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HOMOGENEOUS STATIONARY SOLUTION FOR BCF MODEL
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Abstract. This paper continues a study on the initial-boundary value problem for
a nonlinear parabolic equation of forth order which was presented by Johnson-Orme-
Hunt-Graff-Sudijono-Sauder-Orr [9] for describing the process of growth of a crystal
surface under molecular beam epitaxy(MBE). In the previous papers [5, 6], we have
constructed a dynamical system determined from the model equation and have studied
asymptotic behavior of solutions. This paper is then devoted to investigating stability
or instability of homogeneous stationary solution. Using the instability dimension,
we will make a lower dimension estimate for the attractor of the dynamical system
constructed in [5].

1 Introduction We continue a study on the initial-boundary value problem for a non-
linear parabolic equation of fourth order

(1.1)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂u

∂t
= −a∆2u − µ∇ ·

( ∇u

1 + |∇u|2
)

in Ω × (0,∞),

∂u

∂n
=

∂

∂n
∆u = 0 on ∂Ω × (0,∞),

u(x, 0) = u0(x) in Ω

in a two-dimensional bounded domain Ω ⊂ R2. This model was presented by Johnson-
Orme-Hunt-Graff-Sudijono-Sauder-Orr [9] for describing the process of growing of a crystal
surface on the basis of the BCF theory due to Burton-Cabrera-Frank [3] (cf. also [8, 13, 14,
15, 19]). Here, u = u(x, t) denotes a displacement of height of surface from the standard
level (u = 0) at a position x ∈ Ω. We assume that u and ∆u satisfy the homogeneous
Neumann boundary conditions on ∂Ω.

The term −a∆2u in the equation of (1.1) denotes a surface diffusion of adatoms which
is caused by the difference of the chemical potential, see Mullins [11], a > 0 denotes a
surface diffusion constant. In the meantime, −µ∇ ·

(
∇u

1+|∇u|2
)

denotes the effect of surface
roughening. Such roughening is caused by the Schwoebel barriers [4, 16] (cf. also [19]). The
macroscopic representation of the roughening by the term −µ∇ ·

(
∇u

1+|∇u|2
)

is formulated
in the paper [9] mentioned above, where µ > 0 is a coefficient of surface roughening. Some
numerical simulations for one or two-dimensional model of (1.1) were performed by the
papers [8, 13, 14, 15].

As in the preceding papers [5, 6], we will handle (1.1) in the underlying space L2(Ω).
In [5], we have already constructed a dynamical system (S(t),H1

m(Ω), L2
m(Ω)) determined
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from (??) with the phase space H1
m(Ω) in the universal space L2

m(Ω), here H1
m(Ω) (resp.

L2
m(Ω)) is a closed subspace of H1(Ω) (resp. L2(Ω)) consisting of functions u ∈ H1(Ω) (resp.

f ∈ L2(Ω)) with null mean, i.e., m(f) ≡ |Ω|−1
∫
Ω

f dx = 0. And then we have constructed in
[6] exponential attractors and a Lyapunov function for (S(t),H1

m(Ω), L2
m(Ω)). As a result,

it was shown that the ω-limit set ω(u0) of any initial value u0 ∈ H1
m(Ω) consists of equilibria

of S(t).
In this paper, we are concerned with stability or instability of homogeneous stationary

solution. Clearly, u = 0 is a unique homogeneous stationary solution of (1.1) satisfying
m(u) = 0, namely, 0 is a unique homogeneous equilibrium of (S(t),H1

m(Ω), L2
m(Ω)). We

will appeal to the linearized principle invented by Bavin-Vishik [2] and Temam [18] in
the theory of infinite-dimensional dynamical system. Application of the principle to the
dynamical systems determined from semilinear abstract parabolic evolution equations was
described in [1], for this we will make a brief review in Section 3. In fact, we shall prove that
0 is stable if the parameter µ is smaller than aλ1, where λ1 > 0 is the minimal eigenvalue of
a realisation of −∆ in L2

m(Ω) under the homogeneous Neumann boundary conditions on ∂Ω.
To the contrary, 0 becomes unstable if the µ is larger than aλ1 and the instability dimension
is given by #{λk; µ > aλk}, where 0 < λ1 ≤ λ2 ≤ λ3 ≤ . . . denote the eigenvalues of −∆
in L2

m(Ω) under the Neumann boundary conditions. Using the instability dimension, we
can give a lower dimension estimate for exponential attractors M of (S(t),H1

m(Ω), L2
m(Ω)).

By definition, M’s are a finite-dimensional compact subset of L2
m(Ω).

Throughout the paper, Ω is a bounded domain of C4 class in R2. According to [7], the
Poisson problem −∆u = f in Ω under the homogeneous Neumann boundary conditions
∂u
∂n = 0 on ∂Ω enjoys the shift property that f ∈ H2(Ω) implies u ∈ H4(Ω).

2 Reviews of known results Let us review known results obtained in the previous
papers [5, 6] concerning Problem (1.1).

Local solutions. We formulate (1.1) as the Cauchy problem for a semilinear abstract
evolution equation of the form

(2.1)

⎧⎨
⎩

du

dt
+ Au = F (u), 0 < t < ∞,

u(0) = u0

in a Banach space X . For the underlying space X , we set X = L2(Ω). The linear
operator A is defined by A = Λ2, where Λ is the realization of −√

a∆ + 1 in L2(Ω) under
the homogeneous Neumann boundary conditions. Clearly, A ≥ 1 is also a positive definite
self-adjoint operator of X . We can verify the following properties.

Proposition 2.1. ([5, Proposition 3.1]) For 0 ≤ θ ≤ 1, θ 	= 3
8 , 7

8 , we have

(2.2)

⎧⎪⎨
⎪⎩

D(Aθ) = H4θ(Ω), when 0 ≤ θ < 3
8 ,

D(Aθ) = H4θ
N (Ω) = {u ∈ H4θ(Ω); ∂u

∂n = 0 on ∂Ω}, when 3
8 < θ < 7

8 ,

D(Aθ) = H4θ
N2(Ω) = {u ∈ H4θ(Ω); ∂u

∂n = ∂
∂n∆u = 0 on ∂Ω}, when 7

8 < θ ≤ 1

with norm equivalence.

We remark that, even when θ = 3
8 or 7

8 , it is true that D(A
3
8 ) ⊂ H

3
2 (Ω) and D(A

7
8 ) ⊂

H
7
2 (Ω), respectively, with continuous embedding.
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The nonlinear operator F is then defined by

(2.3) F (u) = −µ∇ ·
( ∇u

1 + |∇u|2
)
− 2

√
a∆u + u, u ∈ D(A

7
8 ) ⊂ H

7
2 (Ω).

According to [5, Proposition 3.2], it holds that

(2.4) ‖F (u)−F (v)‖ ≤ C[‖A 1
2 (u−v)‖+(‖A 7

8 u‖+‖A 7
8 v‖)‖A 1

4 (u−v)‖], u, v ∈ D(A
7
8 ).

The general result on abstract semilinear evolution equations (cf. [5, Theorem 2.1]) then
provides local existence of solutions. For any u0 ∈ D(A

1
4 ) = H1(Ω), (2.1) and hence (1.1)

has a unique local solution in the function space:

u ∈ C((0, Tu0 ]; H
4
N2(Ω)) ∩ C([0, TU0 ]; H

1(Ω)) ∩ C1((0, TU0 ]; L
2(Ω))

with the estimate

t
3
4 ‖u(t)‖H4 + ‖u(t)‖H1 ≤ Cu0 , 0 < t ≤ Tu0 ,

Tu0 > 0 and Cu0 > 0 being determined by ‖u0‖H1 alone.
It is as well possible to show continuous dependence of solutions on initial values. Let

0 < R < ∞. For any u0 ∈ B
H1

(0; R) (closed ball of H1(Ω) centered at the origin with
radius R), let Problem (2.1) have a local solution on an interval [0, TR], TR > 0 being
dependent only on R. In fact, we have

(2.5) ‖u(t) − v(t)‖H1 ≤ CR‖u0 − v0‖H1 , 0 ≤ t ≤ TR; u0, v0 ∈ B
H1

(0; R),

where u (resp. v) denotes the local solution of (3.1) with initial value u0 (resp. v0). For the
proof, see [12, Corollary 3.2] (confer also [5, Proposition 4.3]). In addition, it is possible to
verify that

(2.6) ‖Aα[u(t)−v(t)]‖L2 ≤ CR,α‖Aα[u0−v0]‖L2 , 0 ≤ t ≤ TR; u0, v0 ∈ B
H1

(0; R)∩D(Aα)

for any exponent 1
4 ≤ α < 1.

Global solutions. As shown in [5, Proposition 4.1], we can build a priori estimates for
any local solution u of (2.1) with u0 ∈ H1(Ω) which is given by

(2.7) ‖u(t)‖H1 ≤ p(‖u0‖H1),

where p(·) is a specific continuous increasing function. By the standard argument, this
together with the local existence of solutions provides global existence, see [5, Theorem
4.1]. Indeed, for any u0 ∈ H1(Ω), (2.1) has a unique global solution in the function space:

u ∈ C((0,∞);H4
N2(Ω)) ∩ C([0,∞);H1(Ω)) ∩ C1((0,∞);L2(Ω)).

Dynamical system. For u0 ∈ H1(Ω), let u(t; u0) denote the global solution with the
initial value u0. For each 0 ≤ t < ∞, we set S(t)u0 = u(t; u0). Then, S(t) defines a
nonlinear semigroup on H1(Ω) which is, on account of (2.5), continuous from H1(Ω) into
itself. Thus, (S(t),H1(Ω),H1(Ω)) is a dynamical system determined from (2.1).
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We notice thanks to (2.6) that S(t) is continuous from D(Aα) into itself for any exponent
1
4 ≤ α < 1 . This means that (S(t),D(Aα),D(Aα)) is also a dynamical system for any
1
4 ≤ α < 1.

We here introduce a subspace of Hs(Ω) in such a way that

Hs
m(Ω) =

{
u ∈ Hs(Ω);m(u) ≡ |Ω|−1

∫
Ω

u dx = 0
}

, 0 ≤ s < ∞.

It is easy to see that, if u0 ∈ H1
m(Ω), then m(S(t)u0) = 0 for every 0 < t < ∞, i.e.,

S(t)u0 ∈ H4
m(Ω). Furthermore, (2.7) can be strengthened in the form

‖S(t)u0‖2
H1 ≤ C[e−ρt‖u0‖2

H1 + 1], 0 < t < ∞; u0 ∈ H1
m(Ω)

with some exponent ρ > 0, see [5, Corollary 4.1]. As shown in [6], see Theorem 3.1 and
Corollary 3.1, this then yields that (S(t),H1

m(Ω),H1
m(Ω)) has a finite-dimensional exponen-

tial attractor. It is the same for (S(t),D(Aα) ∩ H1
m(Ω),D(Aα) ∩ H1

m(Ω)).

3 General framework Consider the Cauchy problem for a semilinear abstract parabolic
evolution equation

(3.1)

⎧⎨
⎩

du

dt
+ Au = F (u), 0 < t < ∞,

u(0) = u0

in a Banach space X . Here, A is a closed linear operator of X the spectral set of which is
contained in a sectorial domain Σ = {λ ∈ C; | arg λ| < ω} with angle 0 < ω < π

2 and the
resolvent of A satisfies [5, (2.2)]. We assume that the nonlinear operator F (u) satisfies the
Lipschitz condition [5, (2.4)] with some exponents 0 ≤ α ≤ η < 1. Then, as noticed by [5,
Theorem 2.1], (3.1) has a unique local solution for any initial value u0 ∈ D(Aα) satisfying
[5, (2.3)], i.e., ‖Aαu0‖ ≤ R. The local solution exists at least on an interval [0, TR], where
TR > 0 is determined by R alone.

For u0 ∈ D(Aα), let u(·; u0) denote any local solution of (??). We assume that the a
priori estimate

(3.2) ‖Aαu(t; u0)‖ ≤ p(‖Aαu0‖), u0 ∈ D(Aα)

holds for any local solution with some specifically fixed continuous increasing function p(·).
By the standard arguments, we can conclude under (3.2) that (3.1) has a global solution
on the whole interval [0,∞).

Let u(·; u0) denote the global solution of (3.1). We then set S(t)u0 = u(t; u0) for u0 ∈
D(Aα). Then, S(t) is a continuous nonlinear semigroup acting on D(Aα) and (S(t),Dα, Dα)
defines a dynamical system with phase space Dα in the universal space Dα, D(Aα) being
abbreviated by Dα.

Let u ∈ D(A) be a stationary solution of (3.1), i.e., Au = F (u). Clearly, u is an
equilibrium of (S(t),Dα, Dα). We are concerned with investigating stability or instability
of u.

To this end, we assume that F : D(Aη) → X is of class C1,1 in a neighborhood of u.
That is, F is Fréchet differentiable from D(Aη) to X in a neighborhood of u in the topology
of Dα and the derivative satisfies

(3.3) ‖[F ′(u) − F ′(v)]h‖ ≤ C‖Aα(u − v)‖‖Aηh‖, u, v ∈ O(u); h ∈ D(Aη),
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where O(u) is a neighborhood of u.
These assumptions in fact imply that the semigroup S(t) : Dα → Dα is Fréchet differen-

tiable; in addition, S(t) is of class C1,1 in a neighborhood O′(u) of u in Dα, i.e.,

(3.4) ‖S(t)′u − S(t)′v‖L(Dα,Dα) ≤ C‖Aα(u − v)‖, u, v ∈ O′(u); 0 ≤ t ≤ t∗,

t∗ > 0 being arbitrarily fixed time. For detail, see the proof of [1, Theorem 5.1].
We further assume a spectral separation condition for σ(A − F ′(u)) of the form

(3.5) σ(A − F ′(u)) ∩ {λ ∈ C; Re λ = 0} = ∅.

Then, since S(t)′u = e−tA, where A = A−F ′(u), we have the spectral separation for S(t)′u,
i.e.,

(3.6) σDα(S(t)′u) ∩ {λ ∈ C; |λ| = 1} = ∅.
According to [18, Chapter VII, Theorem 3.1], under (3.4) and (3.6), there exists a smooth
local unstable manifold M+(u; O) in a neighborhood O of u in Dα.

When

(3.7) σ(A − F ′(u)) ⊂ {λ ∈ C; Re λ > 0},
it actually follows that M+(u; O) = {u}. Whence, under (3.7), u is a stable stationary
solution. In the meantime, when

(3.8) σ(A − F ′(u)) ∩ {λ ∈ C; Re λ < 0} 	= ∅,
M+(u; O) is not trivial and u is an unstable stationary solution.

4 Differentiability of F (u) Let us apply the general results explained in the preceding
section by setting Xm = L2

m(Ω) and Am = (−√
a∆ + 1)2 is considered in L2

m(Ω). So we
have

D(Am) = {u ∈ H4
N2(Ω); m(u) = 0}.

The nonlinear operator Fm : D(A
7
8
m) → Xm is given by (2.3) again. We take as u the zero

solution which is a unique homogeneous stationary solution to (1.1) in the space Xm.
We can entirely follow the arguments reviewed in Section 2 in order to construct a

dynamical system (S(t),H1
m(Ω),H1

m(Ω)) as well as (S(t),D(Aα
m),D(Aα

m)) for any exponent
1
4 ≤ α < 1. Proposition 4.2 which will be shown below suggests that it is natural to take
α = 1

2 . In view of (2.2), we have

D(A
1
2
m) = H2

N,m(Ω) ≡ {u ∈ H2
N (Ω); m(u) = 0}.

In this section, we intend to verify Fréchet differentiability of Fm and the conditions
(3.3) with α = 1

2 .

Proposition 4.1. Fm : D(A
7
8
m) → Xm is Fréchet differentiable and the derivative is given

by

(4.1) F ′
m(u)h = −µ∇·

( ∇h

1 + |∇u|2
)

+2µ∇·
(

(∇u · ∇h)∇u

(1 + |∇u|2)2
)
−2

√
a∆h+h, u, h ∈ D(A

7
8
m).
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Proof. Let u, h ∈ D(A
7
8
m). By (2.3) we have

Fm(u + h) − Fm(u) = −µ∇ ·
[(

1
1 + |∇(u + h)|2 − 1

1 + |∇u|2
)
∇(u + h)

]

− µ∇ ·
(∇(u + h) −∇u

1 + |∇u|2
)
− 2

√
a∆h + h

= −µ∇ ·
[
(−2∇u · ∇h − |∇h|2)∇(u + h)
(1 + |∇(u + h)|2)(1 + |∇u|2)

]
− µ∇ ·

( ∇h

1 + |∇u|2
)
− 2

√
a∆h + h.

By the similar calculations as for the proof of [5, Proposition 3.2],

‖Fm(u + h) − Fm(u) − F ′
m(u)h‖L2 ≤ C‖A 7

8
mh‖2

L2(‖A
7
8
mu‖L2 + ‖A 7

8
mh‖L2).

Hence, Fm : D(A
7
8
m) → Xm is Fréchet differentiable at u, and the derivative is given by

(4.1).

Proposition 4.2. Let u ∈ D(Aη
m) varies in the ball BD(A

1
2
m)(0; 1). Then, F ′

m(u) satisfies
the Lipschitz condition

‖[F ′
m(u) − F ′

m(v)]h‖L2 ≤ C‖A 1
2
m(u − v)‖L2‖A 7

8
mh‖L2 ,

u, v ∈ D(A
7
8
m) ∩ BD(A

1
2
m)(0; 1); h ∈ D(A

7
8
m).

Proof. We know that F ′
m(u) is given by (4.1). Then, the desired estimate can be seen

directly by the similar calculations as for the proof of [5, Proposition 3.2].

5 Spectral separation condition Under the same situation as in Section 4, let us now
verify the condition (3.5).

Let Λ denote the realization of −∆ in L2
m(Ω) under the Neumann boundary condi-

tions. The operator Λ possesses denumerable positive eigenvalues and the corresponding
real eigenfunctions can constitute an orthonormal basis of L2

m(Ω). So, let

0 < λ1 ≤ λ2 ≤ λ3 ≤ · · · → ∞
be eigenvalues of Λ and let φ1, φ2, φ3, . . . be corresponding real eigenfunctions which con-
stitute an orthonormal basis. For each k = 1, 2, 3, . . . , let Xk be the eigenspace of λk which
is a one-dimensional subspace of L2

m(Ω). Any two subspaces Xk and X� are orthogonal if
k 	= 
, and Xm = L2

m(Ω) is given by an infinite sum Xm =
∑∞

k=1 Xk.
According to (??), we have

F ′
m(0)h = −(µ + 2

√
a)∆h + h, h ∈ D(A

7
8
m).

Therefore, the operator Am = Am − F ′
m(0) = a∆2 + µ∆ maps the subspace Xk into itself,

namely, Xk is an invariant set of Am for every k. Consequently, the operator Am can also
be decomposed as Am =

∑∞
k=1 Ak, where Ak is the part of Am in Xk, i.e.,

Akφk = (aλ2
k − µλk)φk.

Hence, σ(Ak) = {aλ2
k − µλk}.



STATIONARY SOLUTION BCF MODEL 135

Let λ ∈ iR. Let k be sufficiently large so that aλk > µ holds. Then, λ ∈ ρ(Ak) and

‖(λ − Ak)−1‖L(Xk) ≤ 1
(aλk − µ)λk

.

This means that λ ∈ iR belongs to ρ(A) if and only if λ ∈ ρ(Ak) for every k = 1, 2, 3, . . . .
In other words, λ /∈ σ(A) if and only λ 	∈ σ(Ak) = {aλ2

k − µλk} for every k. In view of this
fact, we will make the following assumption

(5.1) λk 	= µ

a
for every k = 1, 2, 3, . . . .

Under (5.1), it is true that σ(A) ∩ iR = ∅, namely, the spectral separation condition (3.5)
is fulfilled.

6 Stability or instability conditions Let λ ∈ C satisfy Re λ ≤ 0. By the same reason
as before, we see that λ 	∈ σ(Am) if and only if λ 	∈ σ(Ak) for every k. Therefore, if the
condition

(6.1) µ < aλ1

is valid, then, as
⋃∞

k=1 σ(Ak) ⊂ {λ; Re λ > 0}, λ such that Re λ ≤ 0 cannot belong to
σ(Am), namely, σ(Am) ⊂ {λ; Re λ > 0}. Thus, under (6.1), (3.7) is fulfilled and 0 is a
stable stationary solution of (S(t),H2

N,m(Ω),H2
N,m(Ω)).

On the other hand, if the condition

(6.2) N = #{λk; µ > aλk} 	= 0

is satisfied, then σ(A) ∩ {λ; Re λ < 0} 	= ∅, namely, (3.8) is fulfilled. Thus, under (5.1)
and (6.2), 0 has a nontrivial unstable manifold M+(0) and is an unstable equilibrium of
(S(t),H2

N,m(Ω),H2
N,m(Ω)).

We remark Am has a real eigenfunction φk for each λk. This means that the unstable
manifold M+(0) is tangential to an N -dimensional subspace of H2

N,m(Ω) whose basis is
composed by real functions. In particular, it is deduced that

dim M ≥ dim M+(0) ≥ N.
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