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A FIXED POINT THEOREM FOR SEMIGROUPS ON METRIC SPACES
WITH UNIFORM NORMAL STRUCTURE
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Abstract. In this work, we define new generalized uniformly Lipschitzian type con-
ditions for a one-parameter family of selfmappings which is an asymptotically regular
semigroup in a complete bounded metric space. Some fixed point results for this
semigroup are presented.

1 Introduction In 1989, Khamsi [5] defined normal and uniform normal structure for
metric spaces and proved that if (X, d) is a complete bounded metric space with uniform
normal structure, then it has the fixed point property for nonexpansive mappings and a kind
of intersection property which extends a results of Maluta [10] to metric spaces. In 1995,
T.-C. Lim and Hong-Kun Xu [9] proved a fixed point theorem for uniformly Lipschitian
mappings in metric spaces with both property (P ) and uniform normal structure which
extends the result of Khamsi [5]. This is the metric space version of Casini and Maluta’s
theorem [1]. Recently, Jen-Chih Yao and Lu-Chuan Zeng [11] established a fixed point
theorem for an asymptotically regular semigroup of uniformly Lipschitian mappings with
property (∗) in a complete bounded metric space with uniform normal structure which
extends the results T.-C. Lim and Hong-Kun Xu [9].

In this paper we shall define new notions of generalized uniformly Lipschitzian map-
pings and establish a fixed point theorem for asymptotically regular generalized uniformly
Lipschitzian semigroups in a complete bounded metric space with property (∗) and uniform
normal structure extending the fixed point theorem of J.-C. Yao and L.-C. Zeng [11].

2 Preliminaries Throughout of this paper, X or (X, d) will denote a metric space.

Definition 2.1 [1]. A mapping T : X → X is said to be a Lipschitzian mapping if each
integer n ≥ 1 there exists a constant kn > 0 such that

d(T nx, T ny) ≤ knd(x, y) ∀ x, y ∈ X.(1)

If kn = k ∀ n ≥ 1, then T is called uniformly Lipschitzian and if kn = 1 ∀ n ≥ 1, then T
is called nonexpansive.

Definition 2.2. A mapping T : X → X is said to be a generalized Lipschitzian mapping
if each integer n ≥ 1 there exists a constant kn > 0 such that

d(T nx, T ny) ≤ kn max{d(x, y),
1
2
d(x, T nx),

1
2
d(y, T ny)} ∀ x, y ∈ X.(2)

If kn = k ∀ n ≥ 1, then T is called generalized uniformly Lipschitzian.
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Remark 2.1. Every uniformly Lipschitzian mapping is generalized uniformly Lipschitzian
but the converse is not true.

In the following we give an example to show that there exist a generalized Lipschitzian
mapping T which is not Lipschitzian.

Example 2.1. Let X = {a, b, c} and d : X × X → [0,∞) defined by d(a, c) = d(c, a) =
1
2 , d(a, b) = d(b, a) = d(b, c) = d(c, b) = 2 and d(x, x) = 0 ∀ x ∈ X. Then (X, d) is
bounded metric space. Now define T : X → X as follows Tb = Tc = b, T a = c. If
k = 2, then T is generalized Lipschitzian mapping but not Lipschitzian mapping because
d(Tc, Ta) �≤ 2 d(c, a).

Definition 2.3 [4]. A mapping T : X → X is called asymptotically regular, if

lim
n→∞ d(T n+1x, T ny) = 0 ∀ x, y ∈ X.(3)

Let G be a subsemigroup of [0,∞) with addition ” + ” such that

t − h ∈ G ∀ t, h ∈ G with t ≥ h.

This condition is satisfied if G = [0,∞) or G = Z+, the set of nonnegative integers. Let
	 = {T (t) : t ∈ G} be a family of selfmappings on X. Then 	 is called a (one-parameter)
semigroup on X if the following conditions are satisfied:

(i) T (0)x = x ∀ x ∈ X ;
(ii) T (s + t)x = T (s)(T (t)x) ∀ s, t ∈ G and x ∈ X ;
(iii) ∀ x ∈ X, a mapping t → T (t)x from G into X is continuous when G has the

relative topology of [0,∞);
(iv) for each t ∈ G, T (t) : X → X is continuous.
A semigroup 	 = {T (t) : t ∈ G} on X is said to be asymptotically regular at a point

x ∈ X if
lim

t→∞ d(T (t + h)x, T (t)x) = 0 ∀ h ∈ G.

If 	 is asymptotically regular at each x ∈ X, then 	 is called an asymptotically regular
semigroup on X.

Definition 2.4. A semigroup 	 = {T (t) : t ∈ G} on X is called a generalized uniformly
Lipschitzian semigroup if

sup{k(t) : t ∈ G} = k < ∞,

where

k(t) = sup{ d(T (t)x, T (t)y)
max{d(x, y), 1

2d(x, T (t)x), 1
2d(y, T (t)y)} �= 0

: x, y ∈ X}.

Definition 2.5. The simplest generalized uniformly Lipschitzian semigroup is a semigroup
of iterates of a mapping T : X → X with

sup{kn : n ∈ N} = k < ∞,

where

kn = sup{ d(T nx, T ny)
max{d(x, y), 1

2d(x, T nx), 1
2d(y, T ny)} �= 0

: x, y ∈ X}.
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In a metric space (X, d) let F denote a nonempty family of subsets of X. Following
Khamsi [5], we say that F defines a convexity structure on X if F is stable under intersec-
tion. We say that F has Property (R) if any decreasing sequence {Cn} of closed bounded
nonempty subsets of X with Cn ∈ F has a nonvoid intersection. Recall that a subset of X
is said to be admissible [2] if it is an intersection of closed balls. We denote by A(X) the
family of all admissible subsets of X. It is obvious that A(X) defines a convexity structure
on X. In this paper any other convexity structure F on X is always assumed to contain
A(X).

Let M be a bounded subset of X. Following Lim and Xu [9], we shall adopt the following
notations:

B(x, r) is the closed ball centered at x with radius r,
r(x,M) = sup{d(x, y) : y ∈ M} for x ∈ X,
δ(M) = sup{r(x,M) : x ∈ M},
R(M) = inf{r(x,M) : x ∈ M}.

For a bounded subset A of X, we define the admissible hull of A, denoted by ad(A), as
the intersection of all those admissible subsets of X which contain A, i.e.,

ad(A) =
⋂{B : A ⊆ B ⊆ X with B admissible }

Proposition 2.1 [9]. For a point x ∈ X and a bounded subset A of X, we have

r(x, ad(A)) = r(x,A),

Definition 2.6 [5]. A metric space (X, d) is said to have normal (resp. uniform normal)
structure if there exists a convexity structure F on X such that R(A) < δ(A) (resp. R(A) ≤
c.δ(A) for some constant c ∈ (0, 1)) for all A ∈ F which is bounded and consists of more
than one point. In this case F is said to be normal (resp. uniformly normal) in X.

We define the normal structure coefficient N̄(X) of X (with respect to a given convexity
structure F ) as the number

sup
{

R(A)
δ(A)

}
.

where the supremum is taken over all bounded A ∈ F with δ(A) > 0. X then has uniform
normal structure if and only if N̄(X) < 1.

Khamsi proved the following result that will be very useful in the proof of our main
theorem.

Proposition 2.2 [5]. Let X be a complete bounded metric space and F be a convexity
structure of X with uniform normal structure. Then F has the property (R).

Definition 2.7 [11]. Let (X, d) be a metric space and 	 = {T (t) : t ∈ G} be a semigroup
on X. Let us write the set

w(∞) = {{tn} : {tn} ⊂ G and tn → ∞}
Definition 2.8 [11]. Let (X, d) be a complete bounded metric space and 	 = {T (t) : t ∈ G}
be a semigroup on X. Then 	 has property (∗) if for each x ∈ X and each {tn} ∈ w(∞),
the following conditions are satisfied:

(a) the sequence {T (tn)x} is bounded;
(b) for any sequence {zn} in ad{T (tn)x : n ≥ 1} there exists some z ∈ ⋂∞

n=1 ad{zj : j ≥
n} such that

lim sup
n→∞

d(z, T (tn)x) ≤ lim sup
j→∞

lim sup
n→∞

d(zj , T (tn)x).
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Jen-Chih Yao and Lu-Chuan Zeng [11] proved the following result that will be used in
the proof of our result.

Lemma 1.1. Let (X, d) be a complete bounded metric space with uniform normal structure
and 	 = {T (t) : t ∈ G} be a semigroup on X with property (∗). Then for each x ∈ X, each
{tn} ∈ w(∞) and for any constant Ñ(X) < c̄, the normal structure coefficient with respect
to the given convexity structure F, there exists some z ∈ ⋂∞

n=1 ad{zj : j ≥ n} satisfying the
properties:

(I) lim supn→∞ d(z, T (tn)x) ≤ c̄.A({T (tn)x}),
where A({T (tn)x}) = lim supn→∞ d(T (ti)x, T (tj)x) : i, j ≥ n;

(II) d(z, y) ≤ lim supn→∞ d(T (tn)x, y) for all y ∈ X.

3 The main theorem Theorem 3.1. Let (X, d) be a complete bounded metric space
with uniform normal structure and let 	 = {T (t) : t ∈ G} be an asymptotically regular
and generalized uniformly Lipschitzian semigroup on X with k̃ < 1√

Ñ(X)
and satisfying

property (∗).
Then there exist some z ∈ X such that T (t)z = z for all t ∈ G.

Proof. Choose a constant c̄ such that Ñ(X) < c̄ < 1 and k̃ < 1√
c̄
. We can select a sequence

{tn} ∈ w(∞) such that {tn+1 − tn} ∈ w(∞) and limn→∞ k(tn) = k̃, where k̃ > 0.

Observe that

{d(T (tj)x, T (ti)x) : i, j ≥ n} = {d(T (tj)x, T (ti)x) : j > i ≥ n} ∪ {0}

for each n ∈ N and x ∈ X,

Now fix an x0 ∈ X. Then by Lemma 1.1, we can inductively construct a sequence
{xl}∞l=1 ⊂ X such that

xl+1 ∈ ⋂∞
n=1 ad{T (ti)xl : i ≥ n}; for each integer l ≥ 0,

(III) lim supn→∞ d(T (tn)xl, xl+1) ≤ c̄.A({T (tn)xl}),
where A({T (tn)xl}) = lim supn→∞{d(T (ti)xl, T (tj)xl) : i, j ≥ n};

(IV) d(xl+1, y) ≤ lim supn→∞ d(T (tn)xl, y) for all y ∈ X.
Let

Dl = lim sup
n→∞

d(xl+1, T (tn)xl) ∀ l ≥ 0 and h = c̄.k̃ < 1.

Observe that for each i > j ≥ 1, using (IV ) and the asymptotic regularity of 	 on X, we
have

d(xl, T (ti − tj)xl) ≤ lim sup
n→∞

d(xl, T (tn + ti − tj)xl−1)

≤ lim sup
n→∞

d(xl, T (tn)xl−1) + lim sup
n→∞

d(T (tn)xl−1, T (tn + ti − tj)xl−1)

≤ Dl−1,(4)

d(xl, T (tj)xl) ≤ lim sup
n→∞

d(xl, T (tn + tj)xl−1)

≤ lim sup
n→∞

d(xl, T (tn)xl−1) + lim sup
n→∞

d(T (tn)xl−1, T (tn + tj)xl−1) ≤ Dl−1,(5)
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d(T (ti − tj)xl, T (ti)xl) ≤ lim sup
n→∞

d(T (tn + ti − tj)xl−1, T (ti)xl)

≤ lim sup
n→∞

d(T (tn + ti − tj)xl−1, T (tn)xl−1) + lim sup
n→∞

d(T (tn)xl−1, xl)

+d(xl, T (ti)xl) ≤ 2Dl−1,(6)

d(T (ti)xl, T (tj)xl) = d(T (tj)xl, T (tj)T (ti − tj)xl)

≤ k(tj)max{d(xl, T (ti − tj)xl),
1
2
d(xl, T (tj)xl),

1
2
d(T (ti − tj)xl, T (ti)xl)}(7)

Substituting from (4),(5) and (6) in (7) we get

d(T (ti)xl, T (tj)xl) ≤ k(tj)max{Dl−1,
1
2
Dl−1, Dl−1} = k(tj)Dl−1,

which implies for each n ≥ 1,

sup{d(T (ti)xl, T (tj)xl) : i, j ≥ n} = sup{d(T (ti)xl, T (tj)xl) : i > j ≥ n}
≤ sup{k(tj)Dl−1 : i > j ≥ n}
≤ Dl−1. sup{k(tj) : j ≥ n}.(8)

Hence by using (III) and (8), we have

Dl = lim supn→∞ d(xl+1, T (tn)xl) ≤ c̄A({T (tn)xl}) ≤ c̄ lim sup
n→∞

{d(T (ti)xl, T (tj)xl) : i, j ≥ n}
≤ c̄.Dl−1. lim sup

n→∞
k(tn)

≤ c̄. lim
n→∞ k(tn).Dl−1 = c̄.k̃.Dl−1 = hDl−1 ≤ h2Dl−2 ≤ ...

≤ hlD0.(9)

Hence by the asymptotic regularity of 	 on X, we have for each integer n ≥ 1,

d(xl+1, xl) ≤ lim sup
n→∞

d(T (tn)xl, xl)

≤ lim sup
n→∞

lim sup
m→∞

d(xl, T (tm + tn)xl−1)

≤ lim sup
m→∞

d(xl, T (tm)xl−1) + lim sup
n→∞

lim sup
m→∞

d(T (tm)xl−1, T (tm + tn)xl−1)

≤ Dl−1.

It follows from (9) that

d(xl+1, xl) ≤ Dl−1 ≤ hl−1D0.

Thus, we have
∑∞

l=0 d(xl+1, xl) ≤ D0

∑∞
l=0 hl−1 < ∞. Consequently {xl} is Cauchy and,

hence, convergent as X is complete. Let z = liml→∞ xl. Then we have

lim sup
n→∞

d(z, T (tn)z) = lim
l→∞

lim sup
n→∞

d(xl, T (tn)xl)

≤ lim
l→∞

Dl−1 ≤ lim
l→∞

hl−1D0 = 0,

i.e., limn→∞ d(z, T (tn)z) = 0. Hence for each s ∈ G, we deduce

d(z, T (s)z) = lim
l→∞

d(xl, T (s)xl) ≤ lim
l→∞

lim sup
n→∞

d(xl, T (tn + s)xl−l)

≤ lim
l→∞

lim sup
n→∞

d(xl, T (tn)xl−l) + lim
l→∞

lim sup
n→∞

d(T (tn)xl−1, T (tn + s)xl−l)

≤ lim
l→∞

Dl−1 ≤ lim
l→∞

hl−1D0 = 0.
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Then we have d(z, T (s)z) = 0, i.e., T (s)z = z for each s ∈ G.
From Remark 2.1 and Theorem 3.1, we immediately obtain the following results

Corollary 3.2 [11]. Let (X, d) be a complete bounded metric space with uniform normal
structure and let 	 = {T (t) : t ∈ G} be an asymptotically regular semigroup on X with
property (∗) and satisfying

(lim inf
t→∞ k(t)).(lim sup

t→∞
k(t)) < N̄(X)−

1
2 .

Then there exist some z ∈ X such that T (t)z = z for all t ∈ G.

Remark 3.2. It will be interesting to establish Theorem 3.1 for representative 	 = {T (s) :
s ∈ S} of a left amenable S as a complete bounded metric space with uniform normal
structure as in Holmes and A. Lau [3], Lau and Takahashi [8] and Lau [7].
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