b_1 \dots, b_{n_i}) = (f_i^A | B)(b_1 \dots, b_{n_i}) \in \mathcal{P}(B)$ for all $b_1 \dots, b_{n_i} \in B$ and all $i \in I$. Conversely, suppose that B is closed with respect to f_i^A for all $i \in I$.

Then $(f_i^A|B)(b_1...,b_{n_i}) \in \mathcal{P}(B)$ for all $b_1..., b_{n_i} \in B$, so $f_i^A|B$ is an n_i -ary hyper operation on B and $(B; (f_i^B)_{i \in I})$ with $f_i^B = f_i^A|B$ is a sub-hyperalgebra of $(A; (f_i^A)_{i \in I})$.

The following usual properties of subalgebras of type τ algebras, also hold for subhyperalgebras of hyperalgebras, and we leave them for the reader to verify.

Corollary 2.9 Let \mathcal{A} , \mathcal{B} and \mathcal{C} be hyperalgebras of type τ . Then

- (i) If $\mathcal{A} \leq \mathcal{B}$ and $\mathcal{B} \leq \mathcal{C}$, then $\mathcal{A} \leq \mathcal{C}$.
- (ii) If $A \subseteq B \subseteq C$ and $\mathcal{A} \leq \mathcal{C}$ and $\mathcal{B} \leq \mathcal{C}$, then $\mathcal{A} \leq \mathcal{B}$.

Let $\varphi : \mathcal{A} \to \mathcal{B}$ be a homomorphism. Two standard properties of homomorphisms are that the image $\varphi(\mathcal{C})$ of a sub-hyperalgebra \mathcal{C} of \mathcal{A} should be a sub-hyperalgebra of \mathcal{B} , and the preimage $\varphi^{-1}(\mathcal{D})$ of a sub-hyperalgebra of \mathcal{B} should be a sub-hyperalgebra of \mathcal{A} . For (F_1, F_2) -systems, the proof of the latter fact requires that the functor F_2 preserves pullbacks (see [8]). It can be proved that the functor F_2 we are using for hyperalgebras of type τ , defined by $X \mapsto \mathcal{P}(X)$ for every set X, preserves pullbacks. Thus this pre-image fact will also hold for hyperalgebras of type τ . However we can also prove this fact directly, in a simpler fashion. **Theorem 2.10** Let \mathcal{A} and \mathcal{B} be hyperalgebras of type τ and let $\varphi : \mathcal{A} \to \mathcal{B}$ be a homomorphism.

- (i) If $\mathcal{C} \leq \mathcal{A}$, then $\varphi(\mathcal{C}) \leq \mathcal{B}$.
- (ii) If $\mathcal{D} \leq \mathcal{B}$, then $\varphi^{-1}(\mathcal{D}) \leq \mathcal{A}$.

Proof. (i) We know that $\varphi(C) \subseteq B$ and want to show that the hyperalgebra $(\varphi(C); (f_i^B | \varphi(C))_{i \in I})$ is a sub-hyperalgebra of $(B; (f_i^B)_{i \in I})$. Assume that $b_1, \ldots, b_{n_i} \in \varphi(C)$. Then there are elements $c_1, \ldots, c_{n_i} \in C$ such that $b_j = \varphi(c_j)$ for all $j = 1, \ldots, n_i$. So

$$\begin{aligned}
f_i^B(b_1, \dots, b_{n_i}) &= f_i^B(\varphi(a_1), \dots, \varphi(a_{n_i})) \\
&= (f_i^B \circ \varphi^{n_i})(a_1, \dots, a_{n_i}) \\
&= (\bar{\varphi} \circ f_i^A)(a_1, \dots, a_{n_i}) \\
&= \bar{\varphi}(f_i^A(a_1, \dots, a_{n_i})) \\
&= \bar{\varphi}(f_i^C(a_1, \dots, a_{n_i})),
\end{aligned}$$

that is, $f_i^B(b_1, \ldots, b_{n_i}) \subseteq \varphi(C)$, which shows that $\varphi(C)$ is closed under taking of f_i^B for all $i \in I$. By the sub-hyperalgebra criterion (Lemma 2.8) we have $\varphi(C) \leq \mathcal{B}$.

(ii) Again it is clear that $\varphi^{-1}(D) \subseteq A$, and we need to show that the hyperalgebra $(\varphi^{-1}(D); (f_i^A | \varphi^{-1}(D))_{i \in I})$ is a sub-hyperalgebra of $(A; (f_i^A)_{i \in I})$. Let $a_1, \ldots, a_{n_i} \in \varphi^{-1}(D)$, so that $\varphi(a_j) \in D$ for all $j = 1, \ldots, n_i$. Since $\varphi : \mathcal{A} \to \mathcal{B}$ is a homomorphism and $\mathcal{D} \leq \mathcal{B}$, we have

$$\begin{split} \bar{\varphi}(f_i^A(a_1,\ldots,a_{n_i})) &= (\bar{\varphi} \circ f_i^A)(a_1,\ldots,a_{n_i}) \\ &= (f_i^B \circ \varphi^{n_i})(a_1,\ldots,a_{n_i}) \\ &= f_i^B(\varphi(a_1),\ldots,\varphi(a_{n_i})) \\ &= f_i^D(\varphi(a_1),\ldots,\varphi(a_{n_i})) \\ &\subseteq D. \end{split}$$

is gives $f_i^A(a_1,\ldots,a_{n_i}) \subset \varphi^{-1}(D)$. By Lemma 2.8 the hyperalgebra $(\varphi^{-1}(D))$

This gives $f_i^A(a_1, \ldots, a_{n_i}) \subseteq \varphi^{-1}(D)$. By Lemma 2.8 the hyperalgebra $(\varphi^{-1}(D); (f_i^A | \varphi^{-1}(D))_{i \in I})$ is a sub-hyperalgebra of $(A; (f_i^A)_{i \in I})$.

One of the main results for (F_1, F_2) -systems is that the intersection of subsystems of a given (F_1, F_2) -system \mathcal{A} is a subsystem under the condition that the functor F_2 preserves pullbacks (see [8]). Since any hyperalgebra of type τ can be regarded as (F_1, F_2) -system and since we have seen that the suitable functor F_2 is the power set functor, it is not difficult to prove that the power set functor preserves pullbacks, so the intersection of sub-hyperalgebras of a hyperalgebra \mathcal{A} is a sub-hyperalgebra. We can also use the sub-hyperalgebra criterion to prove this fact directly.

Theorem 2.11 If $(\mathcal{B}_j)_{j \in J}$ is a family of sub-hyperalgebras of a hyperalgebra $\mathcal{A} = (A; (f_i^A)_{i \in I})$ of type τ , then $\bigcap_{j \in J} \mathcal{B}_j$ is a sub-hyperalgebra of \mathcal{A} .

Proof: Since each B_j is a subset of A, we clearly have $\bigcap_{j \in J} B_j \subseteq A$. Let $(b_1, \ldots, b_{n_i}) \in \bigcap_{j \in J} B_j$, this makes $(b_1, \ldots, b_{n_i}) \in B_j$ for all $j \in J$. Since $f_i^{B_j}(b_1, \ldots, b_{n_i}) = (f_i^A | B_j)(b_1, \ldots, b_{n_i})$ for all $j \in J$, then $f_i^{B_j}(b_1, \ldots, b_{n_i}) \subseteq \bigcap_{j \in J} B_j$ for all $j \in J$. Therefore $(\bigcap_{j \in J} B_j; (f_i^A | (\bigcap_{j \in J} B_j))_{i \in I})$ is a sub-hyperalgebra of $(A; (f_i^A)_{i \in I})$. This result allows us to define the sub-hyperalgebra $\langle S \rangle$ generated by a subset S of a hyperalgebra \mathcal{A} .

Definition 2.12 Let $\mathcal{A} = (A; (f_i^A)_{i \in I})$ be a hyperalgebra of type τ and let $S \subseteq A$ be a subset. Then the intersection of all the sub-hyperalgebras of \mathcal{A} which contains S forms the least sub-hyperalgebra of \mathcal{A} containing S. This sub-hyperalgebra is called the hyperalgebra generated by S, and is denoted by $\langle S \rangle$.

Example 2.13 Let us consider set A and the hyperoperation f^A from Example 2.7. The following sub-hyperalgebras of $(A; f^A)$ are generated by the given subsets of A:

An important problem is the following one: given a hyperalgebra \mathcal{A} of type τ , and a subset S of A, determine all elements of the carrier set of the sub-hyperalgebra of \mathcal{A} which is generated by S. To do this, we set

$$E(S) := S \cup f_i^A(s_1, \dots, s_{n_i})$$

for all $s_1, \ldots, s_{n_i} \in S$ and all $i \in I$. Then we inductively define $E^0(S) := S$, and $E^{k+1}(S) := E(E^k(S))$, for all $k \in \mathbb{N}$. With this notation we obtain a similar result as in the case of an algebra of type τ .

Corollary 2.14 For any hyperalgebra \mathcal{A} of type τ and for any non-empty subset $S \subseteq A$, we have $\langle S \rangle = \bigcup_{k=0}^{\infty} E^k(S)$.

The proof corresponds to that one for algebras of type τ .

Congruences of (F_1, F_2) -systems are defined as kernels of homomorphisms. For hyperalgebras of type τ , we define a congruence to be an equivalence relation with a certain additional property. We shall see shortly that this is equivalent to a congruence being a kernel of a homomorphism in this case too.

Definition 2.15 Let $\mathcal{A} = (A; (f_i^A)_{i \in I})$ be a hyperalgebra of type τ . A congruence relation θ on \mathcal{A} is an equivalence relation on A which satisfies the condition that, if $(a_1, b_1) \dots, (a_{n_i}, b_{n_i}) \in \theta$, then

$$[(f_i^A(a_1,\ldots,a_{n_i})]_{\theta} = [f_i^A(b_1,\ldots,b_{n_i})]_{\theta}$$

where

$$[(f_i^A(a_1,\ldots,a_{n_i})]_{\theta} = \{[a]_{\theta} \mid a \in f_i^A(a_1,\ldots,a_{n_i})\}$$

and

$$[(f_i^A(b_1,\ldots,b_{n_i})]_{\theta} = \{[b]_{\theta} \mid b \in f_i^A(b_1,\ldots,b_{n_i})\}.$$

Example 2.16 Let us consider $A = \{a, b\}$ and let the binary hyperoperation f^A be given as in Example 2.2. The equivalences on A are given by the following sets

 $\begin{array}{rcl} \theta_1 & := & \{(a,a),(b,b)\}, \\ \theta_2 & := & \{(a,a),(a,b),(b,b)\}, \\ \theta_3 & := & \{(a,a),(b,a),(b,b)\}, \text{ and} \\ \theta_4 & := & A \times A. \end{array}$

Since $(a, a), (b, a) \in \theta_2, \theta_3$ and $f^A(a, b) = A, f^A(a, a) = \emptyset$, the relations θ_2, θ_3 are not

congruence relations on A. Similarly we have that, since $(a, a), (a, b) \in \theta_2$, the relation θ_2 is not a congruence relation. Since $(a, a), (b, b) \in \theta_1$ we have that $f^A(a, a) = \emptyset$, $f^A(b, b) = \{a\}$, $f^A(a, b) = A$ and $f^A(b, a) = \{b\}$. This gives

$$[f^{A}(a,b)]_{\theta_{1}} = [f^{A}(a,b)]_{\theta_{1}}, [f^{A}(b,a)]_{\theta_{1}} = [f^{A}(b,a)]_{\theta_{1}}, [f^{A}(b,b)]_{\theta_{1}} = [f^{A}(b,b)]_{\theta_{1}}.$$

Therefore θ_1 is a congruence relation on A.

It is easy to see that Δ_A is the least congruence on A and Example 2.16 shows that the greatest congruence on A need not to be $A \times A$.

Lemma 2.17 Let $(\theta_j)_{j \in J}$ be a family of congruence relations on A. Then $\bigcap_{j \in J} \theta_j$ is a congruence on A.

Proof. Let
$$(a_1, b_1), \ldots, (a_{n_i}, b_{n_i}) \in \bigcap_{j \in J} \theta_j$$
. This gives
 $(a_1, b_1), \ldots, (a_{n_i}, b_{n_i}) \in \theta_j$

for all $j \in J$. By the definition of a congruence relation we get that

$$[f_i^A(a_1,\ldots,a_{n_i})]_{\theta_j} = [f_i^A(b_1,\ldots,b_{n_i})]_{\theta_j}$$

for all $j \in J$, making $[f^A(a_1, \ldots, a_{n_i})]_{\substack{j \in J \\ j \in J}} \theta_i = [f^A(b_1, \ldots, b_{n_i})]_{\substack{i \in I \\ i \in I}} \theta_j$. Therefore $\bigcap_{i \in I} \theta_i$ is a congruence relation on A.

As in the algebra case, congruences can be used to produce quotient algebras.

Definition 2.18 Let $\mathcal{A} = (A; (f_i^A)_{i \in I})$ be a hyperalgebra of type τ and let θ be a congruence relation on \mathcal{A} . We define hyperoperations on the quotient set A/θ by

$$f_i^{A/\theta}([a_1]_{\theta}, \dots, [a_{n_i}]_{\theta}) := \{ [a]_{\theta} \mid a \in f_i^A(a_1, \dots, a_{n_i}) \}$$

for all $a_1, \ldots, a_{n_i} \in A$. Then the hyperalgebra $\mathcal{A}/\theta = (\mathcal{A}/\theta; (f_i^{\mathcal{A}/\theta})_{i \in I})$ is called the *quotient* hyperalgebra of \mathcal{A} by θ .

For this definition to be valid we have to verify that the hyperoperations $f_i^{A/\theta}$ defined on A/θ are well-defined. To check this, let

$$([a_1]_{\theta},\ldots,[a_{n_i}]_{\theta})=([b_1]_{\theta},\ldots,[b_{n_i}]_{\theta}).$$

This gives that $(a_1, b_1), \ldots, (a_{n_i}, b_{n_i}) \in \theta$, and that

$$[f^A(a_1,\ldots,a_{n_i})]_{\theta} = [f^A(b_1,\ldots,b_{n_i})]_{\theta}.$$

Therefore

$$\begin{aligned} f_i^{A/\theta}([a_1]_{\theta},\ldots,[a_{n_i}]_{\theta}) &= [f^A(a_1,\ldots,a_{n_i})]_{\theta} \\ &= [f^A(b_1,\ldots,b_{n_i})]_{\theta} \\ &= f_i^{A/\theta}([b_1]_{\theta},\ldots,[b_{n_i}]_{\theta}). \end{aligned}$$

Example 2.19 Let $\mathcal{A} = (A; f^A)$ be a hyperalgebra as defined in Example 2.2 and $\theta = \theta_1$ as defined in Example 2.17. Then $A/\theta = \{[a]_{\theta}, [b]_{\theta}\}$ and the hyperoperation $f^{A/\theta} : (A/\theta)^2 \to (A/\theta)^2$ $\mathcal{P}(A|\theta)$ is defined as follows:

$$\begin{array}{rcl} f^{A/\theta}([a]_{\theta}, [a]_{\theta}) &=& \emptyset \\ f^{A/\theta}([a]_{\theta}, [b]_{\theta}) &=& \{[a]_{\theta}, [b]_{\theta}\} \\ f^{A/\theta}([b]_{\theta}, [a]_{\theta}) &=& \{[b]_{\theta}\} \\ f^{A/\theta}([b]_{\theta}, [b]_{\theta}) &=& \{[a]_{\theta}\}. \end{array}$$

Proposition 2.20 Let $\mathcal{A} = (A; (f_i^A)_{i \in I})$ be a hyperalgebra of type τ and let θ be a congruence on \mathcal{A} . Then the natural mapping $\gamma: \mathcal{A} \to \mathcal{A}/\theta$ defined by $a \mapsto [a]_{\theta}$ is a surjective homomorphism from \mathcal{A} onto \mathcal{A}/θ .

Proof. For any
$$(a_1, \ldots, a_{n_i}) \in A^{n_i}$$
, we have
 $(\bar{\varphi} \circ f_i^A)(a_1 \ldots, a_{n_i}) = \bar{\varphi}(f_i^A(a_1, \ldots, a_{n_i}))$
 $= \{[x]_{\theta} \mid x \in f_i^A(a_1, \ldots, a_{n_i})\}$
 $= f_i^{A/\theta}([a_1]_{\theta}, \ldots, [a_{n_i}]_{\theta})$
 $= (f_i^{A/\theta} \circ \varphi^{n_i})(a_1, \ldots, a_{n_i}).$

This shows that γ is a homomorphism.

Theorem 2.21 Let A be a hyperalgebra of type τ . Then an equivalence relation θ on A is a congruence on \mathcal{A} if and only if θ is the kernel of some homomorphism from \mathcal{A} to some hyperalgebra \mathcal{B} .

Proof. When θ is a congruence, it is clear that θ is the kernel of the natural mapping $\gamma: \mathcal{A} \to \mathcal{A}/\theta$ since

$$(a,b)\in\theta\Leftrightarrow [a]_{\theta}=[b]_{\theta}\Leftrightarrow\gamma(a)=\gamma(b)\Leftrightarrow(a,b)\in Ker\ \gamma$$

Conversely, let $\varphi : \mathcal{A} \to \mathcal{B}$ be a homomorphism with $Ker \varphi$ as its kernel. Then $Ker \varphi$ is an equivalence relation on A. For any $(a_1, b_1), \ldots, (a_{n_i}, b_{n_i}) \in Ker \varphi$, we have $\varphi(a_i) = \varphi(b_i)$ for all $j = 1, \ldots, n_i$, so that

for all $j = 1, ..., n_i$, so that $\overline{\varphi}(f_i^A(a_1, ..., a_{n_i})) = (\overline{\varphi} \circ f_i^A)(a_1, ..., a_{n_i})$ $= f_i^B(\varphi(a_1), ..., \varphi(a_{n_i}))$ $= f_i^B(\varphi(b_1), ..., \varphi(b_{n_i}))$ $= (f_i^B \circ \varphi^{n_i})(b_1, ..., b_{n_i})$ $= (\overline{\varphi} \circ f_i^A)(b_1, ..., b_{n_i})$ $= \overline{\varphi}(f_i^A(b_1, ..., b_{n_i}),$ that is $[f_i^A(a_1, ..., a_{n_i})]_{Ker \varphi} = [f_i^A(b_1, ..., b_{n_i})]_{Ker \varphi}$. Therefore $Ker \varphi$ is a congruence relation on A

relation on \mathcal{A} .

If θ is a congruence on the hyperalgebra \mathcal{A} of type τ , then θ is the kernel of some homomorphism corresponding to a homomorphism of the corresponding (F_1, F_2) -system and θ is the kernel of this (F_1, F_2) -system homomorphism and thus a congruence on the (F_1, F_2) -system and conversely. This shows that congruences on hyperalgebras of type τ correspond to congruences of the corresponding (F_1, F_2) -systems. The analogue of the Homomorphic Image Theorem for algebras also holds for hyperalgebras of type τ . This fact follows directly from the Diagram Lemma of (F_1, F_2) -systems, but we will also give a direct proof using the definition of hyperalgebras of type τ .

Theorem 2.22 Let \mathcal{A} and \mathcal{B} be hyperalgebras of type τ , with φ a surjective homomorphism from \mathcal{A} onto \mathcal{B} . Then \mathcal{B} is isomorphic to the quotient hyperalgebra $\mathcal{A}/\operatorname{Ker} \varphi$ and the diagram below commutes

Proof. We use the natural mapping γ considered in Proposition 2.20 to define a mapping $\psi : \mathcal{B} \to \mathcal{A}/\operatorname{Ker} \varphi$ by $\psi(b) = \gamma(a)$ for $b = \varphi(a)$ and any $a \in \mathcal{A}$. This mapping is well-defined, since $\varphi(c) = b = \varphi(a) \in \mathcal{B}$ implies that $(c, a) \in \operatorname{Ker} \varphi$ and so $[c]_{\operatorname{Ker} \varphi} = [a]_{\operatorname{Ker} \varphi}$. It is clear that ψ is onto, and we show that ψ is one-to-one. If $\psi(b_1) = \psi(b_2)$ for some $b_1, b_2 \in \mathcal{B}$, then there are elements $a_1, a_2 \in \mathcal{A}$ with $b_1 = \varphi(a_1)$ and $b_2 = \varphi(a_2)$. Since $[a_1]_{\operatorname{Ker} \varphi} = [a_2]_{\operatorname{Ker} \varphi}$, that is $(a_1, a_2) \in \operatorname{Ker} \varphi$, we get $b_1 = b_2$. Also, since we have $\psi(\varphi(a)) = \psi(b) = \gamma(a)$ for all $a \in \mathcal{A}$, the diagram commutes. Using the fact that γ is a homomorphism, we can show that ψ is also a homomorphism. For any $b_1, \ldots, b_{n_i} \in \mathcal{B}$, there are $a_1, \ldots, a_{n_i} \in \mathcal{A}$ such that $b_j = \varphi(a_j)$ for all $j = 1, \ldots, n_i$, then

$$\begin{split} (\bar{\psi} \circ f_i^B)(b_1, \dots, b_{n_i}) &= \bar{\psi}(f_i^B(b_1, \dots, b_{n_i})) \\ &= \bar{\psi}(f_i^B(\varphi(a_1), \dots, \varphi(a_{n_i}))) \\ &= \bar{\psi}((f_i^B \circ \varphi^{n_i})(a_1, \dots, a_{n_i})) \\ &= \bar{\psi}((\bar{\varphi} \circ f_i^A)(a_1, \dots, a_{n_i})) \\ &= \bar{\psi} \circ (\bar{\varphi} \circ f_i^A)(a_1, \dots, a_{n_i}) \\ &= ((\bar{\psi} \circ \bar{\varphi}) \circ f_i^A)(a_1, \dots, a_{n_i}) \\ &= ((\bar{\psi} \circ \bar{\varphi}) \circ f_i^A)(a_1, \dots, a_{n_i}) \\ &= (f_i^{A/Ker} \varphi \circ \gamma^{n_i})(a_1, \dots, \gamma(a_{n_i})) \\ &= f_i^{A/Ker} \varphi (\psi(b_1), \dots, \psi(b_{n_i})) \\ &= (f_i^{A/Ker} \varphi \circ \psi^{n_i})(b_1, \dots, b_{n_i}) \end{split}$$

Then ψ is a homomorphism.

3 Hyper-coalgebras In this section we want consider the definitions of homomorphic images, subcoalgebras and congruences of hyper-coalgebras of type τ , and show that our definitions are in fact equivalent to the corresponding definitions for (F_1, F_2) -systems for suitable functors F_1, F_2 . Homomorphisms of hyper-coalgebras of type τ are defined as follows:

Definition 3.1 Let $\mathcal{A} = (A; (f_i^A)_{i \in I})$ and $\mathcal{B} = (B; (f_i^B)_{i \in I})$ be hyper-coalgebras of type τ . A mapping $\varphi : A \to B$ is called a homomorphism from \mathcal{A} to \mathcal{B} if the following equations are satisfied for all $i \in I$ and all sets $X \subseteq A$:

(i)
$$(f_i^A)_1(X) = (f_i^B)_1(\bar{\varphi}(X))$$
, and

(ii) $\varphi((f_i^A)_2(X)) = (f_i^B)_2(\bar{\varphi}(X)).$

Let us set $\varphi^{\sqcup n_i}(f_i^A(X)) = ((f_i^A)_1(X), \varphi((f_i^A)_2(X)))$. Then we see our definition of homomorphism means that the diagram below commutes, since $f_i^B(\bar{\varphi}(X)) = ((f_i^B)_1(\bar{\varphi}(X)), (f_i^B)_2(\bar{\varphi}(X))) = ((f_i^A)_1(X), \varphi((f_i^A)_2(X))) = \varphi^{\sqcup n_i}(f_i^A(X)).$

Example 3.2 Consider the set $A = \{a, b\}$ and its copower

$$A^{\sqcup 2} = \{(1, a), (2, a), (1, b), (2, b), (1, c), (2, c), (1, d), (2, d)\}.$$

We define a binary hyper-co-operation $f^A : \mathcal{P}(A) \to A^{\sqcup 2}$ by $\emptyset \mapsto (2,b), A \mapsto (1,a), \{a\} \mapsto (2,a)$ and $\{b\} \mapsto (1,b)$. Now let the set $B = \{x,y\}$ and let $f^B : \mathcal{P}(B) \to B^{\sqcup 2}$ be given by $\emptyset \mapsto (2,x), B \mapsto (1,y), \{x\} \mapsto (1,x)$ and $\{y\} \mapsto (2,y)$. Then it is easy to see that the mapping $\varphi : A \to B$ given by $a \mapsto y$ and $b \mapsto x$ is a homomorphism.

The definition of a homomorphism for hyper-coalgebras of type τ is equivalent to the definition of an (F_1, F_2) -system homomorphism. Then the following homomorphism properties are valid as in the case of (F_1, F_2) -systems.

Proposition 3.3 Let $\mathcal{A} = (A; (f_i^A)_{i \in I}), \mathcal{B} = (B; (f_i^B)_{i \in I})$ and $\mathcal{C} = (C; (f_i^C)_{i \in I})$ be hypercoalgebras. Then

- (i) If $\varphi : \mathcal{A} \to \mathcal{B}$ and $\psi : \mathcal{B} \to \mathcal{C}$ are homomorphisms, then $\psi \circ \varphi : \mathcal{A} \to \mathcal{C}$ is a homomorphism.
- (ii) If $id_A : A \to A$ is the identity mapping, then id_A is a homomorphism.

Proposition 3.3 shows that the class of all hyper-coalgebras of type τ together with homomorphisms between them forms a concrete category, which we shall call $\mathcal{H}ycoalg(\tau)$. The next proposition characterizes isomorphisms of hyper-coalgebra of type τ .

Proposition 3.4 Assume that $\mathcal{A} = (A; (f_i^A)_{i \in I})$ and $\mathcal{B} = (B; (f_i^B)_{i \in I})$ be hyper-coalgebras of type τ and let $\varphi : \mathcal{A} \to \mathcal{B}$ be a bijective homomorphism. Then φ is an isomorphism.

Further we have:

Proposition 3.5 Let $\mathcal{A} = (A; (f_i^A)_{i \in I})$ and $\mathcal{B} = (B; (f_i^B)_{i \in I})$, $\mathcal{C} = (C; (f_i^C)_{i \in I})$ be hypercoalgebras of type τ and let $f : A \to B$, $g : B \to C$ be mappings such that $\varphi := g \circ f : \mathcal{A} \to \mathcal{C}$ is a homomorphism. Then

- (i) If f is a surjective homomorphism, then g is also a homomorphism.
- (ii) If g is an injective homomorphism, then f is also a homomorphism.

It is easy too see that the Diagram Lemma extends from the category Set to the category $\mathcal{H}ycoalg(\tau)$.

Proposition 3.6 Let \mathcal{A} , \mathcal{B} , \mathcal{C} be hyper-coalgebras and let $\varphi : \mathcal{A} \to \mathcal{B}$, $\psi : \mathcal{A} \to \mathcal{C}$ be homomorphisms. Let φ be surjective. Then there is a homomorphism $\chi : \mathcal{B} \to \mathcal{C}$ with $\chi \circ \varphi = \psi$ iff Ker $\varphi \subseteq$ Ker ψ .

To define subcoalgebras of hyper-coalgebras of type τ , we use the restriction $f_i^A | \mathcal{P}(B) := \{((f_i^A)_1(X), (f_i^A)_2(X)) \mid X \subseteq B\}$ of a hyper-co-operation on a set A to a subset $\mathcal{P}(B)$ of $\mathcal{P}(A)$.

Definition 3.7 Let $\mathcal{A} = (A; (f_i^A)_{i \in I})$ and $\mathcal{B} = (B; (f_i^B)_{i \in I})$ be hyper-coalgebras of type τ , with $B \subseteq A$. Then \mathcal{B} is called a sub-hyper-coalgebra of \mathcal{A} if $f_i^B := f_i^A | \mathcal{P}(B)$ for all $i \in I$. We use the notation $\mathcal{B} \preceq \mathcal{A}$ to indicate that \mathcal{B} is a sub-hyper-coalgebra of \mathcal{A} .

To show that this definition is equivalent to the definition of a subsystem for (F_1, F_2) systems, we must verify that the embedding $\varphi : B \to A$ is a homomorphism. But for any $X \subseteq B$ and any $i \in I$, we have $\varphi^{\sqcup n_i}(f_i^B(X)) = \varphi^{\sqcup n_i}(f_i^A(X)) = ((f_i^A)_1(X), (f_i^A)_2(\bar{\varphi}(X)))$ $= f_i^A(\bar{\varphi}(X))$, since $(f_i^A)_1(\bar{\varphi}(X)) = (f_i^A)_1(X)$ and the diagram below commutes.

$\mathcal{P}(B)$	$ar{arphi}$	$\mathcal{P}(A)$
$f_i^B = f_i^A B$	(=)	f_i^A
	<u>ن</u>	ſ

Example 3.8 Let $A = \{a, b, c\}$, with copower

$$A^{\sqcup 2} = \{(1, a), (2, a), (1, b), (2, b), (1, c), (2, c)\}.$$

 $A^{\sqcup n_i}$

We define the binary hyper-co-operation $f^A : \mathcal{P}(A) \to A^{\sqcup 2}$ by $\emptyset \mapsto (1, a), A \mapsto (2, a), \{a\} \mapsto (1, a), \{b\} \mapsto (1, a), \{c\} \mapsto (1, c), \{a, b\} \mapsto (2, a), \{a, c\} \mapsto (2, c) \text{ and } \{b, c\} \mapsto (2, b).$ Then the subcoalgebras of $(A; f^A)$ are $(\emptyset; \emptyset), (A; f^A), (\{a\}; f^A | \mathcal{P}(\{a\})), (\{a, b\}; f^A | \mathcal{P}(\{a, b\}))$ and $(\{a, c\}; f^A | \mathcal{P}(\{a, c\})).$

There is a "subcoalgebra criterion" for sub-hyper-coalgebras of type τ , similar to the one for algebras of type τ .

Lemma 3.9 Let $\mathcal{A} = (A; (f_i^A)_{i \in I})$ be a hyper-coalgebra of type τ and let $B \subseteq A$ be a subset of A. Then the hyper-coalgebra $(B; (f_i^B)_{i \in I})$ of type τ is a sub-hyper-coalgebra of $(A; (f_i^A)_{i \in I})$ if and only if B is closed under all the hyper-co-operations f_i^A for $i \in I$; that is, if and only if $f_i^A(X) \in B^{\sqcup n_i}$ for all $X \subseteq B$ and all $i \in I$.

Proof: When $(B; (f_i^B)_{i \in I})$ is a sub-hyper-coalgebra of $(A; (f_i^A)_{i \in I})$, the mapping $f_i^B = f_i^A | \mathcal{P}(B)$ is an n_i -ary hyper-co-operation on B for all $i \in I$. Therefore $f_i^B(X) = (f_i^A | \mathcal{P}(B))(X) \in B^{\sqcup n_i}$ for all $X \subseteq B$ and all $i \in I$. Conversely, suppose that B is closed with respect to f_i^A for all $i \in I$. Then $(f_i^A | \mathcal{P}(B))(Y) \in B^{\sqcup n_i}$ for all $Y \subseteq B$, so $f_i^A | \mathcal{P}(B)$ is an n_i -ary hyper-co-operation on B and $(B; (f_i^B)_{i \in I})$ with $f_i^B = f_i^A | \mathcal{P}(B)$ is a sub-hyper-coalgebra of $(A; (f_i^A)_{i \in I})$.

The following properties which are valid for sub-hyperalgebras also hold for sub-hypercoalgebras, and we leave them for the reader to verify.

Corollary 3.10 Let \mathcal{A} , \mathcal{B} and \mathcal{C} be hyper-coalgebras of type τ . Then

- (i) If $\mathcal{A} \leq \mathcal{B}$ and $\mathcal{B} \leq \mathcal{C}$, then $\mathcal{A} \leq \mathcal{C}$.
- (ii) If $A \subseteq B \subseteq C$ and $\mathcal{A} \preceq \mathcal{C}$ and $\mathcal{B} \preceq \mathcal{C}$, then $\mathcal{A} \preceq \mathcal{B}$.

Let $\varphi : \mathcal{A} \to \mathcal{B}$ be a homomorphism. The functor F_2 which defines hyper-coalgebras of type τ as (F_1, F_2) -systems is given by $X \mapsto \prod_{i \in I} X^{\sqcup n_i}$ for all sets X. It is not difficult to prove that F_2 preserves pullbacks. This can be used to prove that the preimages of sub-hyper-coalgebras of \mathcal{B} are sub-hyper-coalgebras of \mathcal{A} . However we can also prove this fact directly.

Theorem 3.11 Let \mathcal{A} and \mathcal{B} be hyper-coalgebras of type τ and let $\varphi : \mathcal{A} \to \mathcal{B}$ be a homomorphism.

- (i) If $\mathcal{C} \preceq \mathcal{A}$, then $\varphi(\mathcal{C}) \preceq \mathcal{B}$.
- (ii) If $\mathcal{D} \preceq \mathcal{B}$, then $\varphi^{-1}(\mathcal{D}) \preceq \mathcal{A}$.

Proof. (i) We know that $\varphi(C) \subseteq B$ and want to show that the hyper-coalgebra $(\varphi(C); (f_i^B | \mathcal{P}(\varphi(C)))_{i \in I})$ is a sub-hyper-coalgebra of $(B; (f_i^B)_{i \in I})$. Assume that $X \subseteq \varphi(C)$. Then there is a subset Y of C such that $X = \overline{\varphi}(Y)$. So

There follows $f_i^B(X) \in \varphi(C)^{\sqcup n_i}$ for all $i \in I$. By the sub-hyper-coalgebra criterion (Lemma 3.9) we have $\varphi(\mathcal{C}) \preceq \mathcal{B}$.

(ii) Again it is clear that $\varphi^{-1}(D) \subseteq A$, and we need to show that the hyper-coalgebra $(\varphi^{-1}(D); (f_i^A | \mathcal{P}(\varphi^{-1}(D)))_{i \in I})$ is a sub-hyper-coalgebra of $(A; (f_i^A)_{i \in I})$. Let $X \subseteq \varphi^{-1}(D)$, so that $\varphi(X) \subseteq D$. Since $\varphi : \mathcal{A} \to \mathcal{B}$ is a homomorphism and $\mathcal{D} \preceq \mathcal{B}$, we have

$$\begin{array}{lll} \varphi^{\sqcup n_i}(f_i^A(X)) & = & (\varphi^{\sqcup n_i} \circ f_i^A)(X) \\ & = & (f_i^B \circ \bar{\varphi})(X) \\ & = & f_i^B(\bar{\varphi}(X)) \\ & = & f_i^D(\bar{\varphi}(X)) \in D^{\sqcup n_i} \end{array}$$

This gives $\varphi^{\sqcup n_i}(f_i^A(X)) \in D^{\sqcup n_i}$, and thus $f_i^A(X) \in \varphi^{-1}(D)^{\sqcup n_i}$. By Lemma 3.9 the hyper-coalgebra $(\varphi^{-1}(D); (f_i^A | \mathcal{P}(\varphi^{-1}(D)))_{i \in I})$ is a sub-hyper-coalgebra of $(A; (f_i^A)_{i \in I})$.

One of the main results for (F_1, F_2) -systems is that the union of subsystems of a given (F_1, F_2) -system \mathcal{A} is a subsystem under the condition that the functor F_1 preserves sums (see [8]). Any hyper-coalgebra of type τ can be regarded as (F_1, F_2) -system. We have seen that F_1 is the power set functor. It is not difficult to prove that the power set functor does not preserve sums, so the union of sub-hyper-coalgebras of hyper-coalgebra \mathcal{A} is not a sub-hyper-coalgebra. Let us consider a counterexample

Example 3.12 Let $A = \{a, b, c, d, e, \}$ with co-operation $f^A : A \to A^{\sqcup 2}$ be a hypercoalgebra and let $B = \{a, b\}$, and $C = \{a, d, c\}$ be subsets of A. Assume that $\mathcal{B} = (B; f^A | \mathcal{P}(B))$, and $\mathcal{C} = (C; f^A | \mathcal{P}(C))$ are sub-hyper-coalgebras of \mathcal{A} . If $f^A(\{b, c\}) = (1, e)$, then $f^A | \mathcal{P}(B \cup C)$ is not a hyper-co-operation on $B \cup C$, since $(1, e) \notin (B \cup C)^{\sqcup 2}$. Therefore $B \cup C$ is not a sub-hyper-coalgebra of $(A; f^A)$. Another result for (F_1, F_2) -systems is that arbitrary sums of (F_1, F_2) -systems exist if the functor F_1 preserves sums. But the power set functor does not preserve sums. Do sum exist in $\mathcal{H}ycoalg(\tau)$? We consider the following erxample.

Example 3.13 Let $A = \{a\}$ and $B = \{b\}$. Let $\mathcal{A} = (A; f^A)$ and $\mathcal{B} = (B; f^B)$ be hypercoalgebras such that f^A and f^B are defined by

$$f^A: \ \emptyset \mapsto (1,a), \ A \mapsto (2,a) \ \text{and} \ f^B: \ \emptyset \mapsto (2,b), \ B \mapsto (2,b).$$

Suppose that $(A \oplus B; f^{A \oplus B})$ together with homomorphisms $e_A : (A; f^A) \to (A \oplus B; f^{A \oplus B})$ and $e_B : (B; f^B) \to (A \oplus B; f^{A \oplus B})$ is the sum of \mathcal{A} and \mathcal{B} . Let us consider the mappings $e_A : A \to A \oplus B$ and $e_B : B \to A \oplus B$. Since

$$\begin{array}{rcl} (e_A^{\sqcup 2} \circ f^A)(\emptyset) &=& e_A^{\sqcup 2}(f^A(\emptyset)) \\ &=& e_A^{\sqcup 2}(1,a) \\ &=& (1,e_A(a)) & \text{and} \\ (f^{A\oplus B} \circ \bar{e_A})(\emptyset) &=& f^{A\oplus B}(\bar{e_A}(\emptyset)) \\ &=& f^{A\oplus B}(\emptyset), \end{array}$$

we obtain $f^{A \oplus B}(\emptyset) = (1, e_A(a)).$

Since

$$\begin{array}{rcl} (e_B^{\sqcup 2} \circ f^B)(\emptyset) &=& e_B^{\sqcup 2}(f^B(\emptyset)) \\ &=& e_B^{\sqcup 2}(2,b) \\ &=& (2,e_B(b)) \\ (f^{A\oplus B} \circ \bar{e_B})(\emptyset) &=& f^{A\oplus B}(\bar{e_B}(\emptyset)) \\ &=& f^{A\oplus B}(\emptyset), \end{array}$$

we get $f^{A \oplus B}(\emptyset) = (2, e_B(b))$. This contradiction shows that the sum $(A \oplus B; f^{A \oplus B})$ does not exist.

Congruences of hyper-coalgebras \mathcal{A} are defined as equivalence relations preserving the mappings $(f_i^A)_1$ and $(f_i^A)_2$. Let θ be an equivalence relation on A. For any subset X of θ we define $\pi_1(X) = \{x_1 \in A \mid \exists y \in A \ ((x_1, y) \in X)\} =: X_1$ and $\pi_2(X) = \{x_2 \in A \mid \exists y \in A \ ((y, x_2) \in X)\} =: X_2$ such that $\pi_1 : X \to A$ and $\pi_2 : X \to A$ are the first and the second projections, respectively.

Definition 3.14 Let $\mathcal{A} = (A; (f_i^A)_{i \in I})$ be a hyper-coalgebra of type τ . A congruence relation θ on \mathcal{A} is an equivalence relation on A which satisfies the condition that for any $X \subseteq \theta$, $((f_i^A)_2(X_1), (f_i^A)_2(X_2)) \in \theta$ and $(f_i^A)_1(X_1) = (f_i^A)_1(X_2)$ for all $i \in I$.

Let $(A; (f_i^A)_{i \in I})$ be a hyper-coalgebra of type τ . For any $X \subseteq A \times A$ and if $X_1 = X_2$, we have $(f_i^A)_1(X_1) = (f_i^A)_1(X_2)$ and $(f_i^A)_2(X_1) = (f_i^A)_2(X_2)$. There follows that Δ_A is a congruence relation on \mathcal{A} . But $A \times A$ in general is not a congruence relation on \mathcal{A} .

Example 3.15 Let $A = \{a, b\}$ and let f^A be a binary hyper-co-operation on A which is defined by $\emptyset \mapsto (2, a), A \mapsto (1, a), \{a\} \mapsto (1, b)$ and $\{b\} \mapsto (2, b)$. Consider the set $X = \{(a, b), (b, b)\}$. We have $X_1 = \{a, b\}$ and $X_2 = \{b\}$. But $(f^A)_1(X_1) = 1$ and $(f^A)_1(X_2) = 2$. This means that $A \times A$ is not a congruence on \mathcal{A} .

Lemma 3.16 Let $(\theta_j)_{j \in J}$ be a family of congruence relations on \mathcal{A} . Then $\bigcap_{j \in J} \theta_j$ is a congruence relation on \mathcal{A} .

Proof. The intersection of equivalence relations on A is again an equivalence relation on A. Now it is left to prove that any subset X of $\bigcap_{j \in J} \theta_j$ satisfies Definition 3.14. Let $X \subseteq \bigcap_{j \in J} \theta_j$ be a subset of $\bigcap_{j \in J} \theta_j$. Then $X \subseteq \theta_j$ for all $j \in J$. This gives $((f_i^A)_2(X_1), (f_i^A)_2(X_2)) \in \theta_j$ and $(f_i^A)_1(X_1) = (f_i^A)_1(X_2)$ for all $i \in I$ and all $j \in J$. Therefore $((f_i^A)_2(X_1), (f_i^A)_2(X_2)) \in \bigcap_{j \in J} \theta_j$ and $(f_i^A)_1(X_1) = (f_i^A)_1(X_2)$ for all $i \in I$.

As in the hyperalgebra case, congruences can be used to produce quotient hypercoalgebras.

Definition 3.17 Let $\mathcal{A} = (A; (f_i^A)_{i \in I})$ be a hyper-coalgebra of type τ and let θ be a congruence relation on \mathcal{A} . We define hyper-co-operations on the quotient set A/θ by

$$f_i^{A/\theta}(X_{\theta}) := ((f_i^A)_1(X), [(f_i^A)_2(X)]_{\theta}),$$

where $X \subseteq A$ and $X_{\theta} := \{ [x]_{\theta} \mid x \in X \}$. Then the hyper-coalgebra $\mathcal{A}/\theta = (A/\theta; (f_i^{A/\theta})_{i \in I})$ is called the *quotient hyper-coalgebra* of \mathcal{A} by θ .

The definition means that

$$\begin{array}{lll} (f_i^{A/\theta})_1([X_{\theta}]) &=& (f_i^A)_1(X) \\ \text{and} \\ (f_i^{A/\theta})_2([X_{\theta}]) &=& [(f_i^A)_2(X)]_{\theta} \end{array}$$

For this definition to be valid we have to verify that the co-operations $f_i^{A/\theta}$ defined on A/θ are well-defined. To check this, let $[X]_{\theta} = [Y]_{\theta}$. This gives $\{[x]_{\theta} \mid x \in X\} = \{[y]_{\theta} \mid y \in Y\}$, this means that for all $x \in X$, there is $y' \in Y$ such that $(x, y') \in \theta$, and for all $y \in Y$, there is $x' \in X$ such that $(x', y) \in \theta$. We define

$$W := \{ (x, y') \in X \times Y \mid \forall x \in X \exists y' \in Y \ ((x, y') \in \theta) \}$$
$$\cup \{ (x', y) \in X \times Y \mid \forall y \in Y \exists x' \in X \ ((x', y) \in \theta) \}.$$

Then we have $W \subseteq \theta$. Let $W_1 := \pi_1(W)$ and $W_2 := \pi_2(W)$. By the definition of a congruence relation on a hyper-coalgebra we get that $(f_i^A)_1(W_1) = (f_i^A)_1(W_2)$ and $((f_i^A)_2(W_1), (f_i^A)_1(W_2)) \in \theta$. Since $W_1 = \pi_1(W) = X$ and $W_2 = \pi_2(W) = Y$, we have $(f_i^A)_1(X) = (f_i^A)_1(Y)$ and $((f_i^A)_2(X), (f_i^A)_1(Y)) \in \theta$. Therefore

$$\begin{array}{rcl} f_i^{A/\theta}([X]_{\theta}) & = & ((f_i^A)_1(X), [(f_i^A)_2(X)]_{\theta}) \\ & = & ((f_i^A)_1(Y), [(f_i^A)_2(Y)]_{\theta}) \\ & = & f_i^{A/\theta}([Y]_{\theta}). \end{array}$$

Example 3.18 Let $A = \{a, b, c\}$ and let the equivalence relation θ on A be given by the partition $\{\{a, b\}, \{c\}\}$. Then $A/\theta = \{[a]_{\theta}, [c]_{\theta}\}$. Let the binary hyper-co-operation f^A on A be defined by $f^A(\emptyset) = (2, b)$, $f^A(A) = (1, c)$, $f^A(\{a\}) = (1, a)$, $f^A(\{b\}) = (1, a)$, $f^A(\{c\}) = (1, c)$, $f^A(\{a, b\}) = (1, a)$, $f^A(\{c\}) = (1, c)$, $f^A(\{a, b\}) = (1, a)$, $f^A(\{a, c\}) = (1, c)$ and $f^A(\{b, c\}) = (1, c)$. Then $f^{A/\theta} : \mathcal{P}(A/\theta) \to (A/\theta)^{\sqcup 2}$ is defined by $\emptyset \mapsto (2, [a]_{\theta})$, $\{[a]_{\theta}, [c]_{\theta}\} \mapsto (1, [c]_{\theta})$, $\{[a]_{\theta}\} \mapsto (1, [c]_{\theta})$.

Proposition 3.19 Let $\mathcal{A} = (A; (f_i^A)_{i \in I})$ be a hyper-coalgebra of type τ and let θ be a congruence on \mathcal{A} . Then the natural mapping $\gamma : A \to A/\theta$ defined by $a \mapsto [a]_{\theta}$ is a surjective homomorphism from \mathcal{A} onto \mathcal{A}/θ .

Proof. For any $X \subseteq A$, we have

This shows that γ is a homomorphism.

Congruences on (F_1, F_2) -systems are defined as kernels of homomorphisms. Now we prove that any congruence of a hyper-coalgebra of type τ corresponds to a congruence of the corresponding (F_1, F_2) -system.

Theorem 3.20 Let \mathcal{A} be a hyper-coalgebra of type τ . Then an equivalence relation θ on \mathcal{A} is a congruence on \mathcal{A} if and only if θ is the kernel of some homomorphism from \mathcal{A} to some hyper-coalgebra \mathcal{B} .

Proof. When θ is a congruence, it is clear that θ is the kernel of the natural mapping $\gamma : \mathcal{A} \to \mathcal{A}/\theta$ since

$$(a,b) \in \theta \Leftrightarrow [a]_{\theta} = [b]_{\theta} \Leftrightarrow \gamma(a) = \gamma(b) \Leftrightarrow (a,b) \in Ker \ \gamma.$$

Conversely, let $\varphi : \mathcal{A} \to \mathcal{B}$ be a homomorphism with $Ker \ \varphi$ as its kernel. Then $Ker \ \varphi$ is an equivalence relation on A. For any $X \subseteq Ker \ \varphi$, we have $\bar{\varphi}(X_1) = \bar{\varphi}(X_2)$, so that $f_i^B(\bar{\varphi}(X_1)) = f_i^B(\bar{\varphi}(X_2))$ and thus $(f_i^B \circ \bar{\varphi})(X_1) = (f_i^B \circ \bar{\varphi})(X_2)$ since φ is a homomorphism. This implies that $(\varphi^{\sqcup n_i} \circ f_i^A)(X_1) = (\varphi^{\sqcup n_i} \circ f_i^A)(X_2)$, so that $\varphi^{\sqcup n_i}((f_i^A)_1(X_1), (f_i^A)_2(X_1)) = \varphi^{\sqcup n_i}((f_i^A)_1(X_1), (f_i^A)_2(X_2))$ and thus $((f_i^A)_1(X_1), \varphi((f_i^A)_2(X_1))) = ((f_i^A)_1(X_2), \varphi((f_i^A)_2(X_2)))$, which makes $(f_i^A)_1(X_1) = (f_i^A)_1(X_2)$ and $\varphi((f_i^A)_2(X_1)) = \varphi((f_i^A)_2(X_2))$. This means that $((f_i^A)_2(X_1), (f_i^A)_2(X_2)) \in Ker \ \varphi$. Therefore $Ker \ \varphi$ is a congruence relation on \mathcal{A} .

Thus, if θ is a congruence on the hyper-coalgebra \mathcal{A} of type τ , then θ is the kernel of some homomorphism of the hyper-coalgebra \mathcal{A} of type τ . But this homomorphism corresponds to a homomorphism of the corresponding (F_1, F_2) -system and θ is the kernel of this (F_1, F_2) system homomorphism and thus a congruence on the (F_1, F_2) -system and conversely. This shows that congruences on hyper-coalgebras of type τ correspond to congruences of the corresponding (F_1, F_2) -systems.

The next theorem shows the Homomorphic Image Theorem for hyper-coalgebras of type τ .

Theorem 3.21 Let \mathcal{A} and \mathcal{B} be hyper-coalgebras of type τ , with φ a surjective homomorphism from \mathcal{A} onto \mathcal{B} . Then \mathcal{B} is isomorphic to the quotient hyper-coalgebra $\mathcal{A}/Ker \varphi$ and the diagram below commutes:

Proof. We use the natural mapping γ considered in Proposition 3.19 to define a mapping $\psi : \mathcal{B} \to \mathcal{A}/Ker \varphi$ by $\psi(b) = \gamma(a)$ for $b = \varphi(a)$ and any $a \in A$. This mapping is well-defined, since $\varphi(c) = b = \varphi(a) \in B$ implies that $(c, a) \in Ker \varphi$ and so $[c]_{Ker \varphi} = [a]_{Ker \varphi}$. It is clear that ψ is onto, and we show that ψ is one-to-one. If $\psi(b_1) = \psi(b_2)$ for some $b_1, b_2 \in B$, then there are elements $a_1, a_2 \in A$ with $b_1 = \varphi(a_1)$ and $b_2 = \varphi(a_2)$. Since $[a_1]_{Ker \varphi} = [a_2]_{Ker \varphi}$, that is $(a_1, a_2) \in Ker \varphi$, we get $b_1 = b_2$. Also, $\psi \circ \varphi = \gamma$ since $\psi(\varphi(a)) = \psi(b) = \gamma(a)$. It is left to prove that ψ is a homomorphism, i.e., $f_i^{A/Ker \varphi} \circ \bar{\psi} = \psi^{\sqcup n_i} \circ f_i^B$ for all $i \in I$. Let $X \subseteq B$. Since φ is surjective, there is $Y \subseteq A$ such that $\bar{\varphi}(Y) = X$. Since φ is a homomorphism, then $f_i^B(\bar{\varphi}(Y)) = X$. $\varphi^{\sqcup n_i}(f_i^A(Y)). \text{ There follows } ((f_i^B)_1(X), (f_i^B)_2(X)) = ((f_i^A)_1(Y), \varphi((f_i^A)_2(Y))). \text{ This implies that } (f_i^B)_1(X) = (f_i^A)_1(Y), (f_i^B)_2(X) = \varphi((f_i^A)_2(Y)), (f_i^B)_1(X) = (f_i^A)_1(Y) \text{ and } (f_i^B)_1(Y) \text{ and } (f$ $\psi((f_i^B)_2(X)) = [(f_i^A)_2(Y)]_{Ker \varphi}$. Therefore $\begin{array}{l} \begin{pmatrix} \psi^{\sqcup n_i} \circ f_i^B \end{pmatrix}(X) \\ = \psi^{\sqcup n_i}(f_i^B(X)) \end{array}$ $= \psi^{\sqcup n_i}((f_i^B)_1(X), (f_i^B)_2(X))$ $((f_i^B)_1(X), \psi((f_i^B)_2(X)))$ $\begin{array}{c} ((f_i^A)_1(Y), [(f_i^A)_2(Y)]_{Ker \ \varphi}) \\ ((f_i^A)_1(Y), \gamma((f_i^A)_2(Y))) \end{array} \\ \end{array}$ == $\gamma^{\sqcup n_i}((f_i^A)_1(Y), (f_i^A)_2(Y))$ = $\gamma^{\sqcup n_i}(\tilde{f}_i^A(Y))$ = $\begin{array}{l} \gamma^{\Box n_i}(f_i^A(Y))\\ (\gamma^{\Box n_i}\circ f_i^A)(Y)\\ (f_i^{A/Ker}\;\varphi\circ\bar{\gamma})(Y) \qquad (\;\gamma\;\text{is a homomorphism})\\ f_i^{A/Ker}\;\varphi(\bar{\gamma}(Y))\\ f_i^{A/Ker}\;\varphi(\{\gamma(y)\mid y\in Y\})\\ f_i^{A/Ker}\;\varphi(\{\psi(\varphi(y))\mid y\in Y\})\\ f_i^{A/Ker}\;\varphi(\{\psi(x)\mid x\in X\})\\ f_i^{A/Ker}\;\varphi(\bar{\psi}(X))\\ (f_i^{A/Ker}\;\varphi\circ\bar{\psi})(X).\\ \psi \text{ is a homomorphism} \end{array}$ = =

Hence ψ is a homomorphism.

At the end of this section we want to present bisimulations for hyper-coalgebras of type τ and show that our definition here coincides with the definition of a bisimulation for the corresponding (F_1, F_2) -system. Indeed, a relation $R \subseteq A \times B$ is called a bisimulation between (F_1, F_2) -systems A and B if there is a mapping $\alpha_R : F_1(R) \to F_2(R)$ such that the projections $\pi_A : R \to A$ and $\pi_B : R \to B$ are homomorphisms.

Definition 3.22 Let $\mathcal{A} = (A; (f_i^A)_{i \in I})$ and $\mathcal{B} = (B; (f_i^B)_{i \in I})$ be hyper-coalgebras of type τ , and let $R \subseteq A \times B$ be a binary relation. Then R is said to be a bisimulation between \mathcal{A} and \mathcal{B} if for all $i \in I$ and for all $X \subseteq R$, we have $(f_i^A)_1(X_1) = (f_i^B)_1(X_2)$ and $((f_i^A)_2(X_1), (f_i^B)_2(X_2)) \in R$ whenever $\bar{\pi}_A(X) = X_1$ and $\bar{\pi}_B(X) = X_2$.

Now we prove that for hyper-coalgebras of type τ this definition is equivalent to the definition of bisimulations for (F_1, F_2) -systems.

Theorem 3.23 Let $\mathcal{A} = (A; (f_i^A)_{i \in I})$ and $\mathcal{B} = (B; (f_i^B)_{i \in I})$ be hyper-coalgebras of type τ and let $R \subseteq A \times B$ be a binary relation. Then R is a bisimulation between \mathcal{A} and \mathcal{B} if and only if R is a bisimulation between the corresponding (F_1, F_2) -systems.

Proof. First let R be a bisimulation between the (F_1, F_2) -systems \mathcal{A} and \mathcal{B} . Then for each $i \in I$ there are hyper-co-operations $f_i^R : \mathcal{P}(R) \to R^{\sqcup n_i}$ on R such that the projections $\pi_A : R \to A$ and $\pi_B : R \to B$ are homomorphisms. Thus for each subset $X \subseteq R$ we have

$$\begin{array}{l} ((f_i^R)_1(X), \pi_A((f_i^R)_2(X))) \\ = & \pi_A^{\sqcup n_i}(f_i^R(X)) \\ = & f_i^A(\bar{\pi}_A(X)) \\ = & f_i^A(X_1) \\ = & ((f_i^A)_1(X_1), (f_i^A)_2(X_1)), \\ \text{and} \\ ((f_i^R)_1(X), \pi_B((f_i^R)_2(X))) \\ = & \pi_B^{\sqcup n_i}(f_i^R(X)) \\ = & f_i^B(\bar{\pi}_B(X)) \\ = & f_i^B(X_2) \\ = & ((f_i^B)_1(X_2), (f_i^B)_2(X_2)). \end{array}$$

This means that

$$(f_i^A)_1(X_1) = (f_i^B)_1(X_2)$$
 and $(f_i^R)_2(X) = ((f_i^A)_2(X_1), (f_i^B)_2(X_2)) \in \mathbb{R}.$

This shows that R is a bisimulation between the hyper-coalgebras $(A; (f_i^A)_{i \in I})$ and $(B; (f_i^B)_{i \in I})$ of type τ .

Conversely, suppose that R is a bisimulation between the coalgebras $\mathcal{A} = (A; (f_i^A)_{i \in I})$ and $\mathcal{B} = (B; (f_i^B)_{i \in I})$. By definition we have

$$(f_i^A)_1(X_1) = (f_i^B)_1(X_2)$$
 and $((f_i^A)_2(X_1), (f_i^B)_2(X_2)) \in \mathbb{R},$

for each $i \in I$ and each $X \subseteq R$. For each $i \in I$ we define n_i -ary hyper-co-operations on R by $(f_i^R)_1(X) = (f_i^A)_1(X_1) = (f_i^B)_1(X_2)$ and $(f_i^R)_2(X) = ((f_i^A)_2(X_1), (f_i^B)_2(X_2))$ for all $X \subseteq R$. Then $\mathcal{R} = (R; (f_i^R)_{i \in I})$ is a hyper-coalgebra of type τ , and it suffices to show that the projections $\pi_A : R \to A$ and $\pi_B : R \to B$ are homomorphisms. For any $X \subseteq R$,

$$\begin{aligned} (\pi_A^{\sqcup n_i} \circ f_i^R)(X) &= & \pi_A^{\sqcup n_i}(f_i^R(X)) \\ &= & \pi_A^{\sqcup n_i}((f_i^R)_1(X), (f_i^R)_2(X))) \\ &= & ((f_i^R)_1(X), \pi_A((f_i^R)_2(X))) \\ &= & ((f_i^A)_1(X_1), (f_i^A)_2(X_1)) \\ &= & f_i^A(X_1) \\ &= & f_i^A(\bar{\pi}_A(X)) \\ &= & (f_i^A \circ \bar{\pi}_A)(X). \end{aligned}$$

This shows that π_A is a homomorphism, and the proof for π_B is similar.

This equivalence of our definition of bisimulation for hyper-coalgebras of type τ and the definition for (F_1, F_2) -systems means that all the results for bisimulations of (F_1, F_2) -systems are also valid for bisimulations of hyper-coalgebras of type τ .

References

- I. Bošnjak and R., Madarász, On power structures, Algebra and Discrete Mathematics, 2 (2003), 14-35.
- [2] H. B. Brinkmann and D. Puppe, *Kategorien und Funktoren*, Lecture Notes in Mathematics, Springer, Berlin, Heidelberg, New York, 18 (1966).
- [3] J. Brunner, T. Drescher R. Pöschel and H. Seidel, *Poweralgebras: Clones and relations*, J. Inform. Process. Cybernet. EIK, **29** 5 (1993), 293-302.
- [4] S. Burris and H. P. Sankappanavar, A Course in Universal Algebra, Springer-Verlag New York, (1981).
- [5] P. Corsini, Prolegomena of hypergroup theory, Suppl. "Rivista di mathematica pura ed applicata", Avia ni Editore, Tricesimo, (1991), 219.
- [6] B. Csákány, Completeness in coalgebras, Acta Sci. Math., 48 (1985), 75-84.
- [7] K. Denecke and K. Saengsura, *Coalgebras of type* τ , preprint 2006, submitted to Discrete Mathematical Sciences and Cryptography.
- [8] K. Denecke and K. Saengsura, State-based Systems and (F1,F2)-Coalgebras, in: Proceedings of the International Conference on Discrete Mathematics and Applications, March 5-7, 2008, The University of the Thai Chamber of Commerce, Bangkok 2009, (Special issue of East-West Journal of Mathematics), pp. 1-31.
- [9] K. Denecke and S. L. Wismath, Universal Algebra and Applications in Theoretical Computer Science, Chapman & Hall/CRC, Boca Raton, London, New York, Washington, D.C., (2002).
- [10] K. Denecke and S. L. Wismath, Universal Algebra and Coalgebra, World Scientific, (2009).
- [11] G. Grätzer, Universal Algebra, Springer-Verlag, Berlin-Heidelberg-New York, second edition, (1979).
- [12] S. MacLane, Categories for the Working Mathematician, Second edition, Springer, (1998).
- [13] J. J. M. M. Rutten, Universal Coalgebra, a theory of systems, Theoretical Computer Science, 249 (2000), 3-80.
- [14] Y. Venema, Algebras and Coalgebras, in: Handbook of Modal Logic, Part. 2, (Elsevier Science Inc, New York), pp. 331–426.

K. Denecke, K. Saengsura

Universität Potsdam, Institut für Mathematik,

14469 Potsdam, Am Neuen Palais $10\,$

e-mail: kdenecke@rz.uni-potsdam.de