ON T-FUZZY IDEALS IN HILBERT ALGEBRAS

KUNG HO KIM

Received February 7, 2009

ABSTRACT. Using a *t*-norm T, we introduce the notion of (imaginable) T-fuzzy subalgebras, (imaginable) T-fuzzy deductive systems and (imaginable) T-fuzzy ideals, and obtain some related results. We give relations between an imaginable T-fuzzy subalgebra and an imaginable fuzzy deductive system.

1. INTRODUCTION

Following the introduction of Hilbert algebras by Diego [4], the algebra and related concepts were developed by Busneag [2, 3]. The concept of of fuzzy sets was established by Zadeh [7]. This concept has been applied to Hilbert algebras by W. A. Dudek [5]. In the present paper, using a *t*-norm T we will redefine the fuzzy subalgebras, fuzzy deductive systems and fuzzy ideals in Hilbert algebras. Furthermore, we introduce the notion of (imaginable) T-fuzzy subalgebras and (imaginable) T-fuzzy subalgebras and an imaginable T-fuzzy subalgebra and an imaginable T-fuzzy deductive system.

2. Preliminaries

We include some elementary aspects of Hilbert algebras that are necessary for this paper, and for more details we refer to (see [2,3,4]).

A Hilbert algebra is a triple (H, *, 1), where H is a nonempty set, " * " is a binary operation on $H, 1 \in H$ is an element such that the following three axioms are satisfied for every $x, y, z \in H$:

(H1) x * (y * x) = 1,

(H2) (x * (y * z)) * ((x * y) * (x * z)) = 1,

(H3) if x * y = y * x = 1 then x = y.

If H is a Hilbert algebra, then the relation $x \leq y$ if and only if x * y = 1 is a partial order on H, which will be called the *natural ordering* on H. With respect to this ordering, 1 is the largest element of H. A subset S of a Hilbert algebra H is called a *subalgebra* of H if $x * y \in S$ for all $x, y \in S$.

A mapping $f : H \to H'$ of Hilbert algebras is called a *homomorphism* if f(x * y) = f(x) * f(y) for all $x, y \in H$.

In a Hilbert algebra H, the following hold.

(H4) x * x = 1,

(H5) x * 1 = 1,

(H6) x * (y * z) = (x * y) * (x * z),

²⁰⁰⁰ Mathematics Subject Classification. 06F35, 03G25, 03E72.

Key words and phrases. Hilbert algebra, deductive system, (imaginable) T-fuzzy deductive system, (imaginable) T-fuzzy ideal.

(H7) 1 * x = x, (H8) x * (y * z) = y * (x * z). for all $x, y, z \in H$. (H9) x * ((x * y) * y)) = 1(H10) $x \le y$ implies $z * x \le z * y$ for all $x, y, z \in H$.

Definition 2.1. If H is a Hilbert algebra, a subset D of H is a *deductive system of* H if it satisfies:

- (1) $1 \in D$,
- (2) $x \in D$ and $x * y \in D$ imply $y \in D$.

Definition 2.2. If H is a Hilbert algebra, a subset I of H is a *an ideal of* H if it satisfies:

- (1) $1 \in I$,
- (2) $x * y \in I$ for $x \in H$ and $y \in I$,
- (3) $(y_1 * (y_2 * x)) * x \in I$ for $y_1, y_2 \in I$ and $x \in H$.

Let (H, *, 0) be a Hilbert algebra. A fuzzy set μ in H is a map $\mu : H \to [0, 1]$. Let μ be a fuzzy set in H. For $\alpha \in [0, 1]$, the set $R^{\alpha}_{\mu} = \{x \in H \mid \mu(x) \geq \alpha\}$ is called an *upper level* set of μ . A fuzzy set μ in a Hilbert algebra H is called a *fuzzy subalgebra* of H if

$$\mu(x * y) \ge \min\{\mu(x), \mu(y)\}$$

for all $x, y \in H$.

Definition 2.3. A fuzzy set μ in a Hilbert algebra H is called a *fuzzy deductive system* if it satisfies

- (1) $\mu(1) \ge \mu(x)$ for all $x \in H$,
- (2) $\mu(y) \ge \min\{\mu(x * y), \mu(x)\}$ for all $x, y \in H$.

Lemma 2.4. Let μ be a fuzzy deductive system of a Hilbert algebra H and $x \leq y$. Then $\mu(y) \geq \mu(x)$.

Theorem 2.5. Let μ be a fuzzy set of a Hilbert algebra H. Then μ is a fuzzy deductive system of a Hilbert algebra H if and only if for all $x, y, s \in H$, the inequality $x * y \ge s$ implies $\mu(y) \ge \min{\{\mu(x), \mu(s)\}}$.

Proof. Suppose that for all $x, y, s \in X, x * y \ge s$ implies $\mu(y) \ge \min\{\mu(x), \mu(s)\}$. Since $x * y \ge x * y$, it follows that $\mu(y) \ge \min\{\mu(x * y), \mu(x)\}$. Also, since $x * 1 \le x * 1$, we have $x*(x*1) \le x*(x*1)$. So, $\mu(1) = \mu(x*1) \ge \min\{\mu(x*(x*1)), \mu(x)\} = \min\{\mu(1), \mu(x)\} = \mu(x)$. Hence μ is a fuzzy deductive system of a Hilbert algebra H. Conversely, suppose that μ is a fuzzy deductive system of a Hilbert algebra H and $x * y \ge s$. It follows from Lemma 2.4 that $\mu(x * y) \ge \mu(s)$. So, by Definition 2.3,

$$\mu(y) \ge \min\{\mu(x * y), \mu(x)\} \ge \min\{\mu(x), \mu(s)\}.$$

This completes the proof.

Definition 2.6 ([5]). A fuzzy set μ in a Hilbert algebra H is called a *fuzzy ideal* if it satisfies

(F1) $\mu(1) \ge \mu(x)$ for all $x \in H$, (F2) $\mu(x * y) \ge \mu(y)$ for all $x, y \in H$, (F3) $\mu((y_1 * (y_2 * x)) * x) \ge \min\{\mu(y_1), \mu(y_2)\}$ for all $x, y_1, y_2 \in H$.

8

3. T-FUZZY IDEALS IN HILBERT ALGEBRAS

In the sequel, we use H to denote a Hilbert algebra unless otherwise specified. We begin with the following definition.

Definition 3.1 ([1]). By a *t*-norm T, we mean a function $T : [0,1] \times [0,1] \rightarrow [0,1]$ satisfying the following conditions:

 $(T1) \quad T(x,1) = x,$

(T2) $T(x,y) \le T(x,z)$ if $y \le z$, (T3) T(x,y) = T(y,x),

(T4) T(x, T(y, z)) = T(T(x, y), z),

for all $x, y, z \in [0, 1]$.

Every t-norm T has a useful property:

 $T(\alpha, \beta) \leq \min(\alpha, \beta)$ for all $\alpha, \beta \in [0, 1]$.

For a *t*-norm *T* on [0, 1], denote by Δ_T the set of element $\alpha \in [0, 1]$ such that $T(\alpha, \alpha) = \alpha$, i.e., $\Delta_T := \{\alpha \in [0, 1] \mid T(\alpha, \alpha) = \alpha\}.$

Definition 3.2. Let T be a t-norm. A fuzzy set μ in X is said to satisfy *imaginable property* if $\text{Im}(\mu) \subseteq \Delta_T$.

Lemma 3.3. Let T be a t-norm and Λ an index set. Then T satisfy the following conditions:

(1) $T(\alpha \land \beta, \gamma) = T(\alpha, \gamma) \land T(\beta, \gamma)$ for all $\alpha, \beta \in [0, 1]$. (2) $T(\inf_{i \in \Lambda} \alpha_i, \beta) \leq \inf_{i \in \Lambda} T(\alpha_i, \beta)$ for any $\alpha_i, \beta \in [0, 1], i \in \Lambda$.

Proof. (1) If $\alpha < \beta$, then $T(\alpha \land \beta, \gamma) = T(\alpha, \gamma)$ and $T(\alpha, \gamma) \land T(\beta, \gamma) = T(\alpha, \gamma)$, since $T(\alpha, \gamma) \le T(\beta, \gamma)$. Hence $T(\alpha \land \beta, \gamma) = T(\alpha, \gamma) \land T(\beta, \gamma)$. In the cases of $\alpha = \beta$ and $\alpha > \beta$, we can prove similarly.

(2) Since $T(\inf_{i \in \Lambda} \alpha_i, \beta) \leq T(\alpha_i, \beta)$ for each $i \in \Lambda$, $T(\inf_{i \in \Lambda} \alpha_i, \beta)$ is a lower bound of the set $\{T(\alpha_i, \beta) \mid i \in \Lambda\}$. Hence $T(\inf_{i \in \Lambda} \alpha_i, \beta) \leq \inf_{i \in \Lambda} T(\alpha_i, \beta)$.

The equality of the above Lemma 3.3.(2) is not holed, in general, as following example. **Example 3.1.** Let \mathbb{N} be the natural number. We define a function $T : [0, 1] \times [0, 1] \rightarrow [0, 1]$ by

$$T(\alpha, \beta) = \begin{cases} \alpha & \text{if } \beta = 1\\ \beta & \text{if } \alpha = 1\\ \frac{1}{2} & \text{if } \alpha, \beta \in (\frac{1}{2}, 1)\\ 0 & \text{otherwise} \end{cases}$$

for each $\alpha, \beta \in [0, 1]$. Then the function T is a t-norm. Let $a_n = \frac{1}{2} + \frac{1}{n} + 1$. Then we have

$$T(\inf_{n \in \mathbb{N}} a_n, \frac{2}{3}) = T(\frac{1}{2}, \frac{2}{3}) = 0$$

and

$$\inf_{n \in \mathbb{N}} T(a_n, \frac{2}{3}) = \inf_{n \in \mathbb{N}} \frac{1}{2} = \frac{1}{2}.$$

Hence $T(\inf_{n \in \mathbb{N}} \alpha_n, \frac{2}{3}) \lneq \inf_{n \in \mathbb{N}} T(\alpha_n, \frac{2}{3})$

Proposition 3.4. Let *i* is an arbitrary index set and *T* a *t*-norm. If for any $\beta \in [0, 1]$ there is an $\alpha \in [0, 1]$ such that $T(\alpha, \beta) = t$ for all $t \in [0, \beta]$, then $T(\inf_{i \in \Lambda} \alpha_i, \beta) = \inf_{i \in \Lambda} T(\alpha_i, \beta)$ for any $\alpha_i, \beta \in [0, 1], i \in \Lambda$.

Proof. Since $\inf_{i \in \Lambda} \alpha_i \leq \alpha_{\gamma}$ for each $\gamma \in \Lambda$, $T(\inf_{i \in \Lambda} \alpha_i, \beta) \leq T(\alpha_{\gamma}, \beta)$ for each $\gamma \in \Lambda$. This implies

$$T(\inf_{i\in\Lambda}\alpha_i,\beta) \le \inf_{i\in\Lambda}T(\alpha_i,\beta).$$

Conversely, let $\gamma = \inf_{i \in \Lambda} \alpha_i$ and $s = \inf_{i \in \Lambda} T(\alpha_i, \beta)$. If $T(\gamma, \beta) < s$, then there exists t such that $T(\gamma, \beta) < t < s$. Since $t < s \le T(\alpha_i, \beta) \le \beta$, there is a $\alpha \in [0, 1]$ such that $T(\alpha, \beta) = t$ by hypothesis. Hence $T(\alpha, \beta) < T(\alpha_i, \beta)$ for all $i \in \Lambda$. This implies $\alpha < \alpha_i$ for all $i \in \Lambda$, and $\alpha \le \gamma = \inf_{i \in \Lambda} \alpha_i$. That is, $t = T(\alpha, \beta) \le T(\gamma, \beta)$. This is a contradiction for $T(\gamma, \beta) < s$. \Box

Definition 3.5. A function μ in H is called a *fuzzy ideal* of H with respect to a *t*-norm T (briefly, a *T*-fuzzy ideal of H) if

- (TF1) $\mu(1) \ge \mu(x)$ for all $x \in H$,
- (TF2) $\mu(x * y) \ge \mu(y)$ for all $x, y \in H$,
- (TF3) $\mu((y_1 * (y_2 * x)) * x) \ge T(\mu(y_1), \mu(y_2))$ for all $x, y_1, y_2 \in H$.

Example 3.2. Let $H = \{a, b, c, d, 1\}$ in which * is defined by

*	a	b	c	d	1
a	1	1	1	1	1
b	a	1	c	1	1
c	a	b	1	1	1
d	a	b	c	1	1
1	a	b	c	1 1 1 1 d	1

Then H is a Hilbert algebra. Define $\mu: H \to [0, 1]$ by $\mu(1) = 0.9, \mu(a) = \mu(c) = 0.8, \mu(b) = \mu(d) = 0.7$. Let T_m be a t-norm defined by

$$T_m(\alpha,\beta) = \max(\alpha + \beta - 1, 0)$$

for all $\alpha, \beta \in [0, 1]$. Then, routine calculations give that μ is a T_m -fuzzy ideal of a Hilbert algebra H.

Proposition 3.6. If $\{\mu_i : i \in \Lambda\}$ is a family of fuzzy ideals of a Hilbert algebra H, then $\bigwedge_{i \in \Lambda} \mu_i$ is a T-fuzzy ideal of a Hilbert algebra H.

Proof. Let $x \in H$. Then, we have

$$(\bigwedge_{i \in \Lambda} \mu_i)(1) = \inf\{\mu_i(1) : i \in \Lambda\}$$
$$\geq \inf\{\mu_i(x) : i \in \Lambda\}$$
$$= (\bigwedge_{i \in \Lambda} \mu_i)(x).$$

Let y, y_1 and $y_2 \in H$. Then we have

$$(\bigwedge_{i \in \Lambda} \mu_i)(x * y) = \inf\{\mu_i(x * y) : i \in \Lambda\}$$

$$\geq \inf\{\mu_i(y) : i \in \Lambda\}$$

$$= (\bigwedge_{i \in \Lambda} \mu_i)(y),$$

and by Lemma 3.2(2),

$$\begin{split} (\bigwedge_{i \in \Lambda} \mu_i)((y_1 * (y_2 * x)) * x) &= \inf\{\mu_i((y_1 * (y_2 * x)) * x) : i \in \Lambda\} \\ &\geq \inf\{T(\mu_i(y_1), \mu_i(y_2)) : i \in \Lambda\} \\ &\geq T(\inf\{\mu_i(y_1) : i \in \Lambda\}, \inf\{\mu_i(y_2) : i \in \Lambda\}) \\ &= T((\bigwedge_{i \in \Lambda} \mu_i)(y_1), (\bigwedge_{i \in \Lambda} \mu_i)(y_2)). \end{split}$$

Hence $\bigwedge_{i \in \Lambda} \mu_i$ is a *T*-fuzzy ideal of a Hilbert algebra *H*.

Definition 3.7. A *T*-fuzzy ideal of *H* is said to be *it imaginable* if it satisfies the imaginable property.

Theorem 3.8. Let T be a t-norm. Then every imaginable T-fuzzy ideal of H is a fuzzy ideal of H.

Proof. Let μ be an imaginable *T*-fuzzy ideal of *H*. Then

$$\mu((y_1 * (y_2 * x)) * x) \ge T(\mu(y_1), \mu(y_2))$$
 for all $x, y_1, y_2 \in H$.

Since μ satisfies the imaginable property, we have

$$\min(\mu(y_1), \mu(y_2)) = T(\min(\mu(y_1), \mu(y_2)), \min(\mu(y_1), \mu(y_2)))$$

$$\leq T(\mu(y_1), \mu(y_2))$$

$$\leq \min(\mu(y_1), \mu(y_2)).$$

It follows that $\mu((y_1 * (y_1 * x)) * x) \ge T(\mu(y_1), \mu(y_2)) = \min(\mu(y_1), \mu(y_1))$ so that μ is a fuzzy ideal of H.

Proposition 3.9. A fuzzy set μ in Hilbert algebra H is a fuzzy ideal of H if and only if each non-empty level subset R^t_{μ} of μ is an ideal of H (see [5]).

Using Theorem 3.10 and Proposition 3.11, we have the following corollary:

Corollary 3.10. If μ is an imaginable *T*-fuzzy ideal of a Hilbert algebra *H*, then each non-empty level subset R^t_{μ} of μ is an ideal of *H*.

The following example shows that there exists a t-norm T such that a fuzzy ideal of H may not be an imaginable T-fuzzy ideal of H.

Example 3.3. Let $H = \{a, b, c, d, 1\}$ be a Hilbert algebra with the following Cayley table:

Then a fuzzy set $\mu : H \to [0, 1]$ defined by $\mu(1) = 0.9$, $\mu(a) = \mu(b) = \mu(c) = 0.4$ is a fuzzy ideal of H (see [3, Example 2.7]). Let $\gamma \in (0, 1)$ and define the binary operation T_{γ} on [0, 1] as follows:

$$T_{\gamma}(\alpha,\beta) = \begin{cases} \alpha \land \beta & \text{if } \max(\alpha,\beta) = 1\\ 0 & \text{if } \max(\alpha,\beta) < 1 \text{ and } \alpha + \beta \le 1 + \gamma\\ \gamma & \text{otherwise} \end{cases}$$

 $\forall \alpha, \beta \in [0, 1]$. Then T_{γ} is a *t*-norm on [0, 1] (see [6, Example 1.2.1]). Thus $T_{\gamma}(\mu(0), \mu(0)) = T_{\gamma}(0.9, 0.9) = \gamma \neq \mu(0)$ whenever $\gamma < 0.8$, and so $\mu(0) \notin \Delta_{T_{\gamma}}$, i.e., $\operatorname{Im}(\mu) \not\subseteq \Delta_{T_{\gamma}}$ whenever $\gamma < 0.8$. Hence μ is not an imaginable T_{γ} -fuzzy ideal of H whenever $\gamma < 0.8$.

Now we consider the converse of Corollary 3.12.

Theorem 3.11. Let T be a t-norm and let μ be an imaginable fuzzy set in H. If each non-empty level subset R^t_{μ} of μ is an ideal of a Hilbert algebra H, then μ is an imaginable T-fuzzy ideal of H.

Proof. Suppose that each non-empty level subset R^t_{μ} of μ is an ideal of H. Then μ is a fuzzy ideal of H (see Proposition 3.11), and so

$$\mu((y_1 * (y_2 * x)) * x) \ge \min(\mu(y_1), \mu(y_2)) \ge T(\mu(y_1), \mu(y_2))$$

for all $x, y \in H$. Hence μ is an imaginable T-fuzzy ideal of H.

Proposition 3.12. Every imaginable T-fuzzy ideal of a Hilbert algebra H is order preserving.

Proof. Let μ be an imaginable *T*-fuzzy ideal of *H* and let $x, y \in H$ be such that $x \leq y$. Then

$$\begin{split} \mu(y) &= \mu((1 * (x * y) * y) \geq \min(\mu(x), \mu(1)) & \text{[by Theorem 3.10]} \\ &\geq T(\mu(x), \mu(1)) & [T(\alpha, \beta) \leq \min(\alpha, \beta) \text{ for all } \alpha, \beta \in [0, 1]] \\ &\geq T(\mu(x), \mu(x)) & \text{[by (T2) and (T3)]} \\ &= \mu(x), & \text{[since } \mu \text{ satisfies the imaginable property]} \end{split}$$

ending the proof.

Definition 3.13. A function μ in H is called a *fuzzy deductive system* of H with respect to a *t*-norm T (briefly, a *T*-*fuzzy deductive system* of H) if

(FS1) $\mu(1) \ge \mu(x)$ for all $x \in H$,

(FS2) $\mu(y) \ge T(\mu(x * y), \mu(x))$ for all $x, y \in H$.

Definition 3.14. A *T*-fuzzy deductive system μ of a Hilbert algebra *H* is said to be *imaginable* if it satisfies the imaginable property.

We give a relation between an imaginable T-fuzzy deductive system of H and an imaginable T-fuzzy ideal of H.

Theorem 3.15. Let T be a t-norm. Then every imaginable T-fuzzy ideal of H is an imaginable T-fuzzy deductive system of H.

Proof. Since y = 1 * y for all $y \in X$, we have

$$\mu(y) = \mu(1 * y) = \mu(((x * y) * (x * y)) * y)$$

$$\geq T(\mu(x * y), \mu(x)).$$

Hence μ is an imaginable *T*-fuzzy deductive system of *H*.

Example 3.4. Let H be a Hilbert algebra in Example 3.7, and let T_m be a *t*-norm in Example 3.4. Define a fuzzy set $\mu : H \to [0, 1]$ by $\mu(1) = \mu(b) = 1$ and $\mu(a) = \mu(c) = 0.6$. Then μ is an imaginable T_m -fuzzy deductive system of H.

Definition 3.16. A function $\mu : H \to [0, 1]$ is called a *fuzzy subalgebra* of H with respect to a *t*-norm T (briefly, a *T*-fuzzy subalgebra of H) if

$$\mu(x * y) \ge T(\mu(x), \mu(y))$$

for all $x, y \in H$.

Definition 3.17. A *T*-fuzzy subalgebra μ of *H* is said to be *imaginable* if it satisfies the imaginable property.

We give a relation between an imaginable T-fuzzy subalgebra of H and an imaginable T-fuzzy deductive system of H.

Theorem 3.18. Let T be a t-norm. Then every imaginable T-fuzzy deductive system of H is an imaginable T-fuzzy subalgebra of H.

Proof. Since $y * x \ge x$ for all $x, y \in H$, it follows from Proposition 3.15 that $\mu(y * x) \ge \mu(x)$, so by (FS2) and (T2)

$$\mu(y * x) \ge \mu(x) \ge T(\mu(y * x), \mu(y)) \ge T(\mu(x), \mu(y)) = T(\mu(y), \mu(x)).$$

Hence μ is an imaginable T-fuzzy subalgebra of H.

Proposition 3.19. Let μ be an imaginable *T*-fuzzy deductive system of *H*. If the inequality $x * y \ge z$ holds in *H*, then $\mu(y) \ge T(\mu(x), \mu(z))$ for all $x, y, z \in H$.

Proof. Let $x, y, z \in H$ be such that $x * y \ge z$. Then

$$\mu(x * y) \ge T(\mu(z * (x * y)), \mu(z)) = T(\mu(0), \mu(z)).$$

It follows that

$$\begin{split} \mu(y) &\geq T(\mu(x * y), \mu(x)) \\ &\geq T(T(\mu(1), \mu(z)), \mu(x)) \\ &= T(\mu(1), T(\mu(z), \mu(x))) \\ &\geq T(\mu(z), T(\mu(z), \mu(x))) \\ &= T(T(\mu(z), \mu(z)), \mu(x)) \\ &= T(\mu(x), \mu(z)), \end{split}$$

completing the proof.

The following example shows that, for a t-norm T, an imaginable T-fuzzy subalgebra of H may not be an imaginable T-fuzzy deductive system of H.

Example 3.5. Let $H = \{1, x, y, z, 0\}$ in which * is defined by

*	1	x	y	z	0
1	1	x	y	z	0
x	1	1	y	z	0
y	1	x	1	z	z
z	1	1	y	1	y
0	1	$\begin{array}{c} x \\ 1 \\ x \\ 1 \\ 1 \\ 1 \end{array}$	1	1	1

Then H is a Hilbert algebra. Define $\mu : H \to [0,1]$ by $\mu(1) = 1, \mu(x) = \mu(y) = 0.8, \mu(z) = 0.7, \mu(0) = 0.4$. Let T_m be a t-norm defined by

$$T_m(\alpha,\beta) = \max(\alpha + \beta - 1, 0)$$

for all $\alpha, \beta \in [0, 1]$. Then, routine calculations give that μ is a T_m -fuzzy subalgebra of a Hilbert algebra H. But μ is not an imaginable T-fuzzy deductive system, because

$$\mu(0) = 0.4 \le T(\mu(z * 0), \mu(z)) = 0.5.$$

Now we give conditions in order that an imaginable T-fuzzy subalgebra of H would be an imaginable T-fuzzy deductive system of H.

Theorem 3.20. Let T be a t-norm. An imaginable T-fuzzy subalgebra μ of H is an imaginable T-fuzzy deductive system of H if and only if for all $x, y, z \in H$ the inequality $x * y \ge z$ implies that $\mu(y) \ge T(\mu(x), \mu(z))$.

Proof. (\Rightarrow) It follows from Proposition 3.23.

 (\Leftarrow) Let $x, y, z \in H$ and let μ be an imaginable *T*-fuzzy subalgebra of *H* satisfying $\mu(y) \ge T(\mu(x), \mu(z))$ whenever $x * y \ge z$. Since $x * y \ge x * y$, it follows that $\mu(y) \ge T(\mu(x * y), \mu(x))$. Since μ satisfies the imaginable property, we have

$$\mu(1) = \mu(x * x) \ge T(\mu(x), \mu(x)) = \mu(x).$$

Hence μ is an imaginable *T*-fuzzy deductive system of *H*.

Theorem 3.21. Let T be a t-norm and let H be a Hilbert algebra in which the equality y = (x * y) * x holds for all distinct elements x and y of H. Then every imaginable T-fuzzy subalgebra of H is an imaginable T-fuzzy deductive system of H.

Proof. Let μ be an imaginable *T*-fuzzy subalgebra of *H*. It is sufficient to show that μ satisfies the conditions (FS1) and (FS2). Since x * x = 1 for all $x \in H$ and since μ satisfies the imaginable property, we have

$$\mu(1) = \mu(x * x) \ge T(\mu(x), \mu(x)) = \mu(x)$$

for all $x \in H$. Let $x, y \in H$. Then

$$\mu(y) = \mu((x * y) * x) \ge T(\mu(x * y), \mu(x))$$

when $x \neq y$. If x = y then

$$\mu(x) = \mu(1 * x) \ge T(\mu(1), \mu(x)) = T(\mu(x * x), \mu(x))$$

Hence μ is an imaginable *T*-fuzzy deductive system of *H*.

Let f be a mapping defined on X. If ν is a fuzzy set in f(X) then the fuzzy set $\mu = \nu \circ f$ in X (i.e., the fuzzy set defined by $\mu(x) = \nu(f(x))$ for all $x \in X$) is called the *preimage* of ν under f.

Theorem 3.22. Let T be a t-norm and let $f : H \to H'$ be an epimorphism of Hilbert algebras, ν an imaginable T-fuzzy ideal of H' and μ the preimage of ν under f. Then μ is an imaginable T-fuzzy ideal of H.

Proof. For any $x, y \in H$ we have

$$\mu(x) = \nu(f(x)) \le \nu(1') = \nu(f(1)) = \mu(1),$$

and

$$\mu(x * y) = \nu(f(x * y)) = \nu(f(x) *' f(y)) \ge \nu(f(y)).$$

Furthermore,

$$\mu((y_1 * (y_2 * x)) * x) = \nu(f(y_1 * (y_2 * x)) * x))$$

= $\nu((f(y_1) *' (f(y_2) *' f(x))) *' f(x))$
 $\geq T(\nu(f(y_1), \nu(f(y_2)))$
= $T(\mu(y_1), \mu(y_2))$

for any $x, y_1, y_2 \in H$. Clearly μ satisfies the imaginable property.

References

- [1] M.T.Abu Osman, On some product of fuzzy subgroups, Fuzzy set and system 24, (1987), 79-86.
- [2] D. Busneag, A note on deductive systems of a Hilbert algebras, Fuzzy set and system 2, (1985), 29-35.
 [3] D. Busneag, Hilbert algebras of fractions and maximal Hilbert algebras of quotients, Kobe J. Math 5,
- (1988), 161-172.
- [4] A. Diego, Sur les algébras de Hilbert, Ed. Hermann, Colléction de Logique Math. Serie A **21** , (1999), 1-52.
- [5] W. A. Dudek, On fuzzy ideals in Hilbert algebras, Novi Sad J. Math. 29 No 2 , (1999), 193-207.
- [6] Y. Yu, J. N. Mordeson and S. C. Cheng, *Elements of L-algebra*, Lecture Notes in Fuzzy Math. and Computer Sciences, Creighton Univ., Omaha, Nebraska 68178, USA, (1994).
- [7] L. A. Zadeh, Fuzzy sets, Inform. and control 8 (1965), 338-353.

DEPARTMENT OF MATHEMATICS, CHUNGK NATIONAL UNIVERSITY, CHUNGK, CHUNGKING 380-702, KOREA *E-mail:* ghkim@cjnu.ac.kr