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WEYL TYPE THEOREMS FOR (p, k)-QUASIHYPONORMAL
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ABSTRACT. Let T be a bounded linear operator on a complex Hilbert space H. T is
called (p, k)-quasihyponormal if 7 ((T*T)?P—(TT*)?)T > 0for0 < p < land k € N. In
this paper, we prove Weyl type theorems for (p, k)-hyponormal operators. Especially,
we prove that generalized a-Weyl’s theorem holds for T'if T is (p, k)-quasihyponormal.

1 Introduction.

Let B(H) denote the algebra of all bounded linear operators acting on an infinite dimen-
sional separable Hilbert space H. An operator T' € B(H) is called Fredholm if the range
R(T) is closed, the null space N(T') has finite dimension and dim H/R(T) < co. Moreover,
if ind (T') = dim N(T') — dimH/R(T) = 0, then T is called Weyl. The Weyl spectrum
ow (T) is defined by

ow(T) ={A e C: T — Xis not Weyl}.

We say that Weyl’s theorem holds for T if
o(T) \ ow (T) = moo(T)

where myo(T') is the set of all isolated points A € o(T) with 0 < dim N(T' — X) < oo.

T is called normal if T*T = TT*, hyponormal if T*T — TT* > 0 and p-hyponormal
(0<p<1)if (T*T)?—(TT*)? > 0. In this paper, we invesigate (p, k)-quasihyponormal op-
erators, i.e., T**((T*T)P—(TT*)P)T* > 0 (0 < p < 1,k € N). T'is called k-quasihyponormal
and p-quasihyponormal if p = 1 and k = 1, respectively. Hence the notion of (p,k)-
quasihyponormal operator is an extension the notions of hyponormal, p-hyponormal, p-
quasihyponormal and k-quasihyponormal operator([1], [2], [9]).

H. Weyl [23] proved that Weyl’s theorem holds for hermitian operators. Weyl’s theorem
has been extended for hyponormal, p-hyponormal and algebraically p-hyponormal operators
([11], [10], [14].) More generally, M. Berkani proved that generalized Weyl’s theorem holds
for hyponormal operators ([5, 6, 7]). Recently, X. Cao, M. Guo and B. Meng [8] proved Weyl
type theorems for p-hyponormal operators and one of the author [19] proved that generalized
Weyl’s theorem holds for (p, k)-quasihyponormal operators. In this paper, we prove Weyl
type theorems for (p, k)-hyponormal operators. Especially, we prove that generalized a-
Weyl’s theorem holds for T if T* is (p, k)-quasihyponormal.

2 Weyl’s Theorem.
I.H. Kim proved many interesting properties of (p, k)-qusihyponormal operators ([17],
[18]). The following (1) is due to [17], (2) and (3) are due to [20].
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Lemma 2.1. Let T € B(H) be (p, k)-quasihyponormal. Then the following assertions hold.
(1) Let the range R(T*) be not dense. Decompose

T — (7(;1 %) on H=I[R(T")]® N(T*"*)

where [R(T*)] is the closure of R(T*). Then Ty is p-hyponormal, T¥ = 0 and o(T) =
(2) The restriction T'|pm to an invariant subspace M of T is also (p, k)-quasihyponormal.
(3) Let A be an isolated point of o(T) and Ey be the Riesz idempotent for A of T. If
A #£ 0, then E\ is self-adjoint and ExXH = N(T — Xo) = N((T — Xo)*). If A = 0, then
ExH = N(TF).

Lemma 2.2. Let T be (p, k)-quasihyponormal. Then T has the single valued extension
property, i.e., if f(z) is analytic and (T — 2)f(z) = 0 on a some open set D C C, then
f(z)=0o0nD.

Proof. If R(T*) is dense, then T is p-hyponormal and T has the the single valued extension
property by [13, Theorem 1]. Hence we may assume R(T¥) is not dense. Hence we can

write
(TlO—Z TgTi Z) (28)
~(" @) -0

by Lemma 2.1. Since o(T3) = {0} and f2(z) is analytic on D, we have fa(z) = 0 on
D. Hence (Th — 2)f1(z) = 0 and so f1(2) = 0 on D by [13, Theorem 1] because T is
p-hyponormal by Lemma 2.1. O

Remark 2.3. We can prove that (p, k)-quasihyponormal operator has Bishop’s property
(8), similarly.

The following result is due to I.LH. Kim [17]. We show another proof.
Proposition 2.4. Weyl’s theorem holds for (p, k)-quasihyponormal operators.

Proof. Let T be (p, k)-quasihyponormal and A € o(T') \ ow (7). Then T — X is Weyl and
not invertible. If X is an interior point of ¢(T'), there exists an open set G such that
Ae G Co(T)\ow(T). Hence dim N(T — ) > 0 for all p € G and T does not have the
single valued extension property by [15, Theorem 9]. This is a contradiction. Hence A is
a boundary point of (T, and hence an isolated point of o(T") by [12, Theorem XI 6.8].
Thus \ € WQQ(T).

Let A € moo(T") and E) be the Riesz idempotent for A of T. Then 0 < dim N(T'—X) < oo,

T=TExXHa&T|I-E\H

and
o(T|ExH) ={A}, o(T|(I — Ex)H) = o(T) \ {A}.

We remark that T|E\H is (p, k)-quasihyponormal by Lemma 2.1.

If A # 0, then T|E\H = X by Lemma 2.1. Hence ExH C N(T — \) and E), is of finite
rank. Since (T — \)|(I — Ex)H is invertible, T — A = 0|ExH @ (T — N)|(I — Ex)H is Weyl.
Hence A € o(T) \ ow (T).
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If A =0, then (T|EyH)* = 0 by Lemma 2.1. Hence EgH C N(T*) and
dim EyH < dim N(T*) < kdim N(T) < oo

by [21, Lemma 3.3]. Then T|E\H is compact. Since T'|(I — Ep) is invertible, A € o(T) \
ow (T') by [12, Proposition XI 6.9]. O

3 Generalized a-Weyl’s theorem.

More generally, M. Berkani investigated B-Fredholm theory as follows (see [3, 5, 6, 7]).
An operator T is called B-Fredholm if there exists n € N such that R(T™) is closed and the
induced operator

Ty : R(T") 52 — Tw € R(T")

is Fredholm, i.e., R(T},)) = R(T™?) is closed, dim N (T},)) < oo and dim R(T™)/R(T},)) <
oo. Similarly, a B-Fredholm operator 7' is called B-Weyl if ind T}, = dim N(T},)) —
dim R(T™)/R(T},)) = 0. The following results are due to M. Berkani and M. Sarih [7].

Proposition 3.1. Let T € B(H).

(1) If R(T™) is closed and Tiy is Fredholm, then R(T™) is closed and Ty, is Fredholm
for every m > n. Moreover, ind Tj,) = ind Tj, (= ind T).

(2) T is B-Fredholm (B-Weyl) if and only if there exist T-invariant subspaces M and
N such that T =T|M & T|N where T|M is Fredholm (Weyl) and T|N is nilpotent.

The B-Weyl spectrum opgw (T') is defined by
opw(T)={AeC: T — Xisnot B-Weyl} C ow (T).
We say that generalized Weyl’s theorem holds for T if
o(T)\opw(T) = E(T)

where E(T) denotes the set of all isolated points of o(T") which are eigenvalues (no restriction
on multiplicity). Berkani and Koliha ([6]) proved that if generalized Weyl’s theorem holds
for T, then Weyl’s theorem for T. Recently, M. Berkani and A. Arroud [5] prove that
generalized Weyl’s theorem holds for hyponormal operators and one of the authors [19]
proved the same result holds for (p, k)-quasihyponormal operators.

Next result is due to B.P. Duggal and S.V. Djordjevi¢ [14].
Proposition 3.2. If T* is p-hyponormal, then Weyl’s theorem holds for T.
We extend above result as follows.
Theorem 3.3. If T* is (p, k)-quasihyponormal, then Weyl’s theorem holds for T .
Proof. [19, Theorem 2.6] implies that
o(T*)\opw(T") = E(T™).

It is obvious that
(o(T)\ opw(T))" = o(T) \ opw (T),

hence we have to prove
(E(T)" = E(T).
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Let A* € E(T*). Then A is an isolated point of o(T"). Let Fy« be the Riesz idempotent
for \* of T™*. If A* #£ 0, then F)- is self-adjoint,

{0} £ FoH = N((T — \)*) = N(T — \)

by Lemma 2.1. Hence A € E(T). If \* = 0, then T*|F, is (p, k)-quasihyponormal by
Lemma 2.1 and (T*|FyH)¥ = 0 by Lemma 2.1. Hence T**F, = 0. Let Ey = F§ be the
Riesz idempotent for 0 of T. Then T*Ey = (T**Fy)* = 0. Hence T|EyH is nilpotent. Thus
A=0¢e E(T).

Conversely, let A € E(T'). Then \* is an isolated point of o(T*). Let Fx« be the Riesz
idempotent for \* of T™. If XA # 0, then F)- is self-adjoint and

{0} £ FyH = N((T = \)*) = N(T — \)

by Lemma 2.1. Hence \* € E(T*). Let A = 0. Since T*|FoH is (p, k)-quasihyponormal
and o(T*|FyH) = {0}, we have (T*|FyH)* = 0 by Lemma 2.1. This implies that T*|FoH
is nilpotent. Thus A* =0 € E(T*). O

Next we investigate a-Weyl’s theorem (cf. [3]).
We define T' € SF, if R(T) is closed, dim N(T') < oo and ind 7" < 0. Let Tor- (T) =

{AeC|T-ANgSF } Cow(T). Let 0,(T) be the set of all approximate eigen values of
T and let 7§, (T") be the set of all isolated points A € o,(T") with 0 < dim N(T — \) < oc.
We say that a-Weyl’s theorem holds for T if

oa(T)\ OsF; (T) = mgo(T).

V. Rakocevié¢ [22, Corollary 2.5] proved that if a-Weyl’s theorem holds for 7', then Weyl’s
theorem holds for T.

Theorem 3.4. If T* is (p, k)-quasihyponormal, then a-Weyl’s theorem holds for T.

Proof. Since T* has the single valued extension property by Lemma 2.2, we have o(T) =
0q(T) and moo(T) = 74y (T) ([3, Corollary 2.45]).

Let A € 0,(T)\ Tsk; (T'). It X is an interior point of 04(7"), then there exists an open set
G such that A € G C 0,(T) \USF; (T'). Since T™ has the single valued extension property,
ind (T'— p)* < 0 for all u € C by [3, Corollary 3.19]. Let p € G. Then T'— pu € SF_
and ind (T — ) = 0. On the otherhand, R(T — u) is closed, T — p is not invertible and
0 < dim N(T — p) < co. Hence 0 < dim N((T — p)*) < oo and T* does not have a single
valued extension property by [15, Theorem 9]. This is a contradiction. Hence we may
assume that A is a boundary point of o(7'). Since T'— A € SF, A is an isolated point of
o(T) by [12, Theorem XI 6.8]. Thus A € moo(T") = w8y (T).

Conversely, let A € ©§y(T") = moo(T"). Then dim N(T') < oo and the conjugate number
A* of X is an isolated point of o(T*). Let F)- be the Riesz idempotent for A* of T*.

If A* £ 0, then F)- is self-adjoint and @

ExH=N{(T-XN*")=N(T -\
by Lemma 2.1. Since dim N(T — \) < oo, Fy« is compact. We decompose
(T—=N*"=0F\»-He& (T—-N|(I—-F\)H.
Then (T — A)*|(I — Fx~)H is invertible and
T-A=0FHo (T - M- Fx-)H.
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Hence R(T — X\) = (I — Fx~)H is closed and ind (T'— A) = 0. Thus A € 0,(T) \ Tsk; (7).
If A* =0, then
T**|FoH = (T*|FoH)" = 0

by Lemma 2.1. Since Ey = F{ is the Riesz idempotent for 0 of T and T*Ey = (T**Fy)* = 0,
we have EgH C N(T*). Then

dim EyH < dim N(T*) < kdim N(T) < oo
by [21, Lemma 3.3]. This implies Fy is compact. We decompose
T = T|EgH & T|(I — Eo)H.

Since T'|(I — Eo)H is invertible, R(T) = R(T|EyH) & (I — Ep)H is closed, N(T') C EoH
and ind T'=0. Thus 0 € 0,(T) \ Tsr: (T).

O

Next we investigate generalized a-Weyl’s theorem (cf. [3]).

We define T' € SBF if there exists n € N such that R(T™) is closed, T}, : R(T™)
x — Ta € R(T™) is upper semi-Fredholm (i.e., R(T},)) = R(T™*!) is closed, dim N (T},,))
dim N(T) N R(T™) < oo) and 0 > ind T, (= ind T) ([7]). We define TsBE; (T) = {A
C|T-AN¢gSBF,}C Tsk; (T'). Let E%(T) denote the set of all isolated points A € g4(T")
with 0 < dim N (T — X). We say that generalized a-Weyl’s theorem holds for 7" if

0u(T)\ Ogpp (T) = E*(T).

M. Berkani and J.J. Koliha [6] proved that if generalized a-Weyl’s theorem holds for T', then
a-Weyl’s theorem holds for T

Theorem 3.5. If T* is (p, k)-quasihyponormal, then generalized a-Weyl’s theorem holds
forT.

Proof. Since T* has the single valued extension property by Lemma 2.2, we have o(T) =
0a(T), moo(T) = wy(T) and E(T) = E%(T).
Let Ao € 0,(T) \ TsBr; (T). If Ao is an interior point of o,(T), then there exists an

open set G such that \g € G C 0,(T) \ TsBE; (T). Let A€ G. Then T'— X € SBF, i.e.,

there exists n € N such that R((T — \)") is closed, dim N (T}, —A) < oo and ind (T'— \) =
ind (T},) — A) < 0. Then there exists a positive number € such that if 0 < [\ — u| < & then
T — p is upper semi-Fredholm, ind (T'— p) =ind (T'— X) < 0 and pu € G by [7, Theorem
3.1]. Since T* has a single valued extension property, ind (T — u)* < 0 by [3, Corollary
3.19]. Hence ind (T'— p) = 0. If 0 = dim N(T — p), then T — p is invertible. This is a
contradiction. Hence 0 < dim N(T' — p) < o0, and 0 < dim N((T' — p)*) < oo. Then T*
does not have the single valued extension property by [15]. This is a contradiction.

Hence we may assume that Ao is a boundary point of o(T). Since T'— Ao € SBF,
T — X is topologically uniform descent by [7, Proposition 2.5], and A is an isolated point
of o(T) by [16, Corollary 4.9]. We decompose

T—Xo=(T—X)M& (T - )N

where (T — A\o)|N is nilpotent and (T — A\g)|M is semi-Fredholm by [7, Theorem 2.6]. If
N = {0}, then

Xo € 0a(T) \ 0 (T) = wo(T) = moo(T) C E(T) = B*(T)
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by Theorem 3.4. If N # {0}, then )¢ is an eigen-value of T|A as T|N is nilpotent. Hence
Xo € E(T) = E*(T). Thus 04(T)\ 05— (T) C E*(T).
The converse inclusion is clear because

EY(T) = E(T) C moo(T) = m50(T")
=0q(T)\ ISk (T) C oa(T)\ 9SBF; (1)

by Theorem 3.4.
O

Remark 3.6.

(1) If f(z) is an analytic function on o(T), then generalized a-Weyl’s theorem holds for
f(T). (The proof is similar to [8, Theorem 3.3]).

(2) Generalized a-Weyl’s theorem does not hold for (p, k)-quasihyponormal operators as
seen in [4, Example 2.13].
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