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Abstract. In [5], one of the authors showed Kantorovich type inequalities with two
positive parameters, which is a difference version of Furuta-Giga’s one [4]. In this note,
we show the following order for p � −1: Let A ≥ B > 0 and MI ≥ A ≥ mI > 0 for
some positive numbers M > m > 0. Then

Bp + C(m, M, p)I ≥ Bp + C

�
1

M
,

1

m
,−p

�
I ≥ Ap

holds for p � −1 where the constant is defined as

C(m, M, p) ≡ (p − 1)

�
Mp − mp

p(M − m)

� p
p−1

+
Mmp − Mpm

M − m
.

We also show a similar inequality for the chaotic order: Let A and B positive operators
on a Hilbert space with MI ≥ A ≥ mI > 0 for some positive numbers M > m > 0. If
log A ≥ log B, then

Bp +
M

m
(mp − Mp)I ≥ Bp + C

�
1

M
,

1

m
, 1 − p

�
MI ≥ Ap

for p � 0.

Throughout this paper, we consider bounded linear operators on a complex Hilbert space
H . An operator T is said to be positive (denoted by T ≥ 0) if 〈Tx, x〉 � 0 for all x ∈ H .
The positivity defines the usual order A ≥ B for selfadjoint operators A and B. For the
sake of convenience, T > 0 means T is positive and invertible. The Löwner-Heinz inequality
asserts that A ≥ B ≥ 0 ensures Aα ≥ Bα for all 0 � α � 1. However A ≥ B ≥ 0 does not
ensure Aα ≥ Bα for α > 1 in general. In 1997, M. Fujii, S. Izumino, R. Nakamoto and Y.
Seo [1] showed the following reverse inequality for t2:

A ≥ B ≥ 0, MI ≥ A ≥ mI > 0 =⇒ (M + m)2

4Mm
A2 ≥ B2.

It is obtained as an application of the celebrated Kantorovich inequality, i.e.,

MI ≥ A ≥ mI > 0, M > m > 0

=⇒ 〈A−1x, x〉 〈Ax, x〉 � (M + m)2

4Mm
for all unit vectors x ∈ H.

The constant (M+m)2

4Mm is called the Kantorovich constant.
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As an extension of this, T. Furuta and M. Giga [4] gave a complementary result of
Kantorovich type order preserving inequality by Mićić-Pečarić-Seo [6]. For our note, we
need two constants. One is the generalized Kantorovich constant introduced by Furuta
[2, 3]:

K(m,M, p) =
mMp − Mmp

(p − 1)(M − m)

(
(p − 1)

p

(Mp − mp)
(mMp − Mmp)

)p

for M > m > 0 and p ∈ R. Another is the following by J. Mićić, Y.Seo, S-E. Takahashi
and M. Tominaga [7]:

C(m,M, p) = (p − 1)
(

Mp − mp

p(M − m)

) p
p−1

+
Mmp − Mpm

M − m

for M > m > 0 and p ∈ R. Moreovere we prepare the following theorems.

Furuta [3] showed the following inequality.

Theorem A. If M > m > 0 for positive numbers M and m, then

K(m,M, p) �
(

M

m

)p−1

for p > 1.

Yamazaki [8] showed Theorem B and Theorem C.

Theorem B. If M > m > 0 for positive numbers M and m, then

C(m,M, p) =
mMp − Mmp

M − m
(K(m,M, p)

1
p−1 − 1) for p ∈ R.

Theorem C. Let A and B be positive operators on H such that A ≥ B ≥ 0 and MI ≥
B ≥ mI > 0 for some positive numbers M > m > 0. Then

Ap + C(m,M, p)I ≥ Bp for p > 1.

Theorem (The chaotic Furuta inequality). Let A and B be positive invertible opera-
tors on H. Then the chaotic order log A ≥ log B is equivalent to the inequality

(B
r
2 ApB

r
2 )

r
p+r ≥ Br for all p, r � 0.

In the below, we observe the case p < 0. If −1 � p < 0, then Bp ≥ Ap holds by the
Löwner-Heinz inequality. The other case p � −1, we have the following inequality:

Theorem 1. Let A and B be positive and invertible operators on H such that A ≥ B > 0
and MI ≥ A ≥ mI > 0 for some positive numbers M > m > 0. Then

Bp + C(m,M, p)I ≥ Ap for p < −1.

Proof. It is shown in [7] that

0 � 〈Apx, x〉 − 〈Ax,x〉p � C(m,M, p)

holds for unit vectors x. Then Hölder-McCarthy inequality shows

〈Apx, x〉 � 〈Ax,x〉p + C(m,M, p) � 〈Bx, x〉p + C(m,M, p) � 〈Bpx, x〉 + C(m,M, p),

which implies the required inequality.
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To discuss more precise estimation than Theorem 1, we prepare the following Lemma 2 by
Yamazaki[8]. For the reader’s convenience, we give a proof:

Lemma 2. If q � 1 and M > m > 0, then

0 � C(m,M, q) � M(M q−1 − mq−1).

Incidentally, C(m,M, 1) = 0.

Proof. By Theorems B and A, we have

C(m,M, q) =
mM q − Mmq

M − m
(K(m,M, q)

1
q−1 − 1)

� mM q − Mmq

M − m

⎛
⎝
((

M

m

)q−1
) 1

q−1

− 1

⎞
⎠

= M(M q−1 − mq−1) for q > 1.

The case q = 1 is clear.

Now we show the following reverse inequality. It characterizes the usual order A ≥ B
by Lemma 2:

Theorem 3. If A and B be positive and invertible operators on H such that MI ≥ A ≥
mI > 0 for some positive numbers M > m > 0. If A ≥ B, then

Bp +
mp+1 − Mp+1

m
I ≥ Bp + C

(
1
M

,
1
m

,−p

)
I ≥ Ap

holds for p � −1.

Proof. By Lemma 2, we have the left inequality since

C

(
1
M

,
1
m

,−p

)
≤ 1

m

((
1
m

)−p−1

−
(

1
M

)−p−1
)

=
mp+1 − Mp+1

m
.

For the proof of the right inequality, we use the Theorem C. Let p1 := −p, A1 := B−1,
B1 := A−1, L := m−1, and l := M−1. By the inequalities

B−1 ≥ A−1 > 0, m−1I ≥ A−1 ≥ M−1I,

we have that

(B−1)−p + C

(
1
M

,
1
m

,−p

)
I ≥ (A−1)−p.

Then we obtain the second inequality.

Bp + C

(
1
M

,
1
m

,−p

)
I ≥ Ap for p < −1.

Taking limit p −→ −1, we have that all the inequalities hold also for p � −1.

Theorem 3 is better than Theorem 1 by the following comparison:
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Theorem 4. If q > 1 and M > m > 0, then

C(m,M,−q) � C(1/M, 1/m, q).

Proof. Let G1(x) = a1x + b1 be an affine function on [m, M ] with

G1(m) = m−q and G1(M) = M−q. (0)

Since x−q is a convex function, we have

x−q � G1(x) (1)

on [m, M ]. Moreover, since G1 is a tangent line for the curve x−q + C(m,M,−q), we have

G1(x) � x−q + C(m,M,−q) (2)

on [m, M ].
On the other hand, a function xq on [1/M, 1/m] is also convex. So, putting G2(x) =

a2x+b2(a2 > 0) be an affine function on [1/M, 1/m] with G2(1/M) = M−q and G1(1/m) =
m−q, we have

xq � G2(x) (3)

and G2 is a tangent line for xq + C(1/M, 1/m, q) with a contact point x2 ∈ [1/M, 1/m],
that is,

G2(x) � xq + C(1/M, 1/m, q) and G2(x2) = xq
2 + C(1/M, 1/m, q) (4)

on [1/M, 1/m]. Consider a function F (x) = G2(1/x) on [m, M ]. Then

F (m) = m−q, and F (M) = M−q.

Since F is convex, (0) implies
F (x) � G1(x) (5)

and
F (x) � x−q + C(1/M, 1/m, q) and F (1/x2) = xq

2 + C(1/M, 1/m, q) (4′)

on [m, M ]. Therefore, (5) and (2) show

xq
2 + C(1/M, 1/m, q) = F (1/x2) � G1(1/x2)

� (1/x2)−q + C(m,M,−q) = xq
2 + C(m,M,−q),

so that we have the required inequality.

We also have a similar inequality for the chaotic order, which does not characterize the
chaotic order log A ≥ log B unfortunately since C

(
1
M , 1

m , 1 − p
)
/p does not converge to 0

as p tends to 0:

Theorem 5. Let A and B be positive and invertible operators on H with MI ≥ A ≥ mI >
0 for some positive numbers M > m > 0. If log A ≥ log B, then

Bp +
M(mp − Mp)

m
I ≥ Bp + C

(
1
M

,
1
m

, 1 − p

)
MI ≥ Ap

for p � 0.
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Proof. By Lemma 2, we have the following inequality.

C

(
1
M

,
1
m

,−p + 1
)

M �
(

1
m

)((
1
m

)−p

−
(

1
M

)−p
)

M

=
M

m
(mp − Mp)

holds for p < 0. Hence we get the first inequality. By using the chaotic Furuta inequality,
we have the following for r = 1 and q � 0,

log A ≥ log B =⇒ (B
1
2 AqB

1
2 )

1
q+1 ≥ B.

Then we have

log B−1 ≥ log A−1 =⇒ (A− 1
2 B−qA− 1

2 )
1

q+1 ≥ A−1 for q � 0.

Hence it follows from Theorem C that

(A− 1
2 B−qA− 1

2 ) + C

(
1
M

,
1
m

, q + 1
)

I ≥ A−(q+1),

or equivalently,

B−q + C

(
1
M

,
1
m

, q + 1
)

A ≥ A−q.

Finally, since MI ≥ A ≥ mI, we have

Bp + C

(
1
M

,
1
m

,−p + 1
)

MI ≥ Ap by p := −q � 0.

Then we have the second inequality. Whence the proof is complete.
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