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Abstract. In this paper we consider hyperalgebras and hyper-coalgebras of type τ ,
as an analogue of algebras of type τ and coalgebras of type τ (see [10]). Hyperalgebras
and hyper-coalgebras are special cases of (F1, F2)-systems. Therefore many of the
results in this paper will be instances of (F1, F2)-system results (see [8]). Nevertheless
it is interesting and instructive to consider directly the theory of hyperalgebras and
hyper-coalgebras of type τ . The aim of this paper is to create a unified theory of
hyperalgebras and hyper-coalgebras which is based on (F1, F2)-systems.

1 Introduction Let τ = (ni)i∈I be a type, indexed by some set I. A hyperalgebra of type
τ is a pair (A; (fA

i )i∈I) consisting of a non-empty set A and a set of finitary hyperoperations
fA

i : Ani → P(A) where ni is the arity of the hyperoperation fA
i , Ani is the ni-cartesian

power of A and P(A) is the power set of A. We note that sometimes hyperalgebras are
defined as pairs (A; (fA

i )i∈I) where fA
i maps Ani into the set P(A)\{∅} and hyperalgebras in

the sense of our definition are called power algebras. There exists an extended literature on
power algebras and hyperalgebras (see e.g. [3], [1], [5]). In these papers one can find different
definitions of the algebraic basic concepts, especially of the concept of a homomorphism.
We want to give a unified approach which includes also hyper-coalgebras and is based on
the concept of a (F1, F2)-system.

A hyper-coalgebra of type τ is a system (A; (gA
i )i∈I) consisting of a non-empty set A

and a set of finitary hyper-co-operations gA
i : P(A) → A�ni , where ni is the arity of the

hyper-co-operation gA
i and A�ni is the ni-th copower of A. We recall that such copowers

are defined by A�ni := ni × A with ni = {1, . . . , ni}. This means that each ni-ary hyper-
co-operation gA

i is uniquely determined by a pair ((gA
i )1, (gA

i )2) of mappings, (gA
i )1 from

P(A) to ni and (gA
i )2 from P(A) to A. Therefore each ni-ary hyper-co-operation satisfies

gA
i (X) := ((gA

i )1(X), (gA
i )2(X))

for all setsX ⊆ A. The concept of a hyper-coalgebra of type τ generalizes that of a coalgebra
of type τ (see e.g. [6], [7]).

Let F1, F2 : Set→ Set be functors from the category Set of sets as objects and mappings
between sets as morphisms into itself. An (F1, F2)-system is a pair (A;αA) consisting of a
non-empty set A and a function αA : F1(A) → F2(A) (see [8], [10]). If F1 is the identity
functor, then (A;αA) is called F -coalgebra, and if F2 is the identity functor, then (A;αA)
is called F -algebra. For the theory of F -coalgebras we refer to [13], [14] or [10].
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Any hyperalgebra of type τ can be regarded as an (F1, F2)-system for suitable functors
F1, F2 : Set→ Set. The functor F1 maps sets X to the coproduct, which is in the category
Set the disjoint sum

∑

i∈I

Xni. The functor F1 takes mappings f : X → Y to mappings

F1(f) :
∑

i∈I

Xni → ∑

i∈I

Y ni defined by (i, (a1, . . . , ani)) �→ (i, (f(a1), . . . , f(ani))), for all

i ∈ I and a1, . . . , ani ∈ A. The functor F2 is the power set functor, that is, F2 maps
sets X to P(X), and F2(f) : P(X) → P(Y ) is defined by C �→ {f (c) | c ∈ C} for all
C ⊆ X . Then the type τ hyperalgebra (A; (fA

i )i∈I) is uniquely determined by (A;αA)
where αA : F1(A) → F2(A) is given by (i, (a1, . . . , ani)) �→ fA

i (a1, . . . , ani), and vice versa.

Similarly, any hyper-coalgebra of type τ can be regarded as an (F1, F2)-system that is,
the functor F1 is the power set functor, and the functor F2 maps sets X to the direct product∏

i∈I

X�ni, and takes mappings f : X → Y to mappings F2(f) :
∏

i∈I

X�ni → ∏

i∈I

Y �ni defined

by (ki, a)i∈I �→ (ki, f(a))i∈I , where ki ∈ ni. Then the type τ hyper-coalgebra (A; (gA
i )i∈I)

is uniquely determined by (A;αA) where αA : F1(A) → F2(A) is given by X �→ (gA
i (X))i∈I

for all X ⊆ A, and vice versa.

For basic concepts from Category Theory we refer to [12] and [2]. Basic concepts from
Universal Algebra can be found in [4] , [9] or [11].

2 Hyperalgebras We begin by considering the definition of homomorphic images, sub-
algebras and congruences of hyperalgebras of type τ . In each case our definition is based
on the type τ hyperalgebra structure, and we show that our definition is in fact equivalent
to the (F1, F2)-system version for the functors F1 and F2 defined before. This guarantees
to have the “right” definition. We recall that a mapping ϕ : A → B is a homomorphism
from (A;αA) to (B;αB) if αB ◦ F1(ϕ) = F2(ϕ) ◦ αA. Therefore we define homomorphisms
of hyperalgebras as follows.

Definition 2.1 Let A = (A; (fA
i )i∈I) and B = (B; (fB

i )i∈I) be hyperalgebras of type τ . A
mapping ϕ : A → B is called a homomorphism from A to B if ϕ̄ ◦ fA

i = fB
i ◦ ϕni for all

i ∈ I, where ϕ̄ and ϕni are mappings which are defined by ϕ̄(X) = {ϕ(x) | x ∈ X} for all
X ⊆ A and ϕni(a1, . . . , ani) = (ϕ(a1), . . . , ϕ(ani)) for all a1, . . . , ani ∈ A.

Our definition of homomorphism means that the diagram below commutes.

�

�

��

Ani Bni

P(A) P(B)

ϕni

ϕ̄

fA
i fB

i(=)

Example 2.2 Consider the set A = {a, b} and its cartesian square A2 = {(a, a), (a, b),
(b, a), (b, b)}. We define a binary hyperoperation fA : A2 → P(A) by (a, a) �→ ∅, (a, b) �→ A,
(b, a) �→ {b} and (b, b) �→ {a}. Now let the set B = {u, v} and let fB : B2 → P(B) be
given by (u, u) �→ {v}, (u, v) �→ {u}, (v, u) �→ B and (v, v) �→ ∅. Consider the mapping
ϕ : A→ B given by a �→ v, b �→ u. Then it is easy to see that ϕ is a homomorphism.
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As a result, our definition of homomorphism for type τ hyperalgebras is equivalent to
the definition of an (F1, F2)-system homomorphism. This tells us that all the results for
(F1, F2)-systems (see [8]), are valid in the case of type τ hyperalgebras as well. Then we
obtain the following results and it is not necessary to reprove them in our new context.

Proposition 2.3 Let A = (A; (fA
i )i∈I), B = (B; (fB

i )i∈I) and C = (C; (fC
i )i∈I) be hyper-

algebras. Then

(i) If ϕ : A → B and ψ : B → C are homomorphisms, then ψ ◦ ϕ : A → C is a
homomorphism.

(ii) If idA : A→ A is the identity mapping, then idA is a homomorphism.

Proposition 2.3 shows that the identity mapping idA is a homomorphism on any type
τ hyperalgebra A and that the composition of two homomorphisms is a homomorphism.
The class of all hyperalgebras of type τ therefore forms a concrete category, which we shall
call Hyalg(τ). By the same method, using results for (F1, F2)-systems, we see that every
bijective homomorphism is an isomorphism in the category-theoretical sense.

Further we have:

Proposition 2.4 Let A, B, C be hyperalgebras and let f : A→ B, g : B → C be mappings
such that ϕ := g ◦ f : A → C is a homomorphism. Then

(i) If f is a surjective homomorphism, then g is also a homomorphism.

(ii) If g is an injective homomorphism, then f is also a homomorphism.

The so-called Diagram Lemma, well-known for the category Set, extends to the category
Hyalg(τ).
Proposition 2.5 Let A, B, C be hyperalgebras and let ϕ : A → B, ψ : A → C be homo-
morphisms. Let ϕ be surjective. Then there is a homomorphism χ : B → C with χ ◦ ϕ = ψ
iff Ker ϕ ⊆ Ker ψ.

Subsystems of (F1, F2)-systems are defined using homomorphisms, i.e., (S;αS) is a sub-
system of (A;αA), if the embedding (injection) ⊆A

S : S ↪→ A is a homomorphism (see
[8]). To define subalgebras of hyperalgebras of type τ , we use the restriction fA

i |B :=
{fA

i (b1, . . . , bni) | b1, . . . , bni ∈ B} of a hyperoperation on a set A to a subset B of A.

Definition 2.6 Let A = (A; (fA
i )i∈I) and B = (B; (fB

i )i∈I) be hyperalgebras of type τ ,
with B ⊆ A. Then B is called a sub-hyperalgebra of A if fB

i := fA
i |B for all i ∈ I. We use

the notation B ≤ A to indicate that B is a sub-hyperalgebra of A.

From the definition of fB
i and Definition 2.6, we get that fB

i (b1, . . . , bni) = ∅ iff
fA

i (b1, . . . , bni) = ∅ for b1, . . . , bni ∈ B.

To show that Definition 2.6 is equivalent to the definition of a subsystem for (F1, F2)-
systems, we must verify that the embedding ϕ : B → A is a homomorphism. But for any
(b1, . . . , bni) ∈ Bni and any i ∈ I, we have
ϕ̄(fB

i (b1, . . . , bni))
= ϕ̄(fA

i (b1, . . . , bni))
= fA

i (b1, . . . , bni)
= fA

i (ϕ(b1), . . . , ϕ(bni))
= fA

i (ϕni(b1, . . . , bni)),
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since ϕ(bj) = bj for all j ∈ {1, . . . , ni}.

�

�

��

Bni Ani

P(B) P(A)

ϕni

ϕ̄

fB
i = fA

i |B fA
i(=)

Example 2.7 Consider the set A = {a, b, c} and its cartesian square

A2 = {(a, a), (a, b), (a, c), (b, b), (b, a), (b, c), (c, c), (c, a), (c, b)}.
We define a binary hyperoperation fA : A2 → P(A) by (a, a) �→ {a, c}, (a, b) �→ {a, b},
(a, c) �→ {a, c}, (b, b) �→ {a, c}, (b, a) �→ {c}, (b, c) �→ {a}, (c, c) �→ {c}, (c, a) �→ ∅, (c, b) �→
{b}. Then the following systems are sub-hyperalgebras of A: (∅; ∅), ({a, c}; fA|{a, c}),
({c}; fA|{c}).

There is a “subalgebra criterion” for sub-hyperalgebras of type τ , similar to the one for
algebras of type τ .

Lemma 2.8 Let A = (A; (fA
i )i∈I) be a hyperalgebra of type τ and let B ⊆ A be a subset

of A. Then the hyperalgebra (B; (fB
i )i∈I) of type τ is a sub-hyperalgebra of (A; (fA

i )i∈I) if
and only if B is closed under all the hyperoperations fA

i for i ∈ I; that is if and only if
fA

i (b1 . . . , bni) ∈ P(B) for all b1, . . . , bni ∈ B and all i ∈ I.

Proof: When (B; (fB
i )i∈I) is a sub-hyperalgebra of (A; (fA

i )i∈I), the mapping fB
i

= fA
i |B is an ni-ary hyperoperation on B for all i ∈ I. Therefore fA

i (b1 . . . , bni) =
(fA

i |B)(b1 . . . , bni) ∈ P(B) for all b1 . . . , bni ∈ B and all i ∈ I.
Conversely, suppose that B is closed with respect to fA

i for all i ∈ I.
Then (fA

i |B)(b1 . . . , bni) ∈ P(B) for all b1 . . . , bni ∈ B, so fA
i |B is an ni-ary hyper opera-

tion on B and (B; (fB
i )i∈I) with fB

i = fA
i |B is a sub-hyperalgebra of (A; (fA

i )i∈I).

The following usual properties of subalgebras of type τ algebras, also hold for sub-
hyperalgebras of hyperalgebras, and we leave them for the reader to verify.

Corollary 2.9 Let A, B and C be hyperalgebras of type τ . Then

(i) If A ≤ B and B ≤ C, then A ≤ C.

(ii) If A ⊆ B ⊆ C and A ≤ C and B ≤ C, then A ≤ B.

Let ϕ : A → B be a homomorphism. Two standard properties of homomorphisms are
that the image ϕ(C) of a sub-hyperalgebra C of A should be a sub-hyperalgebra of B, and
the preimage ϕ−1(D) of a sub-hyperalgebra of B should be a sub-hyperalgebra of A. For
(F1, F2)-systems, the proof of the latter fact requires that the functor F2 preserves pullbacks
(see [8]). It can be proved that the functor F2 we are using for hyperalgebras of type τ ,
defined by X �→ P(X) for every set X , preserves pullbacks. Thus this pre-image fact will
also hold for hyperalgebras of type τ . However we can also prove this fact directly, in a
simpler fashion.
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Theorem 2.10 Let A and B be hyperalgebras of type τ and let ϕ : A → B be a homomor-
phism.

(i) If C ≤ A, then ϕ(C) ≤ B.

(ii) If D ≤ B, then ϕ−1(D) ≤ A.

Proof. (i) We know that ϕ(C) ⊆ B and want to show that the hyperalgebra
(ϕ(C); (fB

i |ϕ(C))i∈I ) is a sub-hyperalgebra of (B; (fB
i )i∈I). Assume that b1, . . . , bni ∈

ϕ(C). Then there are elements c1, . . . , cni ∈ C such that bj = ϕ(cj) for all j = 1, . . . , ni.
So

fB
i (b1, . . . , bni) = fB

i (ϕ(a1), . . . , ϕ(ani))
= (fB

i ◦ ϕni)(a1, . . . , ani)
= (ϕ̄ ◦ fA

i )(a1, . . . , ani)
= ϕ̄(fA

i (a1, . . . , ani))
= ϕ̄(fC

i (a1, . . . , ani)),
that is, fB

i (b1, . . . , bni) ⊆ ϕ(C), which shows that ϕ(C) is closed under taking of fB
i for all

i ∈ I. By the sub-hyperalgebra criterion (Lemma 2.8) we have ϕ(C) ≤ B.

(ii) Again it is clear that ϕ−1(D) ⊆ A, and we need to show that the hyperalgebra
(ϕ−1(D); (fA

i |ϕ−1(D))i∈I) is a sub-hyperalgebra of (A; (fA
i )i∈I). Let a1, . . . , ani ∈ ϕ−1(D),

so that ϕ(aj) ∈ D for all j = 1, . . . , ni. Since ϕ : A → B is a homomorphism and D ≤ B,
we have

ϕ̄(fA
i (a1, . . . , ani)) = (ϕ̄ ◦ fA

i )(a1, . . . , ani)
= (fB

i ◦ ϕni)(a1, . . . , ani)
= fB

i (ϕ(a1), . . . , ϕ(ani))
= fD

i (ϕ(a1), . . . , ϕ(ani))
⊆ D.

This gives fA
i (a1, . . . , ani) ⊆ ϕ−1(D). By Lemma 2.8 the hyperalgebra (ϕ−1(D);

(fA
i |ϕ−1(D))i∈I) is a sub-hyperalgebra of (A; (fA

i )i∈I).

One of the main results for (F1, F2)-systems is that the intersection of subsystems of a
given (F1, F2)-system A is a subsystem under the condition that the functor F2 preserves
pullbacks (see [8]). Since any hyperalgebra of type τ can be regarded as (F1, F2)-system and
since we have seen that the suitable functor F2 is the power set functor, it is not difficult to
prove that the power set functor preserves pullbacks, so the intersection of sub-hyperalgebras
of a hyperalgebra A is a sub-hyperalgebra. We can also use the sub-hyperalgebra criterion
to prove this fact directly.

Theorem 2.11 If (Bj)j∈J is a family of sub-hyperalgebras of a hyperalgebra A =
(A; (fA

i )i∈I) of type τ , then
⋂

j∈J

Bj is a sub-hyperalgebra of A.

Proof: Since each Bj is a subset of A, we clearly have
⋂

j∈J

Bj ⊆ A. Let (b1, . . . , bni) ∈
⋂

j∈J

Bj , this makes (b1, . . . , bni) ∈ Bj for all j ∈ J . Since fBj

i (b1, . . . , bni) = (fA
i |Bj)(b1, . . . ,

bni) for all j ∈ J , then fBj

i (b1, . . . , bni) ⊆
⋂

j∈J

Bj for all j ∈ J .

Therefore (
⋂

j∈J

Bj ; (fA
i |( ⋂

j∈J

Bj))i∈I) is a sub-hyperalgebra of (A; (fA
i )i∈I).
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This result allows us to define the sub-hyperalgebra 〈S〉 generated by a subset S of a
hyperalgebra A.

Definition 2.12 Let A = (A; (fA
i )i∈I) be a hyperalgebra of type τ and let S ⊆ A be a

subset. Then the intersection of all the sub-hyperalgebras of A which contains S forms the
least sub-hyperalgebra of A containing S. This sub-hyperalgebra is called the hyperalgebra
generated by S, and is denoted by 〈S〉.
Example 2.13 Let us consider set A and the hyperoperation fA from Example 2.7. The
following sub-hyperalgebras of (A; fA) are generated by the given subsets of A:

〈{b}〉 = 〈{a, b}〉 = 〈{b, c}〉 = (A; fA),
〈{a}〉 = 〈{a, c}〉 = ({a, c}; fA|{a, c}) and
〈{c}〉 = ({c}; fA|{c}).

An important problem is the following one: given a hyperalgebra A of type τ , and a
subset S of A, determine all elements of the carrier set of the sub-hyperalgebra of A which
is generated by S. To do this, we set

E(S) := S ∪ fA
i (s1, . . . , sni)

for all s1, . . . , sni ∈ S and all i ∈ I. Then we inductively define E0(S) := S, and Ek+1(S) :=
E(Ek(S)), for all k ∈ N. With this notation we obtain a similar result as in the case of an
algebra of type τ .

Corollary 2.14 For any hyperalgebra A of type τ and for any non-empty subset S ⊆ A,

we have 〈S〉 =
∞⋃

k=0

Ek(S).

The proof corresponds to that one for algebras of type τ .

Congruences of (F1, F2)-systems are defined as kernels of homomorphisms. For hyper-
algebras of type τ , we define a congruence to be an equivalence relation with a certain
additional property. We shall see shortly that this is equivalent to a congruence being a
kernel of a homomorphism in this case too.

Definition 2.15 Let A = (A; (fA
i )i∈I) be a hyperalgebra of type τ . A congruence relation

θ on A is an equivalence relation on A which satisfies the condition that,if (a1, b1) . . . , (ani ,
bni) ∈ θ, then

[(fA
i (a1, . . . , ani)]θ = [fA

i (b1, . . . , bni)]θ

where
[(fA

i (a1, . . . , ani)]θ = {[a]θ | a ∈ fA
i (a1, . . . , ani)}

and
[(fA

i (b1, . . . , bni)]θ = {[b]θ | b ∈ fA
i (b1, . . . , bni)}.

Example 2.16 Let us consider A = {a, b} and let the binary hyperoperation fA be given
as in Example 2.2. The equivalences on A are given by the following sets

θ1 := {(a, a), (b, b)},
θ2 := {(a, a), (a, b), (b, b)},
θ3 := {(a, a), (b, a), (b, b)}, and
θ4 := A×A.

Since (a, a), (b, a) ∈ θ2, θ3 and fA(a, b) = A, fA(a, a) = ∅, the relations θ2, θ3 are not
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congruence relations on A. Similarly we have that, since (a, a), (a, b) ∈ θ2, the relation θ2 is
not a congruence relation. Since (a, a), (b, b) ∈ θ1 we have that fA(a, a) = ∅, fA(b, b) = {a},
fA(a, b) = A and fA(b, a) = {b}. This gives

[fA(a, b)]θ1 = [fA(a, b)]θ1 ,
[fA(b, a)]θ1 = [fA(b, a)]θ1 ,
[fA(b, b)]θ1 = [fA(b, b)]θ1 .

Therefore θ1 is a congruence relation on A.

It is easy to see that ∆A is the least congruence on A and Example 2.16 shows that the
greatest congruence on A need not to be A×A.

Lemma 2.17 Let (θj)j∈J be a family of congruence relations on A. Then
⋂

j∈J

θj is a

congruence on A.

Proof. Let (a1, b1), . . . , (ani , bni) ∈
⋂

j∈J

θj . This gives

(a1, b1), . . . , (ani , bni) ∈ θj

for all j ∈ J . By the definition of a congruence relation we get that

[fA
i (a1, . . . , ani)]θj = [fA

i (b1, . . . , bni)]θj

for all j ∈ J , making [fA(a1, . . . , ani)] �
j∈J

θi
= [fA(b1, . . . , bni)] �

i∈I

θj
. Therefore

⋂

i∈I

θi is a

congruence relation on A.

As in the algebra case, congruences can be used to produce quotient algebras.

Definition 2.18 Let A = (A; (fA
i )i∈I) be a hyperalgebra of type τ and let θ be a congru-

ence relation on A. We define hyperoperations on the quotient set A/θ by

f
A/θ
i ([a1]θ, . . . , [ani ]θ) := {[a]θ | a ∈ fA

i (a1, . . . , ani)},

for all a1, . . . , ani ∈ A. Then the hyperalgebra A/θ = (A/θ; (fA/θ
i )i∈I) is called the quotient

hyperalgebra of A by θ.

For this definition to be valid we have to verify that the hyperoperations fA/θ
i defined

on A/θ are well-defined. To check this, let

([a1]θ, . . . , [ani ]θ) = ([b1]θ, . . . , [bni ]θ).

This gives that (a1, b1), . . . , (ani , bni) ∈ θ, and that

[fA(a1, . . . , ani)]θ = [fA(b1, . . . , bni)]θ.

Therefore

f
A/θ
i ([a1]θ, . . . , [ani ]θ) = [fA(a1, . . . , ani)]θ

= [fA(b1, . . . , bni)]θ
= f

A/θ
i ([b1]θ, . . . , [bni ]θ).
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Example 2.19 Let A = (A; fA) be a hyperalgebra as defined in Example 2.2 and θ = θ1 as
defined in Example 2.17. Then A/θ = {[a]θ, [b]θ} and the hyperoperation fA/θ : (A/θ)2 →
P(A/θ) is defined as follows:

fA/θ([a]θ, [a]θ) = ∅
fA/θ([a]θ, [b]θ) = {[a]θ, [b]θ}
fA/θ([b]θ, [a]θ) = {[b]θ}
fA/θ([b]θ, [b]θ) = {[a]θ}.

Proposition 2.20 Let A = (A; (fA
i )i∈I) be a hyperalgebra of type τ and let θ be a con-

gruence on A. Then the natural mapping γ : A → A/θ defined by a �→ [a]θ is a surjective
homomorphism from A onto A/θ.

Proof. For any (a1, . . . , ani) ∈ Ani , we have
(ϕ̄ ◦ fA

i )(a1 . . . , ani) = ϕ̄(fA
i (a1, . . . , ani))

= {[x]θ | x ∈ fA
i (a1, . . . , ani)}

= f
A/θ
i ([a1]θ, . . . , [ani ]θ)

= f
A/θ
i (ϕ(a1), . . . , ϕ(ani))

= (fA/θ
i ◦ ϕni)(a1, . . . , ani).

This shows that γ is a homomorphism.

Theorem 2.21 Let A be a hyperalgebra of type τ . Then an equivalence relation θ on A is
a congruence on A if and only if θ is the kernel of some homomorphism from A to some
hyperalgebra B.

Proof. When θ is a congruence, it is clear that θ is the kernel of the natural mapping
γ : A → A/θ since

(a, b) ∈ θ ⇔ [a]θ = [b]θ ⇔ γ(a) = γ(b) ⇔ (a, b) ∈ Ker γ.

Conversely, let ϕ : A → B be a homomorphism with Ker ϕ as its kernel. Then Ker ϕ is an
equivalence relation on A. For any (a1, b1), . . . , (ani , bni) ∈ Ker ϕ, we have ϕ(aj) = ϕ(bj)
for all j = 1, . . . , ni, so that
ϕ̄(fA

i (a1, . . . , ani)) = (ϕ̄ ◦ fA
i )(a1, . . . , ani)

= fB
i (ϕ(a1), . . . , ϕ(ani))

= fB
i (ϕ(b1), . . . , ϕ(bni))

= (fB
i ◦ ϕni)(b1, . . . , bni)

= (ϕ̄ ◦ fA
i )(b1, . . . , bni)

= ϕ̄(fA
i (b1, . . . , bni),

that is [fA
i (a1, . . . , ani)]Ker ϕ = [fA

i (b1, . . . , bni)]Ker ϕ. Therefore Ker ϕ is a congruence
relation on A.

If θ is a congruence on the hyperalgebra A of type τ , then θ is the kernel of some
homomorphism corresponding to a homomorphism of the corresponding (F1, F2)-system
and θ is the kernel of this (F1, F2)-system homomorphism and thus a congruence on the
(F1, F2)-system and conversely. This shows that congruences on hyperalgebras of type
τ correspond to congruences of the corresponding (F1, F2)-systems. The analogue of the
Homomorphic Image Theorem for algebras also holds for hyperalgebras of type τ . This fact
follows directly from the Diagram Lemma of (F1, F2)-systems, but we will also give a direct
proof using the definition of hyperalgebras of type τ .
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Theorem 2.22 Let A and B be hyperalgebras of type τ , with ϕ a surjective homomorphism
from A onto B. Then B is isomorphic to the quotient hyperalgebra A/Ker ϕ and the diagram
below commutes

�

�

�
�

�
�

�
�

�
���

A B
ϕ

(=)

γ ψ

A/Ker ϕ
Proof. We use the natural mapping γ considered in Proposition 2.20 to define a

mapping ψ : B → A/Ker ϕ by ψ(b) = γ(a) for b = ϕ(a) and any a ∈ A. This mapping
is well-defined, since ϕ(c) = b = ϕ(a) ∈ B implies that (c, a) ∈ Ker ϕ and so [c]Ker ϕ =
[a]Ker ϕ. It is clear that ψ is onto, and we show that ψ is one-to-one. If ψ(b1) = ψ(b2)
for some b1, b2 ∈ B, then there are elements a1, a2 ∈ A with b1 = ϕ(a1) and b2 = ϕ(a2).
Since [a1]Ker ϕ = [a2]Ker ϕ, that is (a1, a2) ∈ Ker ϕ, we get b1 = b2. Also, since we have
ψ(ϕ(a)) = ψ(b) = γ(a) for all a ∈ A, the diagram commutes. Using the fact that γ is a
homomorphism, we can show that ψ is also a homomorphism. For any b1, . . . , bni ∈ B,
there are a1, . . . , ani ∈ A such that bj = ϕ(aj) for all j = 1, . . . , ni, then

(ψ̄ ◦ fB
i )(b1, . . . , bni) = ψ̄(fB

i (b1, . . . , bni))
= ψ̄(fB

i (ϕ(a1), . . . , ϕ(ani)))
= ψ̄((fB

i ◦ ϕni)(a1, . . . , ani))
= ψ̄((ϕ̄ ◦ fA

i )(a1, . . . , ani))
= ψ̄ ◦ (ϕ̄ ◦ fA

i ))(a1, . . . , ani)
= ((ψ̄ ◦ ϕ̄) ◦ fA

i )(a1, . . . , ani)
= (( ¯ψ ◦ ϕ) ◦ fA

i )(a1, . . . , ani)
= (γ̄ ◦ fA

i )(a1, . . . , ani)
= (fA/Ker ϕ

i ◦ γni)(a1, . . . , ani)
= f

A/Ker ϕ
i (γ(a1), . . . , γ(ani))

= f
A/Ker ϕ
i (ψ(b1), . . . , ψ(bni))

= (fA/Ker ϕ
i ◦ ψni)(b1, . . . , bni).

Then ψ is a homomorphism.

3 Hyper-coalgebras In this section we want consider the definitions of homomorphic
images, subcoalgebras and congruences of hyper-coalgebras of type τ , and show that our
definitions are in fact equivalent to the corresponding definitions for (F1, F2)-systems for
suitable functors F1, F2. Homomorphisms of hyper-coalgebras of type τ are defined as
follows:

Definition 3.1 Let A = (A; (fA
i )i∈I) and B = (B; (fB

i )i∈I) be hyper-coalgebras of type τ .
A mapping ϕ : A → B is called a homomorphism from A to B if the following equations
are satisfied for all i ∈ I and all sets X ⊆ A:

(i) (fA
i )1(X) = (fB

i )1(ϕ̄(X)), and
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(ii) ϕ((fA
i )2(X)) = (fB

i )2(ϕ̄(X)).

Let us set ϕ�ni(fA
i (X)) = ((fA

i )1(X), ϕ((fA
i )2(X))). Then we see our definition of

homomorphism means that the diagram below commutes, since fB
i (ϕ̄(X)) = ((fB

i )1(ϕ̄(X)),
(fB

i )2(ϕ̄(X))) = ((fA
i )1(X), ϕ((fA

i )2(X))) = ϕ�ni(fA
i (X)).

�

�

��

P(A) P(B)

A�ni B�ni

ϕ̄

ϕ�ni

fA
i fB

i(=)

Example 3.2 Consider the set A = {a, b} and its copower

A�2 = {(1, a), (2, a), (1, b), (2, b), (1, c), (2, c), (1, d), (2, d)}.
We define a binary hyper-co-operation fA : P(A) → A�2 by ∅ �→ (2, b), A �→ (1, a),
{a} �→ (2, a) and {b} �→ (1, b). Now let the set B = {x, y} and let fB : P(B) → B�2 be
given by ∅ �→ (2, x), B �→ (1, y), {x} �→ (1, x) and {y} �→ (2, y). Then it is easy to see that
the mapping ϕ : A→ B given by a �→ y and b �→ x is a homomorphism.

The definition of a homomorphism for hyper-coalgebras of type τ is equivalent to the def-
inition of an (F1, F2)-system homomorphism. Then the following homomorphism properties
are valid as in the case of (F1, F2)-systems.

Proposition 3.3 Let A = (A; (fA
i )i∈I), B = (B; (fB

i )i∈I) and C = (C; (fC
i )i∈I) be hyper-

coalgebras. Then

(i) If ϕ : A → B and ψ : B → C are homomorphisms, then ψ ◦ ϕ : A → C is a
homomorphism.

(ii) If idA : A→ A is the identity mapping, then idA is a homomorphism.

Proposition 3.3 shows that the class of all hyper-coalgebras of type τ together with
homomorphisms between them forms a concrete category, which we shall call Hycoalg(τ).
The next proposition characterizes isomorphisms of hyper-coalgebra of type τ .

Proposition 3.4 Assume that A = (A; (fA
i )i∈I) and B = (B; (fB

i )i∈I) be hyper-coalgebras
of type τ and let ϕ : A → B be a bijective homomorphism. Then ϕ is an isomorphism.

Further we have:

Proposition 3.5 Let A = (A; (fA
i )i∈I) and B = (B; (fB

i )i∈I), C = (C; (fC
i )i∈I) be hyper-

coalgebras of type τ and let f : A→ B, g : B → C be mappings such that ϕ := g ◦f : A → C
is a homomorphism. Then

(i) If f is a surjective homomorphism, then g is also a homomorphism.

(ii) If g is an injective homomorphism, then f is also a homomorphism.

It is easy too see that the Diagram Lemma extends from the category Set to the category
Hycoalg(τ).
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Proposition 3.6 Let A, B, C be hyper-coalgebras and let ϕ : A → B, ψ : A → C be
homomorphisms. Let ϕ be surjective. Then there is a homomorphism χ : B → C with
χ ◦ ϕ = ψ iff Ker ϕ ⊆ Ker ψ.

To define subcoalgebras of hyper-coalgebras of type τ , we use the restriction fA
i |P(B) :=

{((fA
i )1(X), (fA

i )2(X)) | X ⊆ B} of a hyper-co-operation on a set A to a subset P(B) of
P(A).

Definition 3.7 Let A = (A; (fA
i )i∈I) and B = (B; (fB

i )i∈I) be hyper-coalgebras of type τ ,
with B ⊆ A. Then B is called a sub-hyper-coalgebra of A if fB

i := fA
i |P(B) for all i ∈ I.

We use the notation B � A to indicate that B is a sub-hyper-coalgebra of A.

To show that this definition is equivalent to the definition of a subsystem for (F1, F2)-
systems, we must verify that the embedding ϕ : B → A is a homomorphism. But for any
X ⊆ B and any i ∈ I, we have ϕ�ni(fB

i (X)) = ϕ�ni(fA
i (X)) = ((fA

i )1(X), (fA
i )2(ϕ̄(X)))

= fA
i (ϕ̄(X)), since (fA

i )1(ϕ̄(X)) = (fA
i )1(X) and the diagram below commutes.

�

�

��

P(B) P(A)

B�ni A�ni

ϕ̄

ϕ�ni

fB
i = fA

i |B fA
i(=)

Example 3.8 Let A = {a, b, c}, with copower

A�2 = {(1, a), (2, a), (1, b), (2, b), (1, c), (2, c)}.
We define the binary hyper-co-operation fA : P(A) → A�2 by ∅ �→ (1, a), A �→ (2, a), {a} �→
(1, a), {b} �→ (1, a), {c} �→ (1, c), {a, b} �→ (2, a), {a, c} �→ (2, c) and {b, c} �→ (2, b). Then
the subcoalgebras of (A; fA) are (∅; ∅), (A; fA), ({a}; fA|P({a})), ({a, b}; fA|P({a, b})) and
({a, c}; fA|P({a, c})).

There is a “ subcoalgebra criterion ” for sub-hyper-coalgebras of type τ , similar to the
one for algebras of type τ .

Lemma 3.9 Let A = (A; (fA
i )i∈I) be a hyper-coalgebra of type τ and let B ⊆ A be a

subset of A. Then the hyper-coalgebra (B; (fB
i )i∈I) of type τ is a sub-hyper-coalgebra of

(A; (fA
i )i∈I) if and only if B is closed under all the hyper-co-operations fA

i for i ∈ I; that
is, if and only if fA

i (X) ∈ B�ni for all X ⊆ B and all i ∈ I.

Proof: When (B; (fB
i )i∈I) is a sub-hyper-coalgebra of (A; (fA

i )i∈I), the mapping fB
i =

fA
i |P(B) is an ni-ary hyper-co-operation on B for all i ∈ I.

Therefore fB
i (X) = (fA

i |P(B))(X) ∈ B�ni for all X ⊆ B and all i ∈ I.
Conversely, suppose that B is closed with respect to fA

i for all i ∈ I. Then (fA
i |P(B))(Y ) ∈

B�ni for all Y ⊆ B, so fA
i |P(B) is an ni-ary hyper-co-operation on B and (B; (fB

i )i∈I)
with fB

i = fA
i |P(B) is a sub-hyper-coalgebra of (A; (fA

i )i∈I).

The following properties which are valid for sub-hyperalgebras also hold for sub-hyper-
coalgebras, and we leave them for the reader to verify.

Corollary 3.10 Let A, B and C be hyper-coalgebras of type τ . Then
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(i) If A � B and B � C, then A � C.

(ii) If A ⊆ B ⊆ C and A � C and B � C, then A � B.

Let ϕ : A → B be a homomorphism. The functor F2 which defines hyper-coalgebras
of type τ as (F1, F2)-systems is given by X �→ ∏

i∈I

X�ni for all sets X . It is not difficult

to prove that F2 preserves pullbacks. This can be used to prove that the preimages of
sub-hyper-coalgebras of B are sub-hyper-coalgebras of A. However we can also prove this
fact directly.

Theorem 3.11 Let A and B be hyper-coalgebras of type τ and let ϕ : A → B be a homo-
morphism.

(i) If C � A, then ϕ(C) � B.

(ii) If D � B, then ϕ−1(D) � A.

Proof. (i) We know that ϕ(C) ⊆ B and want to show that the hyper-coalgebra
(ϕ(C); (fB

i |P(ϕ(C)))i∈I ) is a sub-hyper-coalgebra of (B; (fB
i )i∈I). Assume that X ⊆ ϕ(C).

Then there is a subset Y of C such that X = ϕ̄(Y ). So

fB
i (X) = fB

i (ϕ̄(Y ))
= (fB

i ◦ ϕ̄)(Y )
= (ϕ�ni ◦ fA

i )(Y )
= ϕ�ni(fA

i (Y ))
= (ϕ�ni((fA

i )1(Y ), (fA
i )2(Y ))

= ((fA
i )1(Y ), ϕ((fA

i )2(Y ))).

There follows fB
i (X) ∈ ϕ(C)�ni for all i ∈ I. By the sub-hyper-coalgebra criterion (Lemma

3.9) we have ϕ(C) � B.
(ii) Again it is clear that ϕ−1(D) ⊆ A, and we need to show that the hyper-coalgebra
(ϕ−1(D); (fA

i |P(ϕ−1(D)))i∈I ) is a sub-hyper-coalgebra of (A; (fA
i )i∈I). Let X ⊆ ϕ−1(D),

so that ϕ(X) ⊆ D. Since ϕ : A → B is a homomorphism and D � B, we have

ϕ�ni(fA
i (X)) = (ϕ�ni ◦ fA

i )(X)
= (fB

i ◦ ϕ̄)(X)
= fB

i (ϕ̄(X))
= fD

i (ϕ̄(X)) ∈ D�ni .

This gives ϕ�ni(fA
i (X)) ∈ D�ni , and thus fA

i (X) ∈ ϕ−1(D)�ni . By Lemma 3.9 the
hyper-coalgebra (ϕ−1(D); (fA

i |P(ϕ−1(D)))i∈I) is a sub-hyper-coalgebra of (A; (fA
i )i∈I).

One of the main results for (F1, F2)-systems is that the union of subsystems of a given
(F1, F2)-system A is a subsystem under the condition that the functor F1 preserves sums
(see [8]). Any hyper-coalgebra of type τ can be regarded as (F1, F2)-system. We have seen
that F1 is the power set functor. It is not difficult to prove that the power set functor
does not preserve sums, so the union of sub-hyper-coalgebras of hyper-coalgebra A is not a
sub-hyper-coalgebra. Let us consider a counterexample

Example 3.12 Let A = {a, b, c, d, e, } with co-operation fA : A → A�2 be a hyper-
coalgebra and let B = {a, b}, and C = {a, d, c} be subsets of A. Assume that B =
(B; fA|P(B)), and C = (C; fA|P(C)) are sub-hyper-coalgebras of A. If fA({b, c}) = (1, e),
then fA|P(B∪C) is not a hyper-co-operation on B∪C, since (1, e) /∈ (B∪C)�2. Therefore
B ∪ C is not a sub-hyper-coalgebra of (A; fA).
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Another result for (F1, F2)-systems is that arbitrary sums of (F1, F2)-systems exist if
the functor F1 preserves sums. But the power set functor does not preserve sums. Do sum
exist in Hycoalg(τ)? We consider the following erxample.

Example 3.13 Let A = {a} and B = {b}. Let A = (A; fA) and B = (B; fB) be hyper-
coalgebras such that fA and fB are defined by

fA : ∅ �→ (1, a), A �→ (2, a) and fB : ∅ �→ (2, b), B �→ (2, b).

Suppose that (A⊕B; fA⊕B) together with homomorphisms eA : (A; fA) → (A⊕B; fA⊕B)
and eB : (B; fB) → (A ⊕ B; fA⊕B) is the sum of A and B. Let us consider the mappings
eA : A→ A⊕B and eB : B → A⊕B. Since

(e�2
A ◦ fA)(∅) = e�2

A (fA(∅))
= e�2

A (1, a)
= (1, eA(a)) and

(fA⊕B ◦ ēA)(∅) = fA⊕B(ēA(∅))
= fA⊕B(∅),

we obtain fA⊕B(∅) = (1, eA(a)).

Since

(e�2
B ◦ fB)(∅) = e�2

B (fB(∅))
= e�2

B (2, b)
= (2, eB(b)) and

(fA⊕B ◦ ēB)(∅) = fA⊕B(ēB(∅))
= fA⊕B(∅),

we get fA⊕B(∅) = (2, eB(b)). This contradiction shows that the sum (A ⊕ B; fA⊕B) does
not exist.

Congruences of hyper-coalgebras A are defined as equivalence relations preserving the
mappings (fA

i )1 and (fA
i )2. Let θ be an equivalence relation on A. For any subset X of θ

we define π1(X) = {x1 ∈ A | ∃y ∈ A ((x1, y) ∈ X)} =: X1 and π2(X) = {x2 ∈ A | ∃y ∈
A ((y, x2) ∈ X)} =: X2 such that π1 : X → A and π2 : X → A are the first and the second
projections, respectively.

Definition 3.14 Let A = (A; (fA
i )i∈I) be a hyper-coalgebra of type τ . A congruence

relation θ on A is an equivalence relation on A which satisfies the condition that for any
X ⊆ θ, ((fA

i )2(X1), (fA
i )2(X2)) ∈ θ and (fA

i )1(X1) = (fA
i )1(X2) for all i ∈ I.

Let (A; (fA
i )i∈I) be a hyper-coalgebra of type τ . For any X ⊆ A × A and if X1 = X2,

we have (fA
i )1(X1) = (fA

i )1(X2) and (fA
i )2(X1) = (fA

i )2(X2). There follows that ∆A is a
congruence relation on A. But A×A in general is not a congruence relation on A.

Example 3.15 Let A = {a, b} and let fA be a binary hyper-co-operation on A which is
defined by ∅ �→ (2, a), A �→ (1, a), {a} �→ (1, b) and {b} �→ (2, b). Consider the set X =
{(a, b), (b, b)}. We have X1 = {a, b} and X2 = {b}. But (fA)1(X1) = 1 and (fA)1(X2) = 2.
This means that A×A is not a congruence on A.

Lemma 3.16 Let (θj)j∈J be a family of congruence relations on A. Then
⋂

j∈J

θj is a

congruence relation on A.
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Proof. The intersection of equivalence relations on A is again an equivalence re-
lation on A. Now it is left to prove that any subset X of

⋂

j∈J

θj satisfies Definition

3.14. Let X ⊆ ⋂

j∈J

θj be a subset of
⋂

j∈J

θj . Then X ⊆ θj for all j ∈ J . This gives

((fA
i )2(X1), (fA

i )2(X2)) ∈ θj and (fA
i )1(X1) = (fA

i )1(X2) for all i ∈ I and all j ∈ J . There-
fore ((fA

i )2(X1), (fA
i )2(X2)) ∈

⋂

j∈J

θj and (fA
i )1(X1) = (fA

i )1(X2) for all i ∈ I.

As in the hyperalgebra case, congruences can be used to produce quotient hyper-
coalgebras.

Definition 3.17 Let A = (A; (fA
i )i∈I) be a hyper-coalgebra of type τ and let θ be a

congruence relation on A. We define hyper-co-operations on the quotient set A/θ by

f
A/θ
i (Xθ) := ((fA

i )1(X), [(fA
i )2(X)]θ),

where X ⊆ A and Xθ := {[x]θ | x ∈ X}. Then the hyper-coalgebra A/θ = (A/θ; (fA/θ
i )i∈I)

is called the quotient hyper-coalgebra of A by θ.

The definition means that

(fA/θ
i )1([Xθ]) = (fA

i )1(X)
and
(fA/θ

i )2([Xθ]) = [(fA
i )2(X)]θ.

For this definition to be valid we have to verify that the co-operations fA/θ
i defined on A/θ

are well-defined. To check this, let [X ]θ = [Y ]θ. This gives {[x]θ | x ∈ X} = {[y]θ | y ∈ Y },
this means that for all x ∈ X , there is y′ ∈ Y such that (x, y′) ∈ θ, and for all y ∈ Y , there
is x′ ∈ X such that (x′, y) ∈ θ. We define

W := {(x, y′) ∈ X × Y | ∀x ∈ X ∃y′ ∈ Y ((x, y′) ∈ θ)}

∪{(x′, y) ∈ X × Y | ∀y ∈ Y ∃x′ ∈ X ((x′, y) ∈ θ)}.

Then we have W ⊆ θ. Let W1 := π1(W ) and W2 := π2(W ). By the definition of
a congruence relation on a hyper-coalgebra we get that (fA

i )1(W1) = (fA
i )1(W2) and

((fA
i )2(W1), (fA

i )1(W2)) ∈ θ. Since W1 = π1(W ) = X and W2 = π2(W ) = Y , we have
(fA

i )1(X) = (fA
i )1(Y ) and ((fA

i )2(X), (fA
i )1(Y )) ∈ θ. Therefore

f
A/θ
i ([X]θ) = ((fA

i )1(X), [(fA
i )2(X)]θ)

= ((fA
i )1(Y ), [(fA

i )2(Y )]θ)
= f

A/θ
i ([Y ]θ).

Example 3.18 Let A = {a, b, c} and let the equivalence relation θ on A be given by the
partition {{a, b}, {c}}. Then A/θ = {[a]θ, [c]θ}. Let the binary hyper-co-operation fA

on A be defined by fA(∅) = (2, b), fA(A) = (1, c), fA({a}) = (1, a), fA({b}) = (1, a),
fA({c}) = (1, c), fA({a, b}) = (1, a), fA({a, c}) = (1, c) and fA({b, c}) = (1, c). Then
fA/θ : P(A/θ) → (A/θ)�2 is defined by ∅ �→ (2, [a]θ), {[a]θ, [c]θ} �→ (1, [c]θ), {[a]θ} �→
(1, [a]θ) and {[c]θ} �→ (1, [c]θ).
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Proposition 3.19 Let A = (A; (fA
i )i∈I) be a hyper-coalgebra of type τ and let θ be a

congruence on A. Then the natural mapping γ : A → A/θ defined by a �→ [a]θ is a
surjective homomorphism from A onto A/θ.

Proof. For any X ⊆ A, we have

(γ�ni ◦ fA
i )(X) = γ�ni(fA

i (X))
= γ�ni((fA

i )1(X), (fA
i )2(X))

= ((fA
i )1(X), γ((fA

i )2(X)))
= ((fA

i )1(X), [(fA
i )2(X)]θ)

= f
A/θ
i ([X]θ)

= f
A/θ
i (γ̄(X))

= (fA/θ
i ◦ γ̄)(X).

This shows that γ is a homomorphism.

Congruences on (F1, F2)-systems are defined as kernels of homomorphisms. Now we
prove that any congruence of a hyper-coalgebra of type τ corresponds to a congruence of
the corresponding (F1, F2)-system.

Theorem 3.20 Let A be a hyper-coalgebra of type τ . Then an equivalence relation θ on A
is a congruence on A if and only if θ is the kernel of some homomorphism from A to some
hyper-coalgebra B.

Proof. When θ is a congruence, it is clear that θ is the kernel of the natural mapping
γ : A → A/θ since

(a, b) ∈ θ ⇔ [a]θ = [b]θ ⇔ γ(a) = γ(b) ⇔ (a, b) ∈ Ker γ.

Conversely, let ϕ : A → B be a homomorphism with Ker ϕ as its kernel. Then Ker ϕ
is an equivalence relation on A. For any X ⊆ Ker ϕ, we have ϕ̄(X1) = ϕ̄(X2), so that
fB

i (ϕ̄(X1)) = fB
i (ϕ̄(X2)) and thus (fB

i ◦ϕ̄)(X1) = (fB
i ◦ϕ̄)(X2) since ϕ is a homomorphism.

This implies that (ϕ�ni ◦fA
i )(X1) = (ϕ�ni ◦fA

i )(X2), so that ϕ�ni((fA
i )1(X1), (fA

i )2(X1)) =
ϕ�ni((fA

i )1(X2), (fA
i )2(X2))

and thus ((fA
i )1(X1), ϕ((fA

i )2(X1))) = ((fA
i )1(X2), ϕ((fA

i )2(X2))), which makes (fA
i )1(X1) =

(fA
i )1(X2) and ϕ((fA

i )2(X1)) = ϕ((fA
i )2(X2)). This means that ((fA

i )2(X1), (fA
i )2(X2)) ∈

Ker ϕ. Therefore Ker ϕ is a congruence relation on A.

Thus, if θ is a congruence on the hyper-coalgebra A of type τ , then θ is the kernel of some
homomorphism of the hyper-coalgebra A of type τ . But this homomorphism corresponds to
a homomorphism of the corresponding (F1, F2)-system and θ is the kernel of this (F1, F2)-
system homomorphism and thus a congruence on the (F1, F2)-system and conversely. This
shows that congruences on hyper-coalgebras of type τ correspond to congruences of the
corresponding (F1, F2)-systems.

The next theorem shows the Homomorphic Image Theorem for hyper-coalgebras of type
τ .

Theorem 3.21 Let A and B be hyper-coalgebras of type τ , with ϕ a surjective homomor-
phism from A onto B. Then B is isomorphic to the quotient hyper-coalgebra A/Ker ϕ and
the diagram below commutes:
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A B
ϕ

(=)

γ ψ

A/Ker ϕ
Proof. We use the natural mapping γ considered in Proposition 3.19 to define a

mapping ψ : B → A/Ker ϕ by ψ(b) = γ(a) for b = ϕ(a) and any a ∈ A. This map-
ping is well-defined, since ϕ(c) = b = ϕ(a) ∈ B implies that (c, a) ∈ Ker ϕ and so
[c]Ker ϕ = [a]Ker ϕ. It is clear that ψ is onto, and we show that ψ is one-to-one. If
ψ(b1) = ψ(b2) for some b1, b2 ∈ B, then there are elements a1, a2 ∈ A with b1 = ϕ(a1)
and b2 = ϕ(a2). Since [a1]Ker ϕ = [a2]Ker ϕ, that is (a1, a2) ∈ Ker ϕ, we get b1 = b2.
Also, ψ ◦ ϕ = γ since ψ(ϕ(a)) = ψ(b) = γ(a). It is left to prove that ψ is a homomor-
phism, i.e., fA/Ker ϕ

i ◦ ψ̄ = ψ�ni ◦ fB
i for all i ∈ I. Let X ⊆ B. Since ϕ is surjective,

there is Y ⊆ A such that ϕ̄(Y ) = X . Since ϕ is a homomorphism, then fB
i (ϕ̄(Y )) =

ϕ�ni(fA
i (Y )). There follows ((fB

i )1(X), (fB
i )2(X)) = ((fA

i )1(Y ), ϕ((fA
i )2(Y ))). This im-

plies that (fB
i )1(X) = (fA

i )1(Y ), (fB
i )2(X) = ϕ((fA

i )2(Y )), (fB
i )1(X) = (fA

i )1(Y ) and
ψ((fB

i )2(X)) = [(fA
i )2(Y )]Ker ϕ. Therefore

(ψ�ni ◦ fB
i )(X)

= ψ�ni(fB
i (X))

= ψ�ni((fB
i )1(X), (fB

i )2(X))
= ((fB

i )1(X), ψ((fB
i )2(X)))

= ((fA
i )1(Y ), [(fA

i )2(Y )]Ker ϕ)
= ((fA

i )1(Y ), γ((fA
i )2(Y )))

= γ�ni((fA
i )1(Y ), (fA

i )2(Y ))
= γ�ni(fA

i (Y ))
= (γ�ni ◦ fA

i )(Y )
= (fA/Ker ϕ

i ◦ γ̄)(Y ) ( γ is a homomorphism)
= f

A/Ker ϕ
i (γ̄(Y ))

= f
A/Ker ϕ
i ({γ(y) | y ∈ Y })

= f
A/Ker ϕ
i ({ψ(ϕ(y)) | y ∈ Y })

= f
A/Ker ϕ
i ({ψ(x) | x ∈ X})

= f
A/Ker ϕ
i (ψ̄(X))

= (fA/Ker ϕ
i ◦ ψ̄)(X).

Hence ψ is a homomorphism.

At the end of this section we want to present bisimulations for hyper-coalgebras of
type τ and show that our definition here coincides with the definition of a bisimulation for
the corresponding (F1, F2)-system. Indeed, a relation R ⊆ A × B is called a bisimulation
between (F1, F2)-systems A and B if there is a mapping αR : F1(R) → F2(R) such that the
projections πA : R → A and πB : R→ B are homomorphisms.

Definition 3.22 Let A = (A; (fA
i )i∈I) and B = (B; (fB

i )i∈I) be hyper-coalgebras of type
τ , and let R ⊆ A × B be a binary relation. Then R is said to be a bisimulation be-
tween A and B if for all i ∈ I and for all X ⊆ R, we have (fA

i )1(X1) = (fB
i )1(X2) and
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((fA
i )2(X1), (fB

i )2(X2)) ∈ R whenever π̄A(X) = X1 and π̄B(X) = X2.

Now we prove that for hyper-coalgebras of type τ this definition is equivalent to the
definition of bisimulations for (F1, F2)-systems.

Theorem 3.23 Let A = (A; (fA
i )i∈I) and B = (B; (fB

i )i∈I) be hyper-coalgebras of type τ
and let R ⊆ A× B be a binary relation. Then R is a bisimulation between A and B if and
only if R is a bisimulation between the corresponding (F1, F2)-systems.

Proof. First let R be a bisimulation between the (F1, F2)-systems A and B. Then for
each i ∈ I there are hyper-co-operations fR

i : P(R) → R�ni on R such that the projections
πA : R → A and πB : R → B are homomorphisms. Thus for each subset X ⊆ R we have

((fR
i )1(X), πA((fR

i )2(X)))
= π�ni

A (fR
i (X))

= fA
i (π̄A(X))

= fA
i (X1)

= ((fA
i )1(X1), (fA

i )2(X1)),
and

((fR
i )1(X), πB((fR

i )2(X)))
= π�ni

B (fR
i (X))

= fB
i (π̄B(X))

= fB
i (X2)

= ((fB
i )1(X2), (fB

i )2(X2)).
This means that

(fA
i )1(X1) = (fB

i )1(X2) and (fR
i )2(X) = ((fA

i )2(X1), (fB
i )2(X2)) ∈ R.

This shows that R is a bisimulation between the hyper-coalgebras (A; (fA
i )i∈I) and

(B; (fB
i )i∈I) of type τ .

Conversely, suppose that R is a bisimulation between the coalgebras A = (A; (fA
i )i∈I)

and B = (B; (fB
i )i∈I). By definition we have

(fA
i )1(X1) = (fB

i )1(X2) and ((fA
i )2(X1), (fB

i )2(X2)) ∈ R,

for each i ∈ I and each X ⊆ R. For each i ∈ I we define ni-ary hyper-co-operations on
R by (fR

i )1(X) = (fA
i )1(X1) = (fB

i )1(X2) and (fR
i )2(X) = ((fA

i )2(X1), (fB
i )2(X2)) for all

X ⊆ R. Then R = (R; (fR
i )i∈I) is a hyper-coalgebra of type τ , and it suffices to show that

the projections πA : R → A and πB : R → B are homomorphisms. For any X ⊆ R,

(π�ni

A ◦ fR
i )(X) = π�ni

A (fR
i (X))

= π�ni

A ((fR
i )1(X), (fR

i )2(X))
= ((fR

i )1(X), πA((fR
i )2(X)))

= ((fA
i )1(X1), (fA

i )2(X1))
= fA

i (X1)
= fA

i (π̄A(X))
= (fA

i ◦ π̄A)(X).
This shows that πA is a homomorphism, and the proof for πB is similar.

This equivalence of our definition of bisimulation for hyper-coalgebras of type τ and
the definition for (F1, F2)-systems means that all the results for bisimulations of (F1, F2)-
systems are also valid for bisimulations of hyper-coalgebras of type τ .
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