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MULTIPLICATIVE QUADRATIC FORMS ON THE QUATERNIONS
AND RELATED FUNCTIONAL EQUATIONS
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Abstract. Let R be a skew field. We consider the functional equation

F (x) + m(x)G(x−1) = 0, (∀x ∈ R, x �= 0),

where F, G : R → R are additive and m : R → R is multiplicative. We obtain its
general solution in the case R is the quaternions H over a subfield of the reals �.

In due course we determine the general form of a quadratic multiplicative m on H,
i.e. solutions of m(xy) = m(x)m(y), m(x + y) + m(x− y) = 2m(x) + 2m(y) (∀x, y ∈ H).
The Euclidean norm m(x0 +x1i+x2j +x3k) = x2

0+x2
1 +x2

2+x2
3 is a particular solution.

For G = −F (F (1) = 1) and m quadratic multiplicative on R we show that F is not
multiplicative and that F (t2) is not equal to F (t)2 for some t ∈ R.

1. Introduction

Let k be a commutative field and let U, V be k-vector spaces. A functional (form)
T : U → k is functionally homogeneous if, for some scalar function M : k → k, T (λu) =
M(λ)T (u) for all λ ∈ k and u ∈ U . In earlier works, biadditive functions T : V × V → k
which are functionally homogeneous have being completely determined [4]. The functional
equation

F (x) +m(x)G(x−1) = 0, (∀x ∈ k∗ := k\{0}),
plays a key role. In the current article we consider some similar functional equations on a
skew field (i.e., a non-commutative division ring).

Notations:

R – a skew field, Char(R) �= 2.

R∗ := R\{0}.

S : R×R → R – a symmetric biadditive form, S �≡ 0.

m : R → R – a multiplicative form, m(0) = 0, m(1) = 1.

F – a subfield of the reals R.
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H(F) – the quaternions over F .

ψ : F → H(F) – a field embedding.

2. Two functional equations

Let B : R → R be additive and m : R → R be multiplicative. We first consider the
functional equation

B(x) −m(x)B(x−1) = 0, (∀x ∈ R∗).(2.1)

Later, in parallel, we consider a similar equation

C(x) − C(x−1)m(x) = 0, (∀x ∈ R∗),(2.2)

where C : R → R is additive and m : R → R is multiplicative.
The value of m at 0 has no impact on the two equations. For convenience we shall assume

m(0) = 0.(2.3)

Clearly B ≡ 0 is a trivial solution which goes with any multiplicative m. We need only
treat the case B �≡ 0.

Proposition 2.1. Let B : R → R be additive, B �≡ 0, and multiplicative m : R → R be
functions satisfying the functional equation (2.1) with m(0) = 0.

Then, for all x, y ∈ R,

m(x)B(x−1y) −m(y)B(y−1x) = 0, (x �= 0, y �= 0),(2.4)

m(1) = 1 and m(−x) = m(x),(2.5)

B(x) = 2−1[1 +m(x) −m(1 − x)]B(1),(2.6)

B(1) �= 0,(2.7)

S(x, y) := m(x)B(x−1y)B(1)−1 (x �= 0) and S(0, y) := 0(2.8)

is symmetric, biadditive and normalized: S(1, 1) = 1,(2.9)

m(x) = S(x, x), m is quadratic,(2.10)

S(x, y) = 2−1[m(x) +m(y) −m(x− y)],(2.11)

f(x) := 2−1[1 +m(x) −m(1 − x)] = S(x, 1),(2.12)

B(x) = f(x)B(1),(2.13)

f and m again satisfy (2.1) with f normalized: f(1) = 1.(2.14)

Proof. Replacing x by x−1y in (2.1) we get

B(x−1y) −m(x−1y)B(y−1x) = 0.

Multiplying by m(x) on the left and using the multiplicativity of m we get (2.4). Because
B �≡ 0, it is clear from (2.1) that m �≡ 0. Being multiplicative, we get m(1) = 1. Because B
is odd, (2.1) implies m(−x)B(x−1) = m(x)B(x−1) = B(x). Fixing an x0 with B(x−1

0 ) �= 0
we get m(x0) = m(−x0). Being multiplicative, it extends to m(x) = m(−x) for all x,
proving (2.5). Consider the simple algebraic identity

(1 − x)−1 − 1 = (1 − x)−1x.(2.15)

Applying B to the equation side by side using its additivity and the multiplicativity of m
liberally we step through the following:

B[(1 − x)−1] −B(1) = B[(1 − x)−1x],
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m(1 − x)B[(1 − x)−1] −m(1 − x)B(1) = m(1 − x)B[(1 − x)−1x],

B(1 − x) −m(1 − x)B(1) = m(x)B[x−1(1 − x)],

B(1) −B(x) −m(1 − x)B(1) = m(x)[B(x−1) −B(1)],

B(1) −B(x) −m(1 − x)B(1) = m(x)B(x−1) −m(x)B(1),

B(1) −B(x) −m(1 − x)B(1) = B(x) −m(x)B(1),

holding for all x �= 0, 1. Extracting B(x) we get (2.6) for all x �= 0, 1. The equation also
holds at x = 0, 1 by (2.3). In view of (2.6), the assumption B �≡ 0 implies (2.7). The
symmetry of S is seen from its definition, (2.8), and (2.4), noting that B(0) = 0. For each
fixed x, the additivity of S(x, y) in the variable y is seen from its definition, observing that
B is additive. Being symmetric, S is biadditive. The normalization of S(1, 1) is clear as
m(1) = 1. This proves (2.9). Immediate from the definition of S we get S(x, x) = m(x)
for all x. S being symmetric and biadditive, this proves (2.10) and leads to (2.11). Putting
y = 1 in (2.11) we get (2.12). (2.13) is a repeat of (2.6). Because B and m satisfy (2.1),
(2.14) obviously follows from (2.13).

Proposition 2.2. Let C : R → R be additive, C �≡ 0, and multiplicative m : R → R be
functions satisfying the functional equation (2.2) with m(0) = 0.

Then, for all x, y ∈ R,

C(yx−1)m(x) − C(xy−1)m(y) = 0, (x �= 0, y �= 0),(2.16)

m(1) = 1 and m(−x) = m(x),(2.17)

C(x) = 2−1C(1)[1 +m(x) −m(1 − x)],(2.18)

C(1) �= 0,(2.19)

S(x, y) := C(1)−1C(yx−1)m(x) (x �= 0) and S(0, y) := 0(2.20)

is symmetric, biadditive and normalized: S(1, 1) = 1,(2.21)

m(x) = S(x, x), m is quadratic,(2.22)

S(x, y) = 2−1[m(x) +m(y) −m(x− y)],(2.23)

f(x) := 2−1[1 +m(x) −m(1 − x)] = S(x, 1),(2.24)

C(x) = C(1)f(x),(2.25)

f and m again satisfy (2.2) with f normalized: f(1) = 1.(2.26)

Proof. Replacing x by yx−1 in (2.2) we get

C(yx−1) − C(xy−1)m(yx−1) = 0.

Multiplying by m(x) on the right and using the multiplicativity of m we get (2.16). Because
C �≡ 0, it is clear from (2.1) that m �≡ 0. Being multiplicative, we get m(1) = 1. Because
C is odd, (2.2) implies C(x−1)m(−x) = C(x−1)m(x). Fixing an x0 with C(x−1

0 ) �= 0 we
get m(x0) = m(−x0). Being multiplicative, it extends to m(x) = m(−x) for all x, proving
(2.17). Consider the simple algebraic identity

(1 − x)−1 − 1 = x(1 − x)−1.(2.27)
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Applying C to the equation side by side using its additivity and the multiplicativity of m
liberally we step through the following:

C[(1 − x)−1] − C(1) = C[x(1 − x)−1],

C[(1 − x)−1]m(1 − x) − C(1)m(1 − x) = C[x(1 − x)−1]m(1 − x),

C(1 − x) − C(1)m(1 − x) = C[(1 − x)x−1]m(x),

C(1) − C(x) − C(1)m(1 − x) = [C(x−1) − C(1)]m(x),

C(1) − C(x) − C(1)m(1 − x) = C(x−1)m(x) − C(1)m(x),

C(1) − C(x) − C(1)m(1 − x) = C(x) − C(1)m(x),

holding for all x �= 0, 1. Extracting C(x) we get (2.18) for all x �= 0, 1. The equation also
holds at x = 0, 1 by (2.3). In view of (2.18), the assumption C �≡ 0 implies (2.19). The
symmetry of S is seen from its definition, (2.20), and (2.16), noting that C(0) = 0. For each
fixed x, the additivity of S(x, y) in the variable y is seen from its definition, observing that
C is additive. Being symmetric, S is biadditive. All remaining claims follow in a similar
way as Proposition 2.1.

In light of (2.10) and (2.6), and of (2.22) and (2.18) respectively, the study of the
functional equation (2.1), and of (2.2), is tied to that of quadratic and multiplicative m.
The next section starts with such m on a general R. We obtain some general relations and
make some intermediate observations.

3. Quadratic and multiplicative m

Let m �≡ 0 be a multiplicative quadratic form on R, i.e. it satisfies m(xy) = m(x)m(y)
and m(x+ y) +m(x− y) = 2m(x) + 2m(y) for all x, y ∈ R and m(1) = 1. We consider

S(x, y) : =
1
2
(m(x+ y) −m(x) −m(y))

=
1
2
(m(x) +m(y) −m(x− y))

=
1
4
(m(x+ y) −m(x− y)).

f(x) : = S(x, 1).

(3.1)

Proposition 3.1. Let m �≡ 0 be a multiplicative quadratic form on R and let S and f be
defined by (3.1). Then, for general x, y, u, v, r, s ∈ R,

(i) S is a symmetric biadditive form and

S(px, qy) = pqS(x, y), and S(x, x) = m(x), (∀p, q ∈ Z),

(ii) f is additive, and f(1) = 1,
(iii) S(x, y) = m(y)f(y−1x) = f(xy−1)m(y), (y �= 0),
(iv) f(x) = f(x−1)m(x) = m(x)f(x−1), (x �= 0),
(v)

S(rxs, rys) = m(r)S(x, y)m(s),(3.2)

(vi) m(2) = 4,
(vii)

S(rx, sy) + S(sx, ry) = 2S(r, s)S(x, y),(3.3)
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(viii)

S(u, v) = 2f (u)f(v) − f(uv),(3.4)

(ix)

m(x) = 2f (x)2 − f(x2),(3.5)

(x)

2f (u)f(v) − f(uv) = 2f (v)f(u) − f(vu).(3.6)

Proof. (i) See [2]. (ii) The additivity of f follows from the biadditivity of S, and f(1) =
S(1, 1) = m(1) = 1. (iii)

S(x, y) =
1
2
(m(x+ y) −m(x) −m(y))

=
1
2
(m(xy−1 + 1) −m(xy−1) −m(1))m(y)

= f(xy−1)m(y).

S(x, y) =
1
2
(m(x+ y) −m(x) −m(y))

=
1
2
m(y)(m(y−1x+ 1) −m(y−1x) −m(1))

= m(y)f(y−1x).

(iv)

f(x) = S(x, 1) = S(1, x) = f(x−1)m(x).

f(x) = S(x, 1) = S(1, x) = m(x)f(x−1).

(v)

S(rxs, rys) =
1
2
(m(rxs+ rys) −m(rxs) −m(rys))

=
1
2
m(r)(m(x+ y) −m(x) −m(y))m(s)

= m(r)S(x, y)m(s).

(vi)

m(2) = S(2, 2) = 4S(1, 1) = 4m(1) = 4.

(vii) By (3.2) we have S(rx, ry) = m(r)S(x, y) in particular. Polarize each sides with respect
to the variable r we get (3.3). (viii) Letting s = y = 1 in (3.3) we get f(rx) + S(x, r) =
2f (r)f(x). As S is symmetric, it follows that f(rx) + S(r, x) = 2f (r)f(x). Renaming the
variables we get (3.4). (ix)-(x) The diagonal of (3.4) gives (3.5) and the symmetry of S
gives (3.6).

Lemma 3.2. f is not multiplicative.

Proof. Suppose to the contrary that f is multiplicative.
As f is additive, and f(1) = 1, it is then an injective ring homomorphism of R into

R. Hence (3.6) reduces to f(uv) = f(vu), leading further to uv = vu for all u, v ∈ R. It
contradicts the non-commutativity assumption of R.
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Lemma 3.3. Suppose that

f(t2) = f(t)2 for all t ∈ R.(3.7)

Then the following equations hold for all t, u, v ∈ R:

m(t) = f(t)2,(3.8)

S(u, v) =
1
2
f(u)f(v) +

1
2
f(v)f(u),(3.9)

2f (uv) = 3f (u)f(v) − f(v)f(u).(3.10)

Furthermore, for any given u, v ∈ R,

f(uv) = f(vu) iff f(u)f(v) = f(v)f(u) iff f(uv) = f(u)f(v).(3.11)

Proof. (i) Putting (3.7) in (3.5) we get (3.8). Polarizing (3.8) we get (3.9).
(ii) Polarizing both sides of (3.7) we obtain

f(uv) + f(vu) = f(u)f(v) + f(v)f(u) for all u, v ∈ R.(3.12)

Eliminating the term f(vu) from (3.6) using (3.12) we obtain

2f (u)f(v) − f(uv) = 2f (v)f(u) − [f(u)f(v) + f(v)f(u) − f(uv)].

Collecting like terms we arrive at (3.10).
(iii) For given u, v, the equivalences follow simply from (3.10). Details: (a) Suppose

that f(uv) = f(vu). Then (3.10) yields 3f (u)f(v) − f(v)f(u) = 3f (v)f(u) − f(u)f(v).
So 4f (u)f(v) = 4f (v)f(u), proving f(u)f(v) = f(v)f(u). (b) Suppose that f(u)f(v) =
f(v)f(u). Then the right hand side of (3.10) equals 2f (u)f(v) and gives 2f (uv) = 2f (u)f(v).
This proves f(uv) = f(u)f(v). (c) Suppose that f(uv) = f(u)f(v). By (3.10), 2f (uv) =
3f (u)f(v) − f(v)f(u). Substitution gives 2f (u)f(v) = 3f (u)f(v) − f(v)f(u). Simplifying
we get f(u)f(v) = f(v)f(u). Therefore 3f (u)f(v) − f(v)f(u) = 3f (v)f(u) − f(u)f(v). By
(3.10), it translates into to 2f (uv) = 2f (vu). This proves f(uv) = f(vu).

Proposition 3.4. f(t2) �= f(t)2 for some t.

Proof. Suppose to the contrary that (3.7) holds. Using (3.10) and computing f(uv2) in two
ways we get

f(uv2) =
1
2
[3f (u)f(v2) − f(v2)f(u)]

=
1
2
[3f (u)f(v)2 − f(v)2f(u)](3.13)

and

f(uv2) = f((uv)v) =
1
2
[3f (uv)f(v) − f(v)f(uv)]

=
3
4
[3f (u)f(v) − f(v)f(u)]f(v) − 1

4
f(v)[3f(u)f(v) − f(v)f(u)]

=
9
4
f(u)f(v)2 − 3

2
f(v)f(u)f(v) +

1
4
f(v)2f(u).(3.14)

Comparing the right hand sides we get

3f (u)f(v)2 − 6f (v)f(u)f(v) + 3f (v)2f(u) = 0.(3.15)
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f(vuv) =
1
2
[3f (v)f(uv) − f(uv)f(v)]

=
1
4
[3f (v)[3f(u)f(v) − f(v)f(u)] − [3f (u)f(v) − f(v)f(u)]f(v)]

=
10
4
f(v)f(u)f(v) − 3

4
f(v)2f(u) − 3

4
f(u)f(v)2

=
10
4
f(v)f(u)f(v) − 3

4
f(v)2f(u) − 1

4
[6f (v)f(u)f(v) − 3f (v)2f(u)]

(by (3.15))

= f(v)f(u)f(v).(3.16)

Hence

f(uvuv) =
1
2
[3f (u)f(vuv) − f(vuv)f(u)]

=
1
2
[3f (u)f(v)f(u)f(v) − f(v)f(u)f(v)f(u)].(3.17)

Comparing that with

f(uvuv) = f((uv)2) = f(uv)2

=
1
4
[3f (u)f(v) − f(v)f(u)]2

=
1
4
[9f (u)f(v)f(u)f(v) − 3f (u)f(v)f(v)f(u)

− 3f (v)f(u)f(u)f(v) + f(v)f(u)f(v)f(u)](3.18)

we get

2[3f (u)f(v)f(u)f(v) − f(v)f(u)f(v)f(u)]

= 9f (u)f(v)f(u)f(v) − 3f (u)f(v)f(v)f(u)

− 3f (v)f(u)f(u)f(v) + f(v)f(u)f(v)f(u).

Simplifying and factoring we get

3[f (u)f(v) − f(v)f(u)]2 = 0.(3.19)

There are two cases to consider.

Case 1. Suppose that char(R) �= 3.

Then (3.19) yields f(u)f(v) = f(v)f(u). By (3.11) f(uv) = f(u)f(v) follows. That
contradicts Lemma 3.2.

Case 2. Suppose that char(R) = 3.
Then (3.10) reduces to 2f (uv) = −f (v)f(u) = 2f (v)f(u). Hence f is a skew morphism:

f(uv) = f(v)f(u), (∀u, v ∈ R).(3.20)

Because f is not identically zero, (3.20) implies that it has a trivial kernel. So f is
injective.

Since m(u) = f(u)2 = f(u2), the multiplicativity of m translates into

f((uv)2) = f(u2)f(v2), (∀u, v ∈ R).(3.21)
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By (3.20) we have f(u2)f(v2) = f(v2u2) and so (3.21) gives f((uv)2) = f(v2u2). Injec-
tivity of f then yields the relation

(uv)2 = v2u2, (∀u, v ∈ R).(3.22)

Using (3.22) in a sequence of successive calculates we obtain a collection of identities, each
holding for all u, v ∈ R:

(uv)2u = (v2u2)u = v2u3,(3.23)

(uv)2u = u(vu)2 = u(u2v2) = u3v2,(3.24)

v2u3 = u3v2, i.e. u3 and v2 commute,(3.25)

(uv)3 = ((uv)2u)v = (u3v2)v = u3v3,(3.26)

uv2uv2 = (uv2)2 = (v2)2u2 = v4u2 = v(v3u2) = vu2v3,

uv2u = vu2v, i.e. uv and vu commute,(3.27)

(uv)4 = ((uv)2)2 = (v2u2)2 = (u2)2(v2)2 = u4v4,

(uv)4 = (uv)(uv)3 = (uv)(u3v3) = uvu3v3,

u4v4 = uvu3v3,

u3v = vu3, i.e. u3 and v commute.(3.28)

Because uv and vu commute, (3.27), and since char(R) = 3, expansion gives

(uv − vu)3 = (uv)3 − (vu)3.(3.29)

By (3.26), (uv)3 − (vu)3 = u3v3 − v3u3 ; and by (3.28), u3v3 − v3u3 = 0. Therefore
(3.29) yields (uv − vu)3 = 0, implying that uv = vu for all u, v. It contradicts that R is
non-commutative.

4. quadratic and multiplicative m on the quaternions

Let F be a subfield of the reals and let H(F) be the quaternions over F . We shall solve
for quadratic and multiplicative m on H(F). Let

ũ = u1i+ u2j + u3k, (u1, u2, u3 ∈ F),

denote a unit vector, i.e. it satisfies ũ2 = −1. From m(ũ)2 = m(ũ2) = m(−1) = 1, we get
m(ũ) = ±1. Using m(ũ) = 2f (ũ)2 − f(ũ2) = 2f (ũ2) − f(−1) = 2f (ũ)2 + 1, we get that
either

m(ũ) = 1 and f(ũ) = 0,

or

m(ũ) = −1 and f(ũ) is a unit vector.

There are four cases to consider at this time:
Case 1. m(i) = 1, m(j) = 1, m(k) = 1, f(i) = 0, f(j) = 0 and f(k) = 0.
Case 2. m(i) = −1, m(j) = −1, m(k) = 1, f(i) = ũ, f(j) = ṽ and f(k) = 0.
Case 3. m(i) = −1, m(j) = 1, m(k) = −1, f(i) = ũ, f(j) = 0 and f(k) = ṽ.
Case 4. m(i) = 1, m(j) = −1, m(k) = −1, f(i) = 0, f(j) = ũ and f(k) = ṽ.
Here ṽ also refers to a unit vector.

First we consider Case 2. Let x = 1+i+k and x̄ = 1−i−k. Then f(x) = 1+f(i)+f(k) =
1 + ũ and similarly f(x̄) = 1 − ũ. As x2 = −1 + 2i + 2k and x̄2 = −1 − 2i − 2k, we get
f(x2) = −1 + 2ũ and f(x̄2) = −1 − 2ũ.
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Hence m(x) = 2f (x)2 − f(x2) = 2(1 + ũ)2 − (−1 + 2ũ) = 2 + 4ũ+ 2ũ2 + 1− 2ũ = 1 + 2ũ,
and m(x̄) = 2f (x̄)2 − f(x̄2) = 2(1− ũ)2 − (−1− 2ũ) = 2 − 4ũ+ 2ũ2 + 1 + 2ũ = 1− 2ũ. So,
m(x)m(x̄) = (1 + 2ũ)(1− 2ũ) = 5. Comparing with m(xx̄) = m(1 + 1 + 0 + 1) = m(3) = 9,
we see that m(x)m(x̄) �= m(xx̄) and is a contradiction to the multiplicity of m.

This proves that Case 2 is inadmissible.
The 3-cycle i �→ j, j �→ k, k �→ i generates an automorphism φ on H leaving elements of

the center F fixed. An m falls under Case 2 iff m ◦ φ falls under Case 3 iff m ◦ φ ◦ φ falls
under Case 4. Since Case 2 is inadmissible, Case 3 and Case 4 are also inadmissible.

Next, we consider Case 1 which is the only case left:

m(i) = m(j) = m(k) = 1 and f(i) = f(j) = f(k) = 0.(4.1)

Consider (3.6) at u = i and v = x3j:

2f (i)f(x3j) − f(ix3j) = 2f (x3j)f(i) − f(x3ji).

Because f(i) = 0, we get f(x3k) = f(−x3k) = −f (x3k). This proves

f(x3k) = 0, (∀x3 ∈ F).

The 3-cycle i �→ j, j �→ k, k �→ i generates an automorphism φ on H(F) leaving the center
F fixed. Consideration of m ◦ φ and m ◦ φ ◦ φ immediately extends the above to

f(x1i) = f(x2j) = f(x3k) = 0, (∀x1, x2, x3 ∈ F).

Therefore

f(x) = f(x0 + x1i+ x2j + x3k) = f(x0), (∀x ∈ H(F)).(4.2)

It leads to

m(x) = 2f (x)2 − f(x2) = 2f (x0)2 − f(x2
0 − x2

1 − x2
2 − x2

3)

= [2f (x0)2 − f(x2
0)] + f(x2

1) + f(x2
2) + f(x2

3).(4.3)

The equality m(xi) = m(x)m(i) = m(x) then implies

[2f (x0)2 − f(x2
0)] + f(x2

1) + f(x2
2) + f(x2

3) = [2f (x1)2 − f(x2
1)] + f(x2

0) + f(x2
3) + f(x2

2).

Setting x0 = t and x1 = 0, it reduces to

f(t)2 = f(t2), (∀t ∈ F).(4.4)

With that, (4.3) becomes

m(x) = f(x2
0) + f(x2

1) + f(x2
2) + f(x2

3).(4.5)

Polarizing (4.4) we see that

f(st) = f(s)f(t), (∀s, t ∈ F).(4.6)

Let ψ : F → H(F) be the restriction of f to F . Then ψ is both additive and multiplicative,
with ψ(1) = 1. So ψ is a field embedding of F into H(F). We rewrite (4.5) as

m(x) = ψ(x2
0 + x2

1 + x2
2 + x2

3) = ψ(xx̄).(4.7)

Polarizing we get

S(x, y) = ψ(x0y0 + x1y1 + x2y2 + x3y3) = ψ(x0y0 + x̃ · ỹ).(4.8)

Conversely, it is straight forward to check that a function m having the representation
(4.7) is indeed quadratic and multiplicative.

We sum the section up:
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Proposition 4.1. m : H(F) → H(F), m �≡ 0, is quadratic and multiplicative iff it has the
representation

m(x) = ψ(x2
0 + x2

1 + x2
2 + x2

3) = ψ(xx̄)

for some field embedding ψ : F → H(F).

Note: The only ψ : Q → H(Q) is the natural inclusion ψ(x0) = x0. However, non-trivial
embeddings ψ : R → H(R) exist [1, 3].

5. The equation F (x) +m(x)G(x−1) = 0

We only treat the functional equation over H(F):

F (x) +m(x)G(x−1) = 0, (∀x ∈ H(F), x �= 0),(5.1)

where m is multiplicative, m(0) = 0, m(1) = 1 and F and G are additive.
Replacing x by x−1 in (5.1) and multiply the resulting equation by m(x) we get

G(x) +m(x)F (x−1) = 0, (∀x ∈ H(F), x �= 0).(5.2)

Adding and subtracting the equations we get, respectively,

A(x) +m(x)A(x−1) = 0, (∀x ∈ H(F), x �= 0),(5.3)

and

B(x) −m(x)B(x−1) = 0, (∀x ∈ H(F), x �= 0),(5.4)

where A := F +G, B := F −G are additive. The latter is (2.1) and, if B is not identically
zero, its solution is seen via Proposition 4.1 and (4.2):

Proposition 5.1. The solution of

B(x) −m(x)B(x−1) = 0, (∀x ∈ H(F), x �= 0),(5.5)

where B �≡ 0 is additive, m is multiplicative, m(0) = 0 and m(1) = 1, is given by

B(x) = ψ(x0)B(1),(5.6)

m(x) = ψ(xx̄).(5.7)

Here, B(1) is a non-zero constant.

We now attend to the former equation (5.3).

Proposition 5.2. Let A �≡ 0 be additive and m be multiplicative on H(F), m(0) = 0 and
m(1) = 1. The solution of

A(x) +m(x)A(x−1) = 0, (∀x ∈ H(F), x �= 0),(5.8)

is given by

A(x) = ψ(x1)A(i) + ψ(x2)A(j) + ψ(x3)A(k),(5.9)

m(x) = ψ(xx̄)(5.10)

for all x ∈ H(F). Here ψ : F → H(F) is a field embedding. The constants A(i), A(j) and
A(k) are not all zero.

Proof. In the proof for the sake of brevity we write H in place of H(F).
Suppose that (5.8) holds and that A and M have the prescribed properties. Replacing

x by x−1y in (5.8) we get

A(x−1y) +m(x−1y)A(y−1x) = 0.
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Multiplying by m(x) on the left and using the multiplicativity of m we get

m(x)A(x−1y) +m(y)A(y−1x) = 0(5.11)

for all x �= 0, y �= 0 ∈ H.
We define T by

T (x, y) = m(x)A(x−1y),

T (0, y) = T (x, 0) = T (0, 0) = 0

for all x �= 0, y �= 0 ∈ H. Using (5.11) we deduce further that T is skew-symmetric and
biadditive. Furthermore

T (sx, sy) = m(s)T (x, y), (∀s, x, y ∈ H).(5.12)

Symmetric polarization of the variable s gives

0 = [m(s+ t) +m(s− t) − 2m(s) − 2m(t)]T (x, y), (∀s, t, x, y ∈ H).(5.13)

The assumption A �≡ 0 implies that T is not identically zero. Hence, the above equation
implies that m is quadratic. Therefore, by Proposition 4.1, it admits the representation
(5.10).

We replace x by xi in (5.8), using m(xi) = m(x) and observing that A is odd, to get

A(xi) −m(x)A(ix−1) = 0, (∀x ∈ H, x �= 0).(5.14)

Similarly, replacing x by ix in (5.8) we get

A(ix) −m(x)A(x−1i) = 0, (∀x ∈ H, x �= 0).(5.15)

Adding (5.14) and (5.15) side by side and letting

b(x) := A(xi) +A(ix), (∀x ∈ H),(5.16)

we get

b(x) −m(x)b(x−1) = 0, (∀x ∈ H, x �= 0).(5.17)

It is clear that b is additive. According to Proposition 5.1, b is given by

b(x) = ψ(x0)b(1), (∀x ∈ H).(5.18)

Here, b(1) = 0 is allowed so as to carry the trivial solution b ≡ 0.
For x = x0 + x1i+ x2j + x3k,

b(x) = A(xi) +A(ix)

= A(x0i− x1 − x2k + x3j) +A(x0i− x1 + x2k − x3j)

= −2A(x1) + 2A(x0i).

Hence (5.18) translates into

−2A(x1) + 2A(x0i) = ψ(x0)2A(i).

Dropping the factor 2 and renaming the variables we obtain

A(x0) = 0 and A(x1i) = ψ(x1)A(i), (∀x0, x1 ∈ F).(5.19)

In view of the symmetric roles played by i, j, and k in the quaternions, parallel arguments
give

A(x2j) = ψ(x2)A(j), (∀x2 ∈ F),(5.20)

A(x3k) = ψ(x3)A(k), (∀x3 ∈ F).(5.21)

A being additive, (5.19), (5.20) and (5.21) imply that A has the representation (5.9).
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Conversely, suppose that A and m are given by (5.9) and (5.10). The following compu-
tation justifies that (5.3) is indeed satisfied.

x−1 =
x̄

xx̄
=
x0 − x1i− x2j − x3k

xx̄
,

A(
x̄

xx̄
) = ψ(

−x1

xx̄
)A(i) + ψ(

−x2

xx̄
)A(j) + ψ(

−x3

xx̄
)A(k),

ψ(xx̄)A(
x̄

xx̄
) = ψ(xx̄)ψ(

−x1

xx̄
)A(i)

+ ψ(xx̄)ψ(
−x2

xx̄
)A(j) + ψ(xx̄)ψ(

−x3

xx̄
)A(k)

= −ψ(x1)A(i) − ψ(x2)A(j) − ψ(x3)A(k)

= −A(x).

Combining the above two Propositions where A : F + G, B := F − G we arrive at the
following solution for (5.1).

Theorem 5.3. The general solution of the equation

F (x) +m(x)G(x−1) = 0, (∀x ∈ H(F), x �= 0),(5.22)

where m is multiplicative, m(0) = 0, m(1) = 1, F,G �≡ 0 are additive, is given by:

m(x) = ψ(xx̄),(5.23)

F (x) =
1
2
[ψ(x0)B(1) + ψ(x1)A(i) + ψ(x2)A(j) + ψ(x3)A(k)],(5.24)

G(x) =
1
2
[−ψ(x0)B(1) + ψ(x1)A(i) + ψ(x2)A(j) + ψ(x3)A(k)].(5.25)

Here, at least one of the constants B(1), A(i), A(j), A(k) is non-zero.

6. The equation F (x) +G(x−1)m(x) = 0

With parallel deductions, using Proposition 2.2 instead of Proposition 2.1, we get

Theorem 6.1. The general solution of the equation

F (x) +G(x−1)m(x) = 0, (∀x ∈ H(F), x �= 0),(6.1)

where m is multiplicative, m(0) = 0, m(1) = 1, F,G �≡ 0 are additive, is given by:

m(x) = ψ(xx̄),(6.2)

F (x) =
1
2
[B(1)ψ(x0) +A(i)ψ(x1) +A(j)ψ(x2) +A(k)ψ(x3)],(6.3)

G(x) =
1
2
[−B(1)ψ(x0) +A(i)ψ(x1) +A(j)ψ(x2) +A(k)ψ(x3)].(6.4)

Here, at least one of the constants B(1), A(i), A(j), A(k) is non-zero.
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