A FIXED POINT THEOREM FOR SEMIGROUPS ON METRIC SPACES WITH UNIFORM NORMAL STRUCTURE

Ahmed. H. Soliman

Received November 14, 2008; Revised January 26, 2009

ABSTRACT. In this work, we define new generalized uniformly Lipschitzian type conditions for a one-parameter family of selfmappings which is an asymptotically regular semigroup in a complete bounded metric space. Some fixed point results for this semigroup are presented.

1 Introduction In 1989, Khamsi [5] defined normal and uniform normal structure for metric spaces and proved that if (X, d) is a complete bounded metric space with uniform normal structure, then it has the fixed point property for nonexpansive mappings and a kind of intersection property which extends a results of Maluta [10] to metric spaces. In 1995, T.-C. Lim and Hong-Kun Xu [9] proved a fixed point theorem for uniformly Lipschitian mappings in metric spaces with both property (P) and uniform normal structure which extends the result of Khamsi [5]. This is the metric space version of Casini and Maluta's theorem [1]. Recently, Jen-Chih Yao and Lu-Chuan Zeng [11] established a fixed point theorem for an asymptotically regular semigroup of uniformly Lipschitian mappings with property (*) in a complete bounded metric space with uniform normal structure which extends the results T.-C. Lim and Hong-Kun Xu [9].

In this paper we shall define new notions of generalized uniformly Lipschitzian mappings and establish a fixed point theorem for asymptotically regular generalized uniformly Lipschitzian semigroups in a complete bounded metric space with property (*) and uniform normal structure extending the fixed point theorem of J.-C. Yao and L.-C. Zeng [11].

2 Preliminaries Throughout of this paper, X or (X, d) will denote a metric space.

Definition 2.1 [1]. A mapping $T: X \to X$ is said to be a Lipschitzian mapping if each integer $n \ge 1$ there exists a constant $k_n > 0$ such that

(1)
$$d(T^n x, T^n y) \le k_n d(x, y) \quad \forall \ x, y \in X.$$

If $k_n = k \forall n \ge 1$, then T is called uniformly Lipschitzian and if $k_n = 1 \forall n \ge 1$, then T is called nonexpansive.

Definition 2.2. A mapping $T: X \to X$ is said to be a generalized Lipschitzian mapping if each integer $n \ge 1$ there exists a constant $k_n > 0$ such that

(2)
$$d(T^n x, T^n y) \le k_n \max\{d(x, y), \frac{1}{2}d(x, T^n x), \frac{1}{2}d(y, T^n y)\} \quad \forall \ x, y \in X.$$

If $k_n = k \forall n \ge 1$, then T is called generalized uniformly Lipschitzian.

²⁰⁰⁰ Mathematics Subject Classification. Primary 54H25, Secondary 47H10.

Key words and phrases. Asymptotically regular semigroup, fixed point, uniform normal structure, convexity structure.

GERHARD PREUSS

Remark 2.1. Every uniformly Lipschitzian mapping is generalized uniformly Lipschitzian but the converse is not true.

In the following we give an example to show that there exist a generalized Lipschitzian mapping T which is not Lipschitzian.

Example 2.1. Let $X = \{a, b, c\}$ and $d: X \times X \to [0, \infty)$ defined by $d(a, c) = d(c, a) = \frac{1}{2}$, d(a, b) = d(b, a) = d(b, c) = d(c, b) = 2 and $d(x, x) = 0 \forall x \in X$. Then (X, d) is bounded metric space. Now define $T: X \to X$ as follows Tb = Tc = b, Ta = c. If k = 2, then T is generalized Lipschitzian mapping but not Lipschitzian mapping because $d(Tc, Ta) \not\leq 2 d(c, a)$.

Definition 2.3 [4]. A mapping $T: X \to X$ is called asymptotically regular, if

(3)
$$\lim_{n \to \infty} d(T^{n+1}x, T^n y) = 0 \quad \forall \ x, y \in X.$$

Let G be a subsemigroup of $[0,\infty)$ with addition " + " such that

$$t-h \in G \ \forall \ t,h \in G \ with \ t \geq h.$$

This condition is satisfied if $G = [0, \infty)$ or $G = Z^+$, the set of nonnegative integers. Let $\Im = \{T(t) : t \in G\}$ be a family of selfmappings on X. Then \Im is called a (one-parameter) semigroup on X if the following conditions are satisfied:

(i) $T(0)x = x \ \forall \ x \in X;$

(ii) $T(s+t)x = T(s)(T(t)x) \forall s, t \in G \text{ and } x \in X;$

(*iii*) $\forall x \in X$, a mapping $t \to T(t)x$ from G into X is continuous when G has the relative topology of $[0, \infty)$;

(*iv*) for each $t \in G$, $T(t) : X \to X$ is continuous.

A semigroup $\Im=\{T(t):t\in G\}$ on X is said to be asymptotically regular at a point $x\in X$ if

$$\lim_{t\to\infty} d(T(t+h)x,T(t)x) = 0 \quad \forall \ h\in \ G.$$

If \Im is asymptotically regular at each $x \in X$, then \Im is called an asymptotically regular semigroup on X.

Definition 2.4. A semigroup $\Im = \{T(t) : t \in G\}$ on X is called a generalized uniformly Lipschitzian semigroup if

$$\sup\{k(t): t \in G\} = k < \infty,$$

where

$$k(t) = \sup\{\frac{d(T(t)x, T(t)y)}{\max\{d(x, y), \frac{1}{2}d(x, T(t)x), \frac{1}{2}d(y, T(t)y)\} \neq 0} : x, y \in X\}.$$

Definition 2.5. The simplest generalized uniformly Lipschitzian semigroup is a semigroup of iterates of a mapping $T: X \to X$ with

$$\sup\{k_n : n \in N\} = k < \infty,$$

where

$$k_n = \sup\{\frac{d(T^n x, T^n y)}{\max\{d(x, y), \frac{1}{2}d(x, T^n x), \frac{1}{2}d(y, T^n y)\} \neq 0} : x, y \in X\}.$$

In a metric space (X, d) let F denote a nonempty family of subsets of X. Following Khamsi [5], we say that F defines a convexity structure on X if F is stable under intersection. We say that F has *Property* (R) if any decreasing sequence $\{C_n\}$ of closed bounded nonempty subsets of X with $C_n \in F$ has a nonvoid intersection. Recall that a subset of Xis said to be admissible [2] if it is an intersection of closed balls. We denote by A(X) the family of all admissible subsets of X. It is obvious that A(X) defines a convexity structure on X. In this paper any other convexity structure F on X is always assumed to contain A(X).

Let M be a bounded subset of X. Following Lim and Xu [9], we shall adopt the following notations:

B(x,r) is the closed ball centered at x with radius r, $r(x,M) = \sup\{d(x,y) : y \in M\} \text{ for } x \in X,$ $\delta(M) = \sup\{r(x,M) : x \in M\},$ $R(M) = \inf\{r(x,M) : x \in M\}.$ set A of X we define the admissible bull of A denotes

For a bounded subset A of X, we define the admissible hull of A, denoted by ad(A), as the intersection of all those admissible subsets of X which contain A, i.e., $ad(A) = \bigcap \{B : A \subseteq B \subseteq X \text{ with } B \text{ admissible } \}$

Proposition 2.1 [9]. For a point $x \in X$ and a bounded subset A of X, we have

r(x, ad(A)) = r(x, A),

Definition 2.6 [5]. A metric space (X, d) is said to have normal (resp. uniform normal) structure if there exists a convexity structure F on X such that $R(A) < \delta(A)$ (resp. $R(A) \le c.\delta(A)$ for some constant $c \in (0, 1)$) for all $A \in F$ which is bounded and consists of more than one point. In this case F is said to be normal (resp. uniformly normal) in X.

We define the normal structure coefficient N(X) of X (with respect to a given convexity structure F) as the number

$$\sup\left\{\frac{R(A)}{\delta(A)}\right\}.$$

where the supremum is taken over all bounded $A \in F$ with $\delta(A) > 0$. X then has uniform normal structure if and only if $\overline{N}(X) < 1$.

Khamsi proved the following result that will be very useful in the proof of our main theorem.

Proposition 2.2 [5]. Let X be a complete bounded metric space and F be a convexity structure of X with uniform normal structure. Then F has the property (R).

Definition 2.7 [11]. Let (X, d) be a metric space and $\Im = \{T(t) : t \in G\}$ be a semigroup on X. Let us write the set

$$w(\infty) = \{\{t_n\} : \{t_n\} \subset G \text{ and } t_n \to \infty\}$$

Definition 2.8 [11]. Let (X, d) be a complete bounded metric space and $\mathfrak{F} = \{T(t) : t \in G\}$ be a semigroup on X. Then \mathfrak{F} has property (*) if for each $x \in X$ and each $\{t_n\} \in w(\infty)$, the following conditions are satisfied:

(a) the sequence $\{T(t_n)x\}$ is bounded;

(b) for any sequence $\{z_n\}$ in $ad\{T(t_n)x : n \ge 1\}$ there exists some $z \in \bigcap_{n=1}^{\infty} ad\{z_j : j \ge n\}$ such that

 $\limsup_{n \to \infty} d(z, T(t_n)x) \le \limsup_{j \to \infty} \limsup_{n \to \infty} d(z_j, T(t_n)x).$

GERHARD PREUSS

Jen-Chih Yao and Lu-Chuan Zeng [11] proved the following result that will be used in the proof of our result.

Lemma 1.1. Let (X, d) be a complete bounded metric space with uniform normal structure and $\Im = \{T(t) : t \in G\}$ be a semigroup on X with property (*). Then for each $x \in X$, each $\{t_n\} \in w(\infty)$ and for any constant $\tilde{N}(X) < \bar{c}$, the normal structure coefficient with respect to the given convexity structure F, there exists some $z \in \bigcap_{n=1}^{\infty} ad\{z_j : j \ge n\}$ satisfying the properties:

- (I) $\limsup_{n \to \infty} d(z, T(t_n)x) \le \bar{c}.A(\{T(t_n)x\}),$
- where $A({T(t_n)x}) = \limsup_{n \to \infty} d(T(t_i)x, T(t_j)x) : i, j \ge n;$ (II) $d(z, y) \le \limsup_{n \to \infty} d(T(t_n)x, y)$ for all $y \in X$.

3 The main theorem Theorem 3.1. Let (X, d) be a complete bounded metric space with uniform normal structure and let $\Im = \{T(t) : t \in G\}$ be an asymptotically regular and generalized uniformly Lipschitzian semigroup on X with $\tilde{k} < \frac{1}{\sqrt{\tilde{N}(X)}}$ and satisfying property (*).

Then there exist some $z \in X$ such that T(t)z = z for all $t \in G$.

Proof. Choose a constant \bar{c} such that $\tilde{N}(X) < \bar{c} < 1$ and $\tilde{k} < \frac{1}{\sqrt{\bar{c}}}$. We can select a sequence $\{t_n\} \in w(\infty)$ such that $\{t_{n+1} - t_n\} \in w(\infty)$ and $\lim_{n \to \infty} k(t_n) = \tilde{k}$, where $\tilde{k} > 0$.

Observe that

$$\{d(T(t_j)x, T(t_i)x): i, j \ge n\} = \{d(T(t_j)x, T(t_i)x): j > i \ge n\} \cup \{0\}$$

for each $n \in N$ and $x \in X$,

Now fix an $x_0 \in X$. Then by Lemma 1.1, we can inductively construct a sequence $\{x_l\}_{l=1}^{\infty} \subset X$ such that

 $x_{l+1} \in \bigcap_{n=1}^{\infty} \operatorname{ad}\{T(t_i)x_l : i \ge n\}; \text{ for each integer } l \ge 0,$

(III) $\limsup_{n \to \infty} d(T(t_n)x_l, x_{l+1}) \le \bar{c}.A(\{T(t_n)x_l\}),$

where $A({T(t_n)x_l}) = \limsup_{n \to \infty} \{d(T(t_i)x_l, T(t_j)x_l) : i, j \ge n\};$

(IV) $d(x_{l+1}, y) \leq \limsup_{n \to \infty} d(T(t_n)x_l, y)$ for all $y \in X$.

Let

$$D_l = \limsup_{n \to \infty} d(x_{l+1}, T(t_n)x_l) \ \forall \ l \ge 0 \ and \quad h = \bar{c}.\tilde{k} < 1.$$

Observe that for each $i > j \ge 1$, using (IV) and the asymptotic regularity of \Im on X, we have

$$\begin{aligned} d(x_{l}, T(t_{i} - t_{j})x_{l}) &\leq \limsup_{n \to \infty} d(x_{l}, T(t_{n} + t_{i} - t_{j})x_{l-1}) \\ &\leq \limsup_{n \to \infty} d(x_{l}, T(t_{n})x_{l-1}) + \limsup_{n \to \infty} d(T(t_{n})x_{l-1}, T(t_{n} + t_{i} - t_{j})x_{l-1}) \\ (4) &\leq D_{l-1}, \end{aligned}$$

$$\begin{aligned} d(x_l, T(t_j)x_l) &\leq \limsup_{n \to \infty} d(x_l, T(t_n + t_j)x_{l-1}) \\ (5) &\leq \limsup_{n \to \infty} d(x_l, T(t_n)x_{l-1}) + \limsup_{n \to \infty} d(T(t_n)x_{l-1}, T(t_n + t_j)x_{l-1}) \leq D_{l-1}, \end{aligned}$$

$$d(T(t_{i} - t_{j})x_{l}, T(t_{i})x_{l}) \leq \limsup_{n \to \infty} d(T(t_{n} + t_{i} - t_{j})x_{l-1}, T(t_{i})x_{l})$$

$$\leq \limsup_{n \to \infty} d(T(t_{n} + t_{i} - t_{j})x_{l-1}, T(t_{n})x_{l-1}) + \limsup_{n \to \infty} d(T(t_{n})x_{l-1}, x_{l})$$

(6)
$$+ d(x_{l}, T(t_{i})x_{l}) \leq 2D_{l-1},$$

$$d(T(t_i)x_l, T(t_j)x_l) = d(T(t_j)x_l, T(t_j)T(t_i - t_j)x_l)$$
(7)
$$\leq k(t_j) \max\{d(x_l, T(t_i - t_j)x_l), \frac{1}{2}d(x_l, T(t_j)x_l), \frac{1}{2}d(T(t_i - t_j)x_l, T(t_i)x_l)\}$$

Substituting from (4),(5) and (6) in (7) we get

$$d(T(t_i)x_l, T(t_j)x_l) \le k(t_j) \max\{D_{l-1}, \frac{1}{2}D_{l-1}, D_{l-1}\} = k(t_j)D_{l-1},$$

which implies for each $n \ge 1$,

(8)

$$\sup\{d(T(t_i)x_l, T(t_j)x_l) : i, j \ge n\} = \sup\{d(T(t_i)x_l, T(t_j)x_l) : i > j \ge n\}$$

$$\leq \sup\{k(t_j)D_{l-1} : i > j \ge n\}$$

$$\leq D_{l-1} \cdot \sup\{k(t_j) : j \ge n\}.$$

Hence by using (III) and (8), we have

$$D_{l} = \limsup_{n \to \infty} d(x_{l+1}, T(t_{n})x_{l}) \leq \overline{c}A(\{T(t_{n})x_{l}\}) \leq \overline{c}\limsup_{n \to \infty} \{d(T(t_{i})x_{l}, T(t_{j})x_{l}) : i, j \geq n\}$$

$$\leq \overline{c}.D_{l-1}.\limsup_{n \to \infty} k(t_{n})$$

$$\leq \overline{c}.\lim_{n \to \infty} k(t_{n}).D_{l-1} = \overline{c}.\widetilde{k}.D_{l-1} = hD_{l-1} \leq h^{2}D_{l-2} \leq \dots$$

$$\leq h^{l}D_{0}.$$
(9)

Hence by the asymptotic regularity of \Im on X, we have for each integer $n \ge 1$,

$$d(x_{l+1}, x_l) \leq \limsup_{n \to \infty} d(T(t_n) x_l, x_l)$$

$$\leq \limsup_{n \to \infty} \limsup_{m \to \infty} d(x_l, T(t_m + t_n) x_{l-1})$$

$$\leq \limsup_{m \to \infty} d(x_l, T(t_m) x_{l-1}) + \limsup_{n \to \infty} \limsup_{m \to \infty} d(T(t_m) x_{l-1}, T(t_m + t_n) x_{l-1})$$

$$\leq D_{l-1}.$$

It follows from (9) that

$$d(x_{l+1}, x_l) \le D_{l-1} \le h^{l-1} D_0.$$

Thus, we have $\sum_{l=0}^{\infty} d(x_{l+1}, x_l) \leq D_0 \sum_{l=0}^{\infty} h^{l-1} < \infty$. Consequently $\{x_l\}$ is Cauchy and, hence, convergent as X is complete. Let $z = \lim_{l \to \infty} x_l$. Then we have

$$\lim_{n \to \infty} \sup d(z, T(t_n)z) = \lim_{l \to \infty} \limsup_{n \to \infty} d(x_l, T(t_n)x_l)$$
$$\leq \lim_{l \to \infty} D_{l-1} \leq \lim_{l \to \infty} h^{l-1}D_0 = 0,$$

i.e., $\lim_{n\to\infty} d(z,T(t_n)z)=0.$ Hence for each $s\in G,$ we deduce

$$d(z,T(s)z) = \lim_{l \to \infty} d(x_l,T(s)x_l) \le \lim_{l \to \infty} \limsup_{n \to \infty} d(x_l,T(t_n+s)x_{l-l})$$

$$\le \lim_{l \to \infty} \limsup_{n \to \infty} d(x_l,T(t_n)x_{l-l}) + \lim_{l \to \infty} \sup_{n \to \infty} d(T(t_n)x_{l-1},T(t_n+s)x_{l-l})$$

$$\le \lim_{l \to \infty} D_{l-1} \le \lim_{l \to \infty} h^{l-1}D_0 = 0.$$

Then we have d(z, T(s)z) = 0, i.e., T(s)z = z for each $s \in G$.

From Remark 2.1 and Theorem 3.1, we immediately obtain the following results

Corollary 3.2 [11]. Let (X, d) be a complete bounded metric space with uniform normal structure and let $\Im = \{T(t) : t \in G\}$ be an asymptotically regular semigroup on X with property (*) and satisfying

$$(\liminf_{t\to\infty} k(t)).(\limsup_{t\to\infty} k(t)) < \bar{N}(X)^{-\frac{1}{2}}.$$

Then there exist some $z \in X$ such that T(t)z = z for all $t \in G$.

Remark 3.2. It will be interesting to establish Theorem 3.1 for representative $\Im = \{T(s) : s \in S\}$ of a left amenable S as a complete bounded metric space with uniform normal structure as in Holmes and A. Lau [3], Lau and Takahashi [8] and Lau [7].

Acknowledgments. I would like to thank Prof. Dr. Anthony To-Ming Lau (University of Alberta, Edmonton, Alberta, Canada) with whom I had fruitful discussions and useful comments regarding this work.

References

- E. Casini & E. Maluta, Fixed points of uniformly Lipschitzian mappings in metric spaces with uniformal normal structure, Nonlinear Analysis 9 (1985), 103-108.
- [2] N. Dunford and J. T. Schwartz, Linear Operators, Part, Interscience, New York, 1958.
- [3] R. D. Holmes and A. T.-M. Lau, Nonexpansive actoins of topological semigroups and fixed points, J. London Math. Soc. Vol. 5 (1972), 330-336.
- [4] W. A. Kirk, A fixed point theorem for mappings which do not increase distance, Amer. Math. Monthly 72 (1965), 1004-1006.
- [5] M. A. Khamsi, On metric spaces with uniform normal structure, Proc. Amer. Math. Soc. 106 (1989), 723-726.
- [6] T. Kuczumow, Opial's modulus and fixed points of semigroups of mappings, Proc. Amer. Math. Soc. 127(1999), 2671-2678.
- [7] A. T.-M. Lau, Invariant means on almost periodic functions and fixed point properties, Rocky Mountain Journal of Mathematics, Vol. 3 No. 1 (1973), 69-75.
- [8] A. T.-M. Lau and W. Takahashi, Invariant submeans and semigroups of nonexpansive mappings on Banach spaces with normal structure, Journal of Functional Analysis, Vol. 142 No. 1 (1996), 79-88.
- [9] T.-C. Lim & H.-K. Xu, Uniformly Lipschitzian mappings in metric spaces with uniform normal structure, Nonlinear Analysis, Theory Methods & Aplications. Vol. 25. No. 11 (1995), 1231-1235.
- [10] E. Maluta, Uniformly normal structure and related coefficients, Pacif. J. Math. 111 (1984), 357-369.
- [11] J.-C. Yao and L.-C. Zeng, Fixed point theorem for asymptotically regular semigroups in metric spaces with uniform normal structure, Journal of Nonlinear and Convex Analysis, Vol. 8, No. 1 (2007), 153-163.

Department of Mathematics, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt

E-mail; a_h -soliman@yahoo.com.