ON HIRATA SEPARABLE GALOIS EXTENSIONS

GEORGE SZETO AND LIANYONG XUE

Received December 9, 2008

ABSTRACT. Let B be a Hirata separable and Galois extension of B^G with Galois group G of order n invertible in B for some integer n, C the center of B, and $V_B(B^G)$ the commutator subring of B^G in B. It is shown that there exist subgroups K and N of G such that K is a normal subgroup of N and one of the following three cases holds: (i) $V_B(B^K)$ is a central Galois algebra over C with Galois group K, (ii) $V_B(B^K)$ is separable C-algebra with an automorphism group induced by and isomorphic with K, and (iii) B^K is a central algebra over $V_B(B^K)$ and a Hirata separable Galois extension of B^N with Galois group N/K. More characterizations for a central Galois algebra $V_B(B^K)$ are given.

1. INTRODUCTION

The Hirata separable extension of a ring is an important generalization of Azumaya algebras. The class of Hirata separable Galois extensions of a ring has been intensively investigated ([1], [7], [9]). The purpose of the present paper is to show a classification of a Hirata separable and Galois extension B of B^G with Galois group G of order n invertible in B for some integer n. We shall show that there exist subgroups K and N of G such that K is a normal subgroup of N and one of the following three cases holds: (i) $V_B(B^K)$ is a central Galois algebra over C with Galois group K, (ii) $V_B(B^K)$ is separable C-algebra with an automorphism group induced by and isomorphic with K, and $V_B(B^K)$ and B^K have the same center, and (iii) B^K is a central algebra over $V_B(B^K)$ and a Hirata separable Galois extension of B^N with Galois group N/K. Moreover, several equivalent conditions for a central Galois algebra $V_B(B^K)$ are given by using the rank function of a projective module on the spectrum of prime ideals of a commutative ring ([2], page 27). This paper was written under the support of a Caterpillar Fellowship at Bradley University. The authors would like to thank Caterpillar Inc. for the support.

2. A CLASSIFICATION

Let B be a ring with 1, A a subring of B with the same identity 1, and C the center of B. Following the definitions and notations in [8], we call B a separable extension of A if there exist $\{a_i, b_i \text{ in } B, i = 1, 2, ..., m \text{ for some integer } m\}$ such that $\sum a_i b_i = 1$, and $\sum ba_i \otimes b_i = \sum a_i \otimes b_i b$ for all b in B where \otimes is over A, and B is called an Azumaya algebra if B is a separable algebra over its center C. A ring B is called a Hirata separable extension of A if $B \otimes_A B$ is isomorphic to a direct summand of a finite direct sum of B as a B-bimodule. Let B be a finite automorphism group of B and B the set of elements in B fixed under each element in B. Then B is called a Galois extension of B with Galois

²⁰⁰⁰ Mathematics Subject Classification. 16S35, 16W20.

Key words and phrases. Separable extensions, Hirata separable extensions, Galois extensions, Hirata separable and Galois extensions.

group G if there exist elements $\{a_i, b_i \text{ in } B, i = 1, 2, ..., m\}$ for some integer m such that $\sum_{i=1}^{m} a_i g(b_i) = \delta_{1,g}$ for each $g \in G$. A Hirata separable Galois extension B of B^G with Galois group G means that B is a Hirata separable extension and a Galois extension of B^G with Galois group G. A central Galois algebra is a Galois extension over its center.

Throughout this paper, we assume that B is a Hirata separable Galois extension of B^G with Galois group G of order n invertible in B for some integer n, C the center of B, and $V_B(A)$ the commutator subring of A in B for a subring A of B with the same identity 1. In this section, we shall show a classification theorem for B beginning with an important fact on the commutator subring $V_B(B^G)$ of B^G in B due to K. Sugano ([7], Theorem 6).

Lemma 2.1. ([7], Theorem 6)

Let B be a Hirata separable Galois extension of B^G with Galois group G of order n invertible in B and $K = \{g \in G \mid g(a) = a \text{ for each } a \in V_B(B^G)\}$. Then B is a Hirata separable Galois extension of B^K with Galois group K and B^K is a Hirata separable Galois extension of B^G with Galois group G/K.

By Lemma 2.1, we can show that there exists a normal series of subgroups of G leading to a classification of a Hirata separable Galois extension.

Theorem 2.2.

Let B be a Hirata separable Galois extension of B^G with Galois group G of order n invertible in B. Then there exists a chain of subgroups of G,

$$\langle 1 \rangle \subset G_m \subset \cdots \subset G_i \cdots \subset G_2 \subset G_1 \subset G_0 = G,$$

such that for each i = 1, 2, ..., m, G_i is a normal subgroup of G_{i-1} , B is a Hirata separable Galois extension of B^{G_i} with Galois group G_i , B^{G_i} is a Hirata separable Galois extension of $B^{G_{i-1}}$ with Galois group G_{i-1}/G_i , and $\{g \in G_m \mid g(a) = a \text{ for each } a \in V_B(B^{G_m})\} = G_m$ or $\langle 1 \rangle$.

Proof. Let $G_0 = G$. If $\{g \in G_0 \mid g(a) = a \text{ for each } a \in V_B(B^{G_0})\} = G_0 \text{ or } \langle 1 \rangle$, then m = 0; and we are done. Otherwise, let $G_1 = \{g \in G_0 \mid g(a) = a \text{ for each } a \in V_B(B^{G_0})\}$, that is, G_1 is a proper subgroup of G. Then, since the order n of G_0 is invertible in B, B is a Hirata separable Galois extension of B^{G_1} with Galois group G_1 , and B^{G_1} is a Hirata separable Galois extension of B^{G_0} with Galois group G_0/G_1 by Lemma 2.1. Similarly, by repeating the above argument for the Hirata separable Galois extension B of B^{G_1} with Galois group G_1 , we have a normal subgroup G_2 of G_1 where $G_2 = \{g \in G \mid g(a) = a \text{ for each } a \in V_B(B^{G_1})\}$. Since G is a finite group, the above process terminates in m-steps for some integer m. Thus we have a sequence of subgroups of G,

$$\langle 1 \rangle \subset G_m \subset \cdots \subset G_i \cdots \subset G_2 \subset G_1 \subset G_0 = G,$$

such that for each $i=1,2,\ldots,m,$ G_i is a normal subgroup of $G_{i-1},$ B is a Hirata separable Galois extension of B^{G_i} with Galois group G_i , B^{G_i} is a Hirata separable Galois extension of $B^{G_{i-1}}$ with Galois group G_{i-1}/G_i , and $\{g \in G_m \mid g(a) = a \text{ for each } a \in V_B(B^{G_m})\} = G_m$ or $\langle 1 \rangle$.

Next is a classification of a Hirata separable Galois extension by using Theorem 2.2.

Theorem 2.3.

Let B be a Hirata separable Galois extension of B^G with Galois group G of order n invertible in B. Then there exist subgroups K and N of G such that K is a normal subgroup of N and one of the following three cases holds: (i) $V_B(B^K)$ is a central Galois algebra over C with Galois group K; (ii) $V_B(B^K)$ is separable C-algebra with an automorphism group induced by and isomorphic with K, and $V_B(B^K)$ and B^K have the same center; and (iii) B^K is a central algebra over $V_B(B^K)$ (i.e., the center of B^K is $V_B(B^K)$) and a Hirata separable Galois extension of B^N with Galois group N/K.

Proof. By Theorem 2.2, there exists a sequence of subgroups of G,

$$\langle 1 \rangle \subset G_m \subset \cdots \subset G_i \cdots \subset G_2 \subset G_1 \subset G_0 = G,$$

such that for each $i=1,2,\ldots,m,$ G_i is a normal subgroup of $G_{i-1},$ B is a Hirata separable Galois extension of B^{G_i} with Galois group $G_i,$ B^{G_i} is a Hirata separable Galois extension of $B^{G_{i-1}}$ with Galois group G_{i-1}/G_i , and $\{g\in G_m\,|\,g(a)=a \text{ for each } a\in V_B(B^{G_m})\}=G_m$ or $\langle 1\rangle$. Let $K=G_m$ and $N=G_{m-1}$ where $m\geq 1$. Then K is a normal subgroup of N. By Theorem 2.2, $\{g\in G_m\,|\,g(a)=a \text{ for each } a\in V_B(B^{G_m})\}=\langle 1\rangle$ or G_m . When it is $\langle 1\rangle$ we have two cases: (a) $B=B^K\cdot V_B(B^K)$ and (b) $B\supset B^K\cdot V_B(B^K)$. For case (a), $V_B(B^K)$ is a central Galois algebra over C with Galois group K ([7], Theorem 6(3)), so (i) holds. For case (b), since $\{g\in K\,|\,g(a)=a \text{ for each } a\in V_B(B^K)\}=\langle 1\rangle$, the restriction of K to $V_B(B^K)$ is isomorphic to K, Moreover, since the order of K is a unit in K, K is separable K-algebra ([7], Proposition 4(3)). Also since K is a unit in K in K

3. EQUIVALENT CONDITIONS

Let B be an Azumaya C-algebra with a finite automorphism group G and $J_g = \{a \in B \mid ax = g(x)a$ for each $x \in B\}$ for a $g \in G$. It is well known that J_g is a rank 1 projective C-module such that $J_g \cdot J_h = J_{gh} \cong J_g \otimes_C J_h$ for all $g,h \in G$ ([6], Lemma 5), and that B is a central Galois algebra over C with Galois group G if and only if $B = \bigoplus \sum_{g \in G} J_g$ ([3], Theorem 1 and [5], Theorem 1). These properties are generalized to a Hirata separable Galois extension B of B^G with Galois group G; that is, $\operatorname{rank}_C(J_g) = 1$ where C is the center of B, $J_g \cdot J_h = J_{gh} \cong J_g \otimes_C J_h$ for all $g,h \in G$, and $V_B(B^G)$ is a central Galois algebra with Galois group G/K if and only if the center of $V_B(B^G)$ is $\bigoplus \sum_{g \in K} J_g$ where $K = \{g \in G \mid g(a) = a \text{ for each } a \in V_B(B^G)\}$ ([7], Theorem 6(3)). In this section, we shall give a different proof for the above equivalent condition in [7] and then derive more equivalent conditions for a central Galois algebra $V_B(B^G)$ with Galois group G/K in terms of the rank of a projective module over a commutative ring. We begin with the equivalent condition for a central Galois algebra $V_B(B^G)$ with a different proof from Theorem 6 in [7].

Proposition 3.1.

Let B be a Hirata separable Galois extension of B^G with Galois group G of order n invertible in B and $K = \{g \in G \mid g(a) = a \text{ for each } a \in V_B(B^G)\}$. Then, $V_B(B^G)$ is a central Galois algebra with Galois group G/K if and only if the center of $V_B(B^G)$ is $\bigoplus \sum_{g \in K} J_g$.

Proof. (\iff) Let $J_g' = \{a \in V_B(B^G) \mid ax = g(x)a \text{ for each } x \in V_B(B^G)\}$ for a $g \in G$ and C' the center of $V_B(B^G)$. Noting that $V_B(B^G) = \bigoplus \sum_{g \in G} J_g$ ([5], Proposition 1), we have that $J_g \subseteq J_g'$ for each $g \in G$. We claim that $V_B(B^G) = \bigoplus \sum_{\overline{g} \in G/K} J_g'$. In fact, since for each $h \in K$, $J'_{gh} = \{a \in V_B(B^G) \mid ax = gh(x)a \text{ for each } x \in V_B(B^G)\} = \{a \in V_B(B^G) \mid ax = gh(x)a \text{ for each } x \in V_B(B^G)\}$ $V_B(B^G) \mid ax = g(x)a$ for each $x \in V_B(B^G) \} = J'_g$, $J_{gh} \subseteq J'_{gh} = J'_g$ for each $h \in K$. Hence $\bigoplus \sum_{h \in K} J_{gh} \subseteq J'_g$. By hypothesis, $C' = \bigoplus \sum_{g \in K} J_g$, so $\bigoplus \sum_{h \in K} J_{gh} \cong \bigoplus \sum_{h \in K} (J_g \otimes_C J_h) \cong J_g \otimes_C (\bigoplus \sum_{h \in K} J_g) \cong J_g \otimes_C C'$ which is a rank 1 projective C'-module (for J_g is a rank 1 projective C-module). On the other hand, since the order of G is a unit in G, G-constant Gis separable C-algebra ([7], Proposition 4(3)). Hence $V_B(B^G)$ is Azumaya C'-algebra. Thus J'_q is a rank 1 projective C'-module for each $g \in G$. Therefore $V_B(B^G) = \bigoplus \sum_{g \in G} J_g =$ $\oplus \sum_{\overline{g} \in G/K} \sum_{h \in K} J_{gh} \subseteq \oplus \sum_{\overline{g} \in G/K} J'_g \subseteq V_B(B^G)$; and so $V_B(B^G) = \oplus \sum_{\overline{g} \in G/K} J'_g$. Hence $V_B(B^G)$ is a central Galois algebra with Galois group G/K ([3], Theorem 1).

 (\Longrightarrow) Since $V_B(B^G)$ is a central Galois algebra over C' with Galois group G/K, $\operatorname{rank}_{C'}(V_B(B^G)) = |G/K|$, the order of G/K. By hypothesis, B is a Hirata separable Galois extension of B^G with Galois group G. Hence each J_g is a projective C-module of rank 1 ([7], Theorem 2) and $\operatorname{rank}_C(V_B(B^G)) = |G|$, the order of G ([7], Proposition 4(2)). Noting that $V_B(B^G) = \bigoplus \sum_{g \in G} J_g$, we conclude that $\operatorname{rank}_C(\bigoplus \sum_{h \in K} J_h) = |K|$. On the other hand, since $|G| = \operatorname{rank}_C(V_B(B^G)) = \operatorname{rank}_{C'}(V_B(B^G)) \cdot \operatorname{rank}_C(C') = |G/K| \cdot \operatorname{rank}_C(C')$, we have that $\operatorname{rank}_C(C') = |K|$. Thus $\operatorname{rank}_C(\bigoplus \sum_{h \in K} J_h) = |K| = \operatorname{rank}_C(C')$. Noting that $\bigoplus \sum_{h \in K} J_h \subseteq J'_1 = C'$ as a direct summand, we conclude that $C' = \bigoplus \sum_{h \in K} J_h$.

From the proof of Proposition 3.1, we derive two equivalent conditions for a central Galois algebra $V_B(B^G)$ in terms of the rank of a projective module over a commutative ring.

Theorem 3.2.

By keeping the notations of Proposition 3.1, the following statements are equivalent:

- (1) $V_B(B^G)$ is a central Galois algebra over C' with Galois group G/K;
- (2) $J'_g = \bigoplus \sum_{h \in K} J_{gh}$ for each $g \in G$; and (3) $rank_C(C') = |K|$, the order of K.

Proof. (1) \Longrightarrow (2) By the proof of Proposition 3.1,

$$V_B(B^G) = \bigoplus \sum_{\overline{g} \in G/K} \sum_{h \in K} J_{gh} \subseteq \bigoplus \sum_{\overline{g} \in G/K} J'_g \subseteq V_B(B^G)$$

such that $\bigoplus \sum_{h \in K} J_{gh} \subseteq J'_g$ for each $g \in G$. Hence $J'_g = \bigoplus \sum_{h \in K} J_{gh}$ for each $g \in G$.

- $(2) \Longrightarrow (1)$ Taking g = 1, we have $C' = J'_1 = \bigoplus \sum_{h \in K} J_h$. Hence, by Proposition 3.1, $V_B(B^G)$ is a central Galois algebra over C' with Galois group G/K.
 - $(1) \Longrightarrow (3)$ By the proof of the necessity of Proposition 3.1, rank $_C(C') = |K|$.
- (3) \Longrightarrow (1) By the proof of the necessity of Proposition 3.1 again, that $\operatorname{rank}_{C}(C') = |K|$ implies that $C' = \bigoplus \sum_{h \in K} J_h$. Thus $V_B(B^G)$ is a central Galois algebra over C' with Galois group G/K by Proposition 3.1.

We conclude the present paper with three examples of a Hirata separable Galois extension of B^G with Galois group G of order n invertible in B such that K as given in Theorem 2.3 is $\langle 1 \rangle$, G, and a proper subgroup of G, respectively.

Example 1.

Let B = R[i, j, k], the real quaternion algebra over R and $G = \{1, g_i, g_j, g_k\}$ where $g_i(x) = ixi^{-1}$, $g_j(x) = jxj^{-1}$, and $g_k(x) = kxk^{-1}$ for all x in B. Then,

- (1) B is a central Galois algebra over R with a G-Galois system: $\{a_1=1, a_2=i, a_3=j, a_4=k, b_1=\frac{1}{4}, b_2=-\frac{1}{4}i, b_3=-\frac{1}{4}j, b_4=-\frac{1}{4}k, \};$
 - (2) $B^G = R$
 - (3) B is a Hirata separable extension of R because B is an Azumaya R-algebra;
- (4) By (1)-(3), B is a Hirata separable Galois extension of B^G with Galois group G of order 4 invertible in B;
 - (5) Since $V_B(B^G) = V_B(R) = B$, $K = \langle 1 \rangle$ as given in Theorem 2.3.

Example 2.

Let B = R[i, j, k], the real quaternion algebra over R and $G = \{1, g_i\}$ where $g_i(x) = ixi^{-1}$ for all x in B. Then, (1) B is a Galois extension of R[i] with Galois group G;

- (2) B is a Hirata separable extension of R[i] by Theorem 1 in [4]. Thus, B is a Hirata separable Galois extension of B^G with Galois group G of order 2 invertible in B;
 - (3) $V_B(B^G) = V_B(R[i]) = R[i] = B^G$, so K = G as given in Theorem 2.3.

Example 3.

Let $F \subset L$ be a Galois field extension with a Galois group G such that G has a proper center Z, B = L * G, the skew group ring of G over L, and $\overline{G} = \{\overline{g} \mid g \in G\}$, the inner automorphism group of B induced by the elements of G. Then,

- (1) B is a Galois extension of $B^{\overline{G}}$ with Galois group \overline{G} isomorphic with G (for L is a Galois extension of F with Galois group G);
 - (2) B is a Hirata separable extension of $B^{\overline{G}}$ ([7], Corollary 3);
- (3) $V_B(B^{\overline{G}}) = \bigoplus \sum_{\overline{g} \in \overline{G}} J_{\overline{g}} = \bigoplus \sum_{\overline{g} \in \overline{G}} C\overline{g}$ ([5], Proposition 1) where C is the center of B;
 - (4) $(\overline{G})_1 = \overline{Z}$, a proper subgroup of \overline{G} ;
- (5) $(\overline{G})_2 = (\overline{G})_1$ (for $V_B(B^{\overline{Z}}) = \bigoplus \sum_{\overline{g} \in \overline{Z}} C_{\overline{g}}$). Thus $K = (\overline{G})_1 = \overline{Z}$ as given in Theorem 2.3.

References

- [1] R. Alfaro and G. Szeto, The Centralizer on *H*-Separable Skew Group Rings, Rings, Extension and Cohomology, Vol.159, Marcel Dekker, Inc. New York, Basel, Hong Kong, 1994.
- [2] F.R. DeMeyer and E. Ingraham, Separable Algebras over Commutative Rings, Lecture Notes in Mathematics, Volume 181, Springer Verlag, Berlin, Heidelberg, New York, 1971.
- [3] M. Harada, Supplementary Results on Galois Extension, Osaka J. Math., 2 (1965), 343-350.
- [4] S. Ikehata, Note on Azumaya Algebras and H-Separable Extensions, Math. J. Okayama Univ., 23 (1981), 17-18.
- [5] T. Kanzaki, On Galois Algebra over a Commutative Ring, Osaka J. Math. 2 (1965), 309-317.
- [6] A. Rosenberg and D. Zelinsky, Automorphisms of Separable Algebras, Pacific J. Math., 11 (1961), 1109-1117.
- [7] K. Sugano, On a Special Type of Galois Extensions, Hokkaido J. Math. 9 (1980), 123-128.

- [8] G. Szeto and L. Xue, The Structure of Galois Algebras. *Journal of Algebra* 237(1) (2001), 238-246.
- [9] G. Szeto and L. Xue, On Galois Extensions with an Inner Galois Group, *Recent Developments in Algebra and Related Area*, ALM 8, 239-245, Higher Education Press and International Press Beijing-Boston, 2008.

DEPARTMENT OF MATHEMATICS, BRADLEY UNIVERSITY, PEORIA, ILLINOIS 61625 E-mail: szeto@bradley.edu and lxue@bradley.edu