
Scientiae Mathematicae Japonicae Online, e-2009, 225–231 225

WEYL TYPE THEOREMS FOR (p, k)-QUASIHYPONORMAL
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Abstract. Let T be a bounded linear operator on a complex Hilbert space H. T is
called (p, k)-quasihyponormal if T ∗((T ∗T )p−(TT ∗)p)T ≥ 0 for 0 < p ≤ 1 and k ∈ �. In
this paper, we prove Weyl type theorems for (p, k)-hyponormal operators. Especially,
we prove that generalized a-Weyl’s theorem holds for T if T ∗ is (p, k)-quasihyponormal.

1 Introduction.
Let B(H) denote the algebra of all bounded linear operators acting on an infinite dimen-

sional separable Hilbert space H. An operator T ∈ B(H) is called Fredholm if the range
R(T ) is closed, the null space N(T ) has finite dimension and dimH/R(T ) < ∞. Moreover,
if ind (T ) = dimN(T ) − dimH/R(T ) = 0, then T is called Weyl. The Weyl spectrum
σW (T ) is defined by

σW (T ) = {λ ∈ C : T − λ is not Weyl}.
We say that Weyl’s theorem holds for T if

σ(T ) \ σW (T ) = π00(T )

where π00(T ) is the set of all isolated points λ ∈ σ(T ) with 0 < dimN(T − λ) < ∞.
T is called normal if T ∗T = TT ∗, hyponormal if T ∗T − TT ∗ ≥ 0 and p-hyponormal

(0 < p ≤ 1) if (T ∗T )p−(TT ∗)p ≥ 0. In this paper, we invesigate (p, k)-quasihyponormal op-
erators, i.e., T ∗k((T ∗T )p−(TT ∗)p)T k ≥ 0 (0 < p ≤ 1, k ∈ N). T is called k-quasihyponormal
and p-quasihyponormal if p = 1 and k = 1, respectively. Hence the notion of (p, k)-
quasihyponormal operator is an extension the notions of hyponormal, p-hyponormal, p-
quasihyponormal and k-quasihyponormal operator([1], [2], [9]).

H. Weyl [23] proved that Weyl’s theorem holds for hermitian operators. Weyl’s theorem
has been extended for hyponormal, p-hyponormal and algebraically p-hyponormal operators
([11], [10], [14].) More generally, M. Berkani proved that generalized Weyl’s theorem holds
for hyponormal operators ([5, 6, 7]). Recently, X. Cao, M. Guo and B. Meng [8] proved Weyl
type theorems for p-hyponormal operators and one of the author [19] proved that generalized
Weyl’s theorem holds for (p, k)-quasihyponormal operators. In this paper, we prove Weyl
type theorems for (p, k)-hyponormal operators. Especially, we prove that generalized a-
Weyl’s theorem holds for T if T ∗ is (p, k)-quasihyponormal.

2 Weyl’s Theorem.
I.H. Kim proved many interesting properties of (p, k)-qusihyponormal operators ([17],

[18]). The following (1) is due to [17], (2) and (3) are due to [20].
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Lemma 2.1. Let T ∈ B(H) be (p, k)-quasihyponormal. Then the following assertions hold.
(1) Let the range R(T k) be not dense. Decompose

T =
(

T1 T2

0 T3

)
on H = [R(T k)] ⊕ N(T ∗k)

where [R(T k)] is the closure of R(T k). Then T1 is p-hyponormal, T k
3 = 0 and σ(T ) =

σ(T1) ∪ {0}.
(2) The restriction T |M to an invariant subspace M of T is also (p, k)-quasihyponormal.
(3) Let λ be an isolated point of σ(T ) and Eλ be the Riesz idempotent for λ of T . If

λ �= 0, then Eλ is self-adjoint and EλH = N(T − λ0) = N((T − λ0)∗). If λ = 0, then
EλH = N(T k).

Lemma 2.2. Let T be (p, k)-quasihyponormal. Then T has the single valued extension
property, i.e., if f(z) is analytic and (T − z)f(z) = 0 on a some open set D ⊂ C, then
f(z) = 0 on D.

Proof. If R(T k) is dense, then T is p-hyponormal and T has the the single valued extension
property by [13, Theorem 1]. Hence we may assume R(T k) is not dense. Hence we can
write (

T1 − z T2

0 T3 − z

) (
f1(z)
f2(z)

)

=
(

(T1 − z)f1(z) + T2f2(z)
(T3 − z)f2(z)

)
=

(
0
0

)

by Lemma 2.1. Since σ(T3) = {0} and f2(z) is analytic on D, we have f2(z) = 0 on
D. Hence (T1 − z)f1(z) = 0 and so f1(z) = 0 on D by [13, Theorem 1] because T1 is
p-hyponormal by Lemma 2.1.

Remark 2.3. We can prove that (p, k)-quasihyponormal operator has Bishop’s property
(β), similarly.

The following result is due to I.H. Kim [17]. We show another proof.

Proposition 2.4. Weyl’s theorem holds for (p, k)-quasihyponormal operators.

Proof. Let T be (p, k)-quasihyponormal and λ ∈ σ(T ) \ σW (T ). Then T − λ is Weyl and
not invertible. If λ is an interior point of σ(T ), there exists an open set G such that
λ ∈ G ⊂ σ(T ) \ σW (T ). Hence dimN(T − µ) > 0 for all µ ∈ G and T does not have the
single valued extension property by [15, Theorem 9]. This is a contradiction. Hence λ is
a boundary point of σ(T ), and hence an isolated point of σ(T ) by [12, Theorem XI 6.8].
Thus λ ∈ π00(T ).

Let λ ∈ π00(T ) and Eλ be the Riesz idempotent for λ of T . Then 0 < dimN(T−λ) < ∞,

T = T |EλH⊕ T |(I − Eλ)H
and

σ(T |EλH) = {λ}, σ(T |(I − Eλ)H) = σ(T ) \ {λ}.
We remark that T |EλH is (p, k)-quasihyponormal by Lemma 2.1.

If λ �= 0, then T |EλH = λ by Lemma 2.1. Hence EλH ⊂ N(T − λ) and Eλ is of finite
rank. Since (T − λ)|(I − Eλ)H is invertible, T − λ = 0|EλH⊕ (T − λ)|(I − Eλ)H is Weyl.
Hence λ ∈ σ(T ) \ σW (T ).
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If λ = 0, then (T |E0H)k = 0 by Lemma 2.1. Hence E0H ⊂ N(T k) and

dimE0H ≤ dimN(T k) ≤ k dim N(T ) < ∞

by [21, Lemma 3.3]. Then T |EλH is compact. Since T |(I − E0) is invertible, λ ∈ σ(T ) \
σW (T ) by [12, Proposition XI 6.9].

3 Generalized a-Weyl’s theorem.
More generally, M. Berkani investigated B-Fredholm theory as follows (see [3, 5, 6, 7]).

An operator T is called B-Fredholm if there exists n ∈ N such that R(T n) is closed and the
induced operator

T[n] : R(T n) 	 x → Tx ∈ R(T n)

is Fredholm, i.e., R(T[n]) = R(T n+1) is closed, dimN(T[n]) < ∞ and dimR(T n)/R(T[n]) <
∞. Similarly, a B-Fredholm operator T is called B-Weyl if ind T[n] = dimN(T[n]) −
dimR(T n)/R(T[n]) = 0. The following results are due to M. Berkani and M. Sarih [7].

Proposition 3.1. Let T ∈ B(H).
(1) If R(T n) is closed and T[n] is Fredholm, then R(T m) is closed and T[m] is Fredholm

for every m ≥ n. Moreover, ind T[m] = ind T[n](= ind T ).
(2) T is B-Fredholm (B-Weyl) if and only if there exist T -invariant subspaces M and

N such that T = T |M⊕ T |N where T |M is Fredholm (Weyl) and T |N is nilpotent.

The B-Weyl spectrum σBW (T ) is defined by

σBW (T ) = {λ ∈ C : T − λ is not B-Weyl} ⊂ σW (T ).

We say that generalized Weyl’s theorem holds for T if

σ(T ) \ σBW (T ) = E(T )

where E(T ) denotes the set of all isolated points of σ(T ) which are eigenvalues (no restriction
on multiplicity). Berkani and Koliha ([6]) proved that if generalized Weyl’s theorem holds
for T , then Weyl’s theorem for T . Recently, M. Berkani and A. Arroud [5] prove that
generalized Weyl’s theorem holds for hyponormal operators and one of the authors [19]
proved the same result holds for (p, k)-quasihyponormal operators.

Next result is due to B.P. Duggal and S.V. Djordjević [14].

Proposition 3.2. If T ∗ is p-hyponormal, then Weyl’s theorem holds for T .

We extend above result as follows.

Theorem 3.3. If T ∗ is (p, k)-quasihyponormal, then Weyl’s theorem holds for T .

Proof. [19, Theorem 2.6] implies that

σ(T ∗) \ σBW (T ∗) = E(T ∗).

It is obvious that
(σ(T ∗) \ σBW (T ∗))∗ = σ(T ) \ σBW (T ),

hence we have to prove
(E(T ∗))∗ = E(T ).
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Let λ∗ ∈ E(T ∗). Then λ is an isolated point of σ(T ). Let Fλ∗ be the Riesz idempotent
for λ∗ of T ∗. If λ∗ �= 0, then Fλ∗ is self-adjoint,

{0} �= Fλ∗H = N((T − λ)∗) = N(T − λ)

by Lemma 2.1. Hence λ ∈ E(T ). If λ∗ = 0, then T ∗|F0 is (p, k)-quasihyponormal by
Lemma 2.1 and (T ∗|F0H)k = 0 by Lemma 2.1. Hence T ∗kF0 = 0. Let E0 = F ∗

0 be the
Riesz idempotent for 0 of T . Then T kE0 = (T ∗kF0)∗ = 0. Hence T |E0H is nilpotent. Thus
λ = 0 ∈ E(T ).

Conversely, let λ ∈ E(T ). Then λ∗ is an isolated point of σ(T ∗). Let Fλ∗ be the Riesz
idempotent for λ∗ of T ∗. If λ �= 0, then Fλ∗ is self-adjoint and

{0} �= Fλ∗H = N((T − λ)∗) = N(T − λ)

by Lemma 2.1. Hence λ∗ ∈ E(T ∗). Let λ = 0. Since T ∗|F0H is (p, k)-quasihyponormal
and σ(T ∗|F0H) = {0}, we have (T ∗|F0H)k = 0 by Lemma 2.1. This implies that T ∗|F0H
is nilpotent. Thus λ∗ = 0 ∈ E(T ∗).

Next we investigate a-Weyl’s theorem (cf. [3]).
We define T ∈ SF−

+ if R(T ) is closed, dimN(T ) < ∞ and ind T ≤ 0. Let σSF−
+

(T ) =

{λ ∈ C | T − λ �∈ SF−
+ } ⊂ σW (T ). Let σa(T ) be the set of all approximate eigen values of

T and let πa
00(T ) be the set of all isolated points λ ∈ σa(T ) with 0 < dimN(T − λ) < ∞.

We say that a-Weyl’s theorem holds for T if

σa(T ) \ σSF−
+

(T ) = πa
00(T ).

V. Rakočević [22, Corollary 2.5] proved that if a-Weyl’s theorem holds for T , then Weyl’s
theorem holds for T .

Theorem 3.4. If T ∗ is (p, k)-quasihyponormal, then a-Weyl’s theorem holds for T .

Proof. Since T ∗ has the single valued extension property by Lemma 2.2, we have σ(T ) =
σa(T ) and π00(T ) = πa

00(T ) ([3, Corollary 2.45]).
Let λ ∈ σa(T )\σSF−

+
(T ). If λ is an interior point of σa(T ), then there exists an open set

G such that λ ∈ G ⊂ σa(T ) \ σSF−
+

(T ). Since T ∗ has the single valued extension property,

ind (T − µ)∗ ≤ 0 for all µ ∈ C by [3, Corollary 3.19]. Let µ ∈ G. Then T − µ ∈ SF−
+

and ind (T − µ) = 0. On the otherhand, R(T − µ) is closed, T − µ is not invertible and
0 < dimN(T − µ) < ∞. Hence 0 < dim N((T − µ)∗) < ∞ and T ∗ does not have a single
valued extension property by [15, Theorem 9]. This is a contradiction. Hence we may
assume that λ is a boundary point of σ(T ). Since T − λ ∈ SF−

+ , λ is an isolated point of
σ(T ) by [12, Theorem XI 6.8]. Thus λ ∈ π00(T ) = πa

00(T ).
Conversely, let λ ∈ πa

00(T ) = π00(T ). Then dim N(T ) < ∞ and the conjugate number
λ∗ of λ is an isolated point of σ(T ∗). Let Fλ∗ be the Riesz idempotent for λ∗ of T ∗.

If λ∗ �= 0, then Fλ∗ is self-adjoint and @

Fλ∗H = N((T − λ)∗) = N(T − λ)

by Lemma 2.1. Since dim N(T − λ) < ∞, Fλ∗ is compact. We decompose

(T − λ)∗ = 0|Fλ∗H⊕ (T − λ)∗|(I − Fλ∗)H.

Then (T − λ)∗|(I − Fλ∗)H is invertible and

T − λ = 0|Fλ∗H⊕ (T − λ)|(I − Fλ∗)H.
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Hence R(T − λ) = (I − Fλ∗)H is closed and ind (T − λ) = 0. Thus λ ∈ σa(T ) \ σSF−
+

(T ).
If λ∗ = 0, then

T ∗k|F0H = (T ∗|F0H)k = 0

by Lemma 2.1. Since E0 = F ∗
0 is the Riesz idempotent for 0 of T and T kE0 = (T ∗kF0)∗ = 0,

we have E0H ⊂ N(T k). Then

dimE0H ≤ dimN(T k) ≤ k dim N(T ) < ∞
by [21, Lemma 3.3]. This implies E0 is compact. We decompose

T = T |E0H⊕ T |(I − E0)H.

Since T |(I − E0)H is invertible, R(T ) = R(T |E0H) ⊕ (I − E0)H is closed, N(T ) ⊂ E0H
and ind T = 0. Thus 0 ∈ σa(T ) \ σSF−

+
(T ).

Next we investigate generalized a-Weyl’s theorem (cf. [3]).
We define T ∈ SBF−

+ if there exists n ∈ N such that R(T n) is closed, T[n] : R(T n) 	
x → Tx ∈ R(T n) is upper semi-Fredholm (i.e., R(T[n]) = R(T n+1) is closed, dimN(T[n]) =
dimN(T ) ∩ R(T n) < ∞) and 0 ≥ ind T[n](= ind T ) ([7]). We define σSBF−

+
(T ) = {λ ∈

C | T − λ �∈ SBF−
+ } ⊂ σSF−

+
(T ). Let Ea(T ) denote the set of all isolated points λ ∈ σa(T )

with 0 < dimN(T − λ). We say that generalized a-Weyl’s theorem holds for T if

σa(T ) \ σSBF−
+

(T ) = Ea(T ).

M. Berkani and J.J. Koliha [6] proved that if generalized a-Weyl’s theorem holds for T , then
a-Weyl’s theorem holds for T .

Theorem 3.5. If T ∗ is (p, k)-quasihyponormal, then generalized a-Weyl’s theorem holds
for T .

Proof. Since T ∗ has the single valued extension property by Lemma 2.2, we have σ(T ) =
σa(T ), π00(T ) = πa

00(T ) and E(T ) = Ea(T ).
Let λ0 ∈ σa(T ) \ σSBF−

+
(T ). If λ0 is an interior point of σa(T ), then there exists an

open set G such that λ0 ∈ G ⊂ σa(T ) \ σSBF−
+

(T ). Let λ ∈ G. Then T − λ ∈ SBF−
+ , i.e.,

there exists n ∈ N such that R((T −λ)n) is closed, dimN(T[n] −λ) < ∞ and ind (T −λ) =
ind (T[n] − λ) ≤ 0. Then there exists a positive number ε such that if 0 < |λ − µ| < ε then
T − µ is upper semi-Fredholm, ind (T − µ) = ind (T − λ) ≤ 0 and µ ∈ G by [7, Theorem
3.1]. Since T ∗ has a single valued extension property, ind (T − µ)∗ ≤ 0 by [3, Corollary
3.19]. Hence ind (T − µ) = 0. If 0 = dimN(T − µ), then T − µ is invertible. This is a
contradiction. Hence 0 < dimN(T − µ) < ∞, and 0 < dimN((T − µ)∗) < ∞. Then T ∗

does not have the single valued extension property by [15]. This is a contradiction.
Hence we may assume that λ0 is a boundary point of σ(T ). Since T − λ0 ∈ SBF−

+ ,
T − λ0 is topologically uniform descent by [7, Proposition 2.5], and λ0 is an isolated point
of σ(T ) by [16, Corollary 4.9]. We decompose

T − λ0 = (T − λ0)|M ⊕ (T − λ0)|N
where (T − λ0)|N is nilpotent and (T − λ0)|M is semi-Fredholm by [7, Theorem 2.6]. If
N = {0}, then

λ0 ∈ σa(T ) \ σSF−
+

(T ) = πa
00(T ) = π00(T ) ⊂ E(T ) = Ea(T )
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by Theorem 3.4. If N �= {0}, then λ0 is an eigen-value of T |N as T |N is nilpotent. Hence
λ0 ∈ E(T ) = Ea(T ). Thus σa(T ) \ σSBF−

+
(T ) ⊂ Ea(T ).

The converse inclusion is clear because

Ea(T ) = E(T ) ⊂ π00(T ) = πa
00(T )

= σa(T ) \ σSF−
+

(T ) ⊂ σa(T ) \ σSBF−
+

(T )

by Theorem 3.4.

Remark 3.6.
(1) If f(z) is an analytic function on σ(T ), then generalized a-Weyl’s theorem holds for

f(T ). (The proof is similar to [8, Theorem 3.3]).
(2) Generalized a-Weyl’s theorem does not hold for (p, k)-quasihyponormal operators as

seen in [4, Example 2.13].
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