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HÖLDER CONDITIONS IN THE
DIVERGENCE THEOREM
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Abstract. In the framework of Lebesgue integration and bounded sets of finite perime-
ter, we present a straightforward proof of the divergence theorem for bounded vector
fields satisfying Hölder conditions on sets of appropriate Hausdorff measures.

Given a compact BV set A ⊂ Rn, the divergence theorem holds for every vector field
v : A → Rn that is continuous outside an Hn−1 negligible set, and pointwise Lipschitz
outside an Hn−1 σ-finite set [9, Theorem 2.9]. Since continuous and pointwise Lipschitz are
extreme points of the scale represented by Hölder conditions, it is natural to ask whether
the divergence theorem remains valid under the following assumptions: for 0 < s < 1, the
vector field v is pointwise Lipschitz outside an Hn−1+s σ-finite (negligible) set E ⊂ A, and
the s-Hölder constant of v is zero (finite) at each x ∈ E. We use results of W.B. Jurkat
(see Remark 2.5 below) to prove the divergence theorem which takes into account Hölder
conditions for all 0 ≤ s ≤ 1 simultaneously. One of the consequences, obtained by restricting
the number s to 0 and 1, is a new and simpler proof of the divergence theorem cited above.

Our starting point is the well-known divergence theorem for bounded BV sets and con-
tinuously differentiable vector fields, which is assumed without proof. Modulo a few techni-
calities resulting from the use of BV sets, the exposition is elementary. The crux of the proof
involves only dyadic cubes. As an application, we present two theorems about integration
by parts. Both are easy corollaries of the main result.

1. The main theorem

The sets of all reals and all positive reals are denoted by R and R+, respectively. For
each integer m ≥ 1, we denote by | · | the Euclidean norm in R

m induced by the usual inner
product x · y. Unless specified otherwise, all functions we consider are real-valued. Given a
collection A of sets and a set B, we let A(B) := {A ∈ A : A ⊂ B}.

Throughout, the ambient space is Rn where n ≥ 1 is a fixed integer. The diameter,
closure, interior, and boundary of a set E ⊂ Rn are denoted by d(E), cl E, intE, and ∂E,
respectively. By B(x, r) we denote the open ball of radius r > 0 centered at x ∈ Rn. The
distance from x ∈ R

n to E ⊂ R
n is denoted by dist(x,E). Equalities such as γ := γ(n),

κ := κ(n), . . . , indicate that γ, κ, . . . , are constants depending only on the dimension n.

Let E ⊂ Rn and 0 ≤ s ≤ 1. The s-Hölder constant of v : E → Rm at x ∈ E is the
extended real number

Hsv(x) := lim sup
y∈E, y→x

∣∣v(y) − v(x)
∣∣

|y − x|s .
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Clearly, H0v(x) < ∞ if and only if v is bounded in a neighborhood of x, and H0v(x) = 0 if
and only if v is continuous at x. Note that Lip v(x) := H1v(x) is the Lipschitz constant of
v at the point x.

In Rn we use Lebesgue measure Ln, as well as the Hausdorff measures Ht where 0 ≤ t ≤ n
is a real number. For E ⊂ Rn, we write |E|t instead of Ht(E); we note that

|E|n = Hn(E) = Ln(E)

[4, Section 2.2], and denote this common value by |E|. The restricted measures Ln E
and Ht E are defined in the usual way [4, Section 2.1]. Without additional attributes,
the word “measurable” and the expressions “almost all” and “almost everywhere” refer to
Lebesgue measure Ln. We say that sets A,B ⊂ Rn overlap whenever |A ∩ B| > 0.

Let E ⊂ R
n be a measurable set, and for 0 ≤ θ ≤ 1 let

E(θ) :=
{
x ∈ R

n : lim
r→0+

r−n
∣∣B(x, r) ∩ E

∣∣ = θ
}
.

The sets int∗E := E(1), cl∗E := Rn−E(0), and ∂∗E := cl∗E−int∗E are called, respectively,
the essential interior, essential closure, and essential boundary of E. Clearly, the inclusions
intE ⊂ int∗E ⊂ cl∗E ⊂ cl E and ∂∗E ⊂ ∂E hold. The sets int∗E, cl∗E, and ∂∗E are Borel,
and the density theorem [13, Chapter 4, Theorem 6.1] implies

|int∗E| = |cl∗E| = |E|.(1.1)

The extended real number ‖E‖ := |∂∗E|n−1 is called the perimeter of E. A unit exterior
normal of E at x ∈ Rn is a vector ν ∈ Rn such that |ν| = 1 and

lim
r→0+

r−n
∣∣{y ∈ B(x, r) ∩ E : ν · (y − x) > 0

}∣∣ = 0,

lim
r→0+

r−n
∣∣{y ∈ B(x, r) − E : ν · (y − x) < 0

}∣∣ = 0.

If a unit exterior normal of E at x exists, it is unique and we denote it by νE(x).

Given a measurable set E ⊂ Rn, we say that v : cl∗E → Rm is relatively differentiable at
the point x ∈ int∗E if there is a linear map Dv(x) : Rn → Rm such that

lim
y∈cl∗E, y→x

∣∣v(y) − v(x) − Dv(x)(y − x)
∣∣

|y − x| = 0.

If m = n, the trace of Dv(x) is called the relative divergence of v at x, denoted by div v(x).
Since the concepts of relative differentiability and differentiability coincide whenever x be-
logs to intE, using the standard notation will cause no confusion.

Relative differentiability implies approximate differentiability [4, Section 3.1.2]. Although
the converse is false, relative and approximate differentiability exhibit similarities. In par-
ticular, an argument analogous to proving the uniqueness of approximate derivatives shows
that the linear map Dv(x) defined above is unique [8, Observation 2.5.6]. The following
version of Stepanoff’s theorem for relative differentiability is proved in [3, Proposition 2.3].

Theorem 1.1. Let E ⊂ R
n. A map v : cl∗E → R

n is relatively differentiable almost
everywhere in

{
x ∈ int∗E : Lip v(x) < ∞}

.

A set of finite perimeter , or a BV set , is a measurable set A ⊂ Rm with |A| < ∞ and
‖A‖ < ∞; cf. Remark 3.3 below. The family of all bounded BV sets is denoted by BVc.
For the basic properties of BV sets we refer to [4, Chapter 5]. The next two theorems are
proved in [4, Chapter 5] and [14].
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Theorem 1.2. If A ∈ BVc, then the map νA : x 	→ νA(x) is defined Hn−1 almost every-
where in ∂∗A, it is Hn−1 measurable, and for each v ∈ C1(Rn; Rn),∫

A

div v dLn =
∫

∂∗A

v · νA dHn−1.

Theorem 1.3. For each set A ∈ BVc, there is a sequence {Ai} in BVc(A) such that
lim ‖A − Ai‖ = 0 and the essential closure of each Ai is a closed set.

Using Theorems 1.1 and 1.2, and employing properties of dyadic cubes (Proposition 2.4
below), we prove the following divergence theorem.

Main Theorem. Let A ∈ BVc be such that A = cl∗A, let v : A → Rn be bounded, and let
E :=

{
x ∈ int∗A : Lip v(x) < ∞}

. Assume that for k = 1, 2, . . . , there are disjoint sets Ek

and numbers 0 ≤ sk < 1 such that A − E =
⋃∞

k=1 Ek and one of the following conditions
holds:

(i) Hn−1+sk Ek is σ-finite, and Hsk
v(x) = 0 for each x ∈ Ek;

(ii) Hn−1+sk Ek = 0, and Hsk
v(x) < ∞ for each x ∈ Ek.

If the relative divergence div v belongs to L1(A,Ln), then∫
A

div v dLn =
∫

∂∗A

v · νA dHn−1.(1.2)

Remark 1.4. A few comments concerning the Main Theorem are in order.

(1) In view of equality (1.1), the assumption A = cl∗A is merely a matter of convenience
and presents no factual restriction.

(2) Since v : A → Rn is bounded and continuous outside the Hn−1 negligible set{
x ∈ A : H0v(x) > 0

}
,

the integral
∫

∂∗A
v · νA dHn−1 is defined.

(3) As |A−E| = 0, Theorem 1.1 implies that the relative divergence div v(x) is defined for
almost all x ∈ A. To see that div v ∈ L1(A,Ln) is a necessary assumption, consider
A := cl B(0, 1) and

v(x) :=

{
x|x| cos |x|−n−1 if x ∈ A − {0},
0 if x = 0.

It is easy to verify that div v does not belong to L1(A,Ln), although v satisfies all
remaining assumptions of the Main Theorem.

(4) Assume n = 1, and let v : R → R be such that
∫ b

a v′ dL1 = v(b) − v(a) for every
compact interval [a, b] ⊂ R. Since [4, Section 2.4.3] implies∣∣{x ∈ R : Hsv(x) > 0

}∣∣
s

= 0

for each 0 ≤ s < 1, condition (ii) cannot be omitted. The Cantor-Vitali function [11,
Section 7.16] and its multidimensional analogue [10] provide another rationale for our
assumptions.

(5) If we replace bounded BV sets by finite unions of dyadic cubes, the proof of the Main
Theorem becomes completely elementary. Still, this specialized result is sufficient for
useful applications (Theorems 3.1 and 3.2 below).
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2. The proof

Throughout ρ = 1
8n−3/2, and a set A ∈ BVc is called regular if

|A| > 0 and
|A|

d(A)‖A‖ > ρ.

Note that |C| = 4ρ d(C)‖C‖ for each cube C ⊂ Rn.

Lemma 2.1. Let E ⊂ Rn be a closed set, and let v : E → Rn be bounded and Hm−1

measurable. Assume {Bi} is a sequence in BVc(E) such that lim d(Bi) = 0, and each Bi

is regular and contains a fixed x ∈ E. If 0 ≤ s ≤ 1, then

lim sup
1

d(Bi)n−1+s

∫
∂∗Bi

v · νBi dHm−1 ≤ γHsv(x)

where γ := γ(n) > 0. If x ∈ int∗E and v is relatively differentiable at x, then

lim
1

|Bi|
∫

∂∗Bi

v · νBi dHm−1 = div v(x).

Proof. Choose ε > 0, and let F (B) :=
∫

∂∗B
v · ν dHn−1 for each B ∈ BVc(E). There is

δ > 0 such that ∣∣v(y) − v(x)
∣∣

|y − x|s ≤ Hsv(x) + ε.

for every y ∈ E ∩ B(x, δ). By Theorem 1.2 and the isodiametric inequality [4, Section 2.2],
there is β := β(n) > 0 such that for all sufficiently large i,

∣∣F (Bi)
∣∣ =

∣∣∣∣
∫

∂∗Bi

[
v(y) − v(x)

] · νBi(y) dHn−1(y)
∣∣∣∣

≤ [
Hsv(x) + ε

] ∫
∂∗Bi

|y − x|s dHn−1(y)

≤ [
Hsv(x) + ε

]
d(Bi)s‖Bi‖ ≤ β

ρ

[
Hsv(x) + ε

]
d(Bi)n−1+s.

If v is relatively differentiable at x ∈ int∗E, let

w : y 	→ v(x) +
[
Dv(x)

]
(y − x) : R

n → R
n,

and observe that div w(y) = div v(x) for each y ∈ Rn. There is η > 0 such that∣∣v(y) − w(y)
∣∣ < ε|y − x|

for every y ∈ E ∩ B(x, η). By Theorem 1.2, for all sufficiently large i,∣∣∣F (Bi) − div v(x)|Bi|
∣∣∣ =

∣∣∣∣
∫

∂∗Bi

[
v(x) − w(y)

] · νBi(y) dHn−1(y)
∣∣∣∣

≤ ε

∫
∂∗Bi

|y − x| dHn−1(y) ≤ εd(Bi)‖Bi‖ =
ε

ρ
|Bi|.

Letting γ := β/ρ and i → ∞, the lemma follows from the arbitrariness of ε.

Remark 2.2. Without the assumption of regularity in Lemma 2.1, we obtain

lim sup
1

‖Bi‖
∫

∂∗Bi

v · νBi dHn−1 ≤ H0v(x).
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For integers k ≥ 1 and ji, i = 1, . . . , n, the compact interval

C :=
n∏

i=1

[
2−kji, 2−k(ji + 1)

]
is called a k-cube. The collection of all k-cubes is denoted by Dk, and we let D≥k :=⋃∞

j=k Dj . The elements of D := D≥1 are called dyadic cubes. If A and B are overlapping
dyadic cubes, then either A ⊂ B or B ⊂ A. It follows that each family C of dyadic cubes
has a nonoverlapping subfamily K with

⋃
K =

⋃
C. Dyadic cubes A and B are called

adjacent if d(A) = d(B) and A∩B 
= ∅. Every dyadic cube is adjacent to 3n dyadic cubes,
including itself.

For x ∈ Rn and an integer k ≥ 1, let st(x, k) := {C ∈ Dk : x ∈ C}. Note st(x, k) consists
of 2n k-cubes, and x is the interior point of

⋃
st(x, k). A family C of dyadic cubes is called

a complete cover of a set E ⊂ Rn if for each x ∈ E there is an integer kx ≥ 1 such that
st(x, kx) ⊂ C; in this case E ⊂ ⋃

x∈E int
⋃

st(x, kx). Thus a complete cover of a compact
set has a finite nonoverlapping subcover.

Lemma 2.3. Let δ be a positive function on a set E ⊂ R
n, and let 0 ≤ t ≤ n. Given ε > 0,

the set E is covered completely by a family CE of dyadic cubes such that each C ∈ CE

contains xC ∈ E with δ(xC) > d(C), and for κ := κ(n) > 0,∑
C∈CE

d(C)t ≤ κ
(|E|t + ε

)
.

Proof. Avoiding trivialities, assume E 
= ∅. Let B consist of all dyadic cubes C containing
xC ∈ E with δ(xC) > d(C). Denote by Bk the set of all x ∈ Rn such that each C ∈ D≥k

containing x belongs to B. From Rn − Bk =
⋃

(D≥k − B) infer Bk is a Borel set. Since{
x ∈ E : δ(x) > 2−k

√
n
} ⊂ Bk ⊂ Bk+1, letting E1 := E ∩ B1 and Ek := E ∩ (Bk − Bk−1)

for k ≥ 2, we obtain E =
⋃∞

k=1 Ek and |E|t =
∑∞

k=1 |Ek|t. By elimination, we may assume
each Ek is a nonempty set. There is a cover Kk ⊂ D≥k of Ek such that every C ∈ Kk

meets Ek, and ∑
C∈Kk

d(C)t ≤ ϑ
(|Ek|t + ε2−k

)
where ϑ := ϑ(n) > 0; see [5, Theorem 5.1]. If Ck consists of all dyadic cubes that meet Ek

and are adjacent to some C ∈ Kk, then Ck is a complete cover of Ek and∑
C∈Ck

d(C)t ≤ 3n
∑

C∈Kk

d(C)t ≤ 3nϑ
(|Ek|t + ε2−k

)
.

Since Ck ⊂ D≥k and Ek ⊂ Bk, and since each C ∈ Ck meets Ek, the definition of Bk

implies Ck ⊂ B. Thus the family CE :=
⋃∞

k=1 Ck is a complete cover of E and each C ∈ CE

contains xC ∈ E with δ(xC) > d(C). For κ := 3nϑ,∑
C∈CE

d(C)t ≤
∞∑

k=1

∑
C∈Ck

d(C)t ≤ κ
∞∑

k=1

(|E|t + ε2−k
)

= κ
(|E|t + ε

)
.

A dyadic figure is a finite union of dyadic cubes. A partition is a collection

P :=
{
(B1, x1), . . . , (Bp, xp)

}
where B1, . . . , Bp are nonoverlapping bounded BV sets, and xi ∈ Bi for i = 1, . . . , p. The
body of P is the set [P ] :=

⋃p
i=1 Bi. If each Bi is a dyadic cube, P is called a dyadic partition.

Given E ⊂ Rn and δ : E → R+, we say that P is δ-fine if xi ∈ E and d(Bi) < δ(xi) for
i = 1, . . . , p.
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Proposition 2.4. Let E be a family of disjoint subsets of a dyadic figure A, and for each
E ∈ E select real numbers 0 ≤ tE ≤ n and εE > 0. Given δ : A → R+, there is a δ-fine
dyadic partition P :=

{
(C1, x1), . . . , (Cp, xp)

}
such that [P ] = A, and for κ := κ(n) > 0

and every E ∈ E, ∑
xi∈E

d(Ci)tE ≤ κ
(|E|tE + εE

)
.

Proof. Enlarging E, we may assume
⋃

E = A. Find an integer k ≥ 0 so that A is the
union of k-cubes and, making δ smaller, assume δ < 2−k

√
n. Let CE be a complete cover of

E ∈ E associated with δE := δ � E, tE , and εE according to Lemma 2.3. For every C ∈ CE ,
select xC ∈ E ∩ C with d(C) < δE(xC). Since C :=

⋃
E∈E CE covers the compact set A

completely, there are nonoverlapping dyadic cubes C1, . . . , Cp in C whose union contains A.
Our restriction of δ implies P :=

{
(Ci, xCi) : Ci ⊂ A

}
is a δ-fine dyadic partition with

[P ] = A. As E is a disjoint family, {Ci : xCi ∈ E} ⊂ CE . Hence for the same κ as in
Lemma 2.3, we obtain the desired inequality∑

xCi
∈E

d(Ci)tE ≤
∑

C∈CE

d(C)tE ≤ κ
(|E|tE + εE

)
.

Remark 2.5. Lemma 2.3 and Proposition 2.4 are due to W.B. Jurkat [7, Section 4]. The
classical Cousin’s lemma [8, Lemma 2.6.1], as well as its generalization obtained by E.J.
Howard [6, Lemma 5], are immediate consequences of Proposition 2.4.

The critical interior of a measurable set E ⊂ Rn, denoted by intcE, is the set of all
x ∈ int∗E for which

lim
r→0+

r1−n
∣∣B(x, r) ∩ ∂∗E

∣∣
n−1

= 0.

If E is a BV set, then |int∗E − intcE|n−1 = 0 by [4, Theorem 1, Section 2.3].

Lemma 2.6. Let A ∈ BVc and x ∈ intcA. If C ⊂ Rn is a sufficiently small cube containing
the point x, then A ∩ C is a regular BV set.

Proof. If r := d(C) then ‖A ∩ C‖ ≤ ‖C‖ +
∣∣B(x, r) ∩ ∂∗A

∣∣
n−1

, and hence

r‖A ∩ C‖
|C| ≤ r‖C‖

|C| +
rn

|C| ·
∣∣B(x, r) ∩ ∂∗A

∣∣
n−1

rn−1

=
1
4ρ

+ nn/2

∣∣B(x, r) ∩ ∂∗A
∣∣
n−1

rn−1
.

By our assumptions and the density theorem, for all sufficiently small r,

nn/2

∣∣B(x, r) ∩ ∂∗A
∣∣
n−1

rn−1
<

1
4ρ

and
|A ∩ C|
|C| >

1
2
.

As d(A ∩ C) ≤ r, the regularity of A ∩ C follows.

Corollary 2.7. Let A ∈ BVc. There is δ : A → R+ such that for each δ-fine dyadic
partition

{
(C1, x1), . . . , (Cp, xp)

}
, the collection{

(A ∩ C1, x1), . . . , (A ∩ Cp, xp)
}

is a δ-fine partition, and A ∩ Ci is regular whenever xi ∈ intcA.
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Lemma 2.8. Let A ∈ BVc be a closed set, let v : A → Rn, and for x ∈ A, let

f(x) :=

{
div v(x) if x ∈ int∗A and v is relatively differentiable at x,
0 otherwise.

Let E :=
{
x ∈ int∗A : Lip v(x) < ∞}

, and assume that for k = 1, 2, . . . , there are disjoint
sets Ek and numbers 0 ≤ sk < 1 such that A − E =

⋃∞
k=1 Ek, and one of the following

conditions holds:

(i) Hn−1+sk Ek is σ-finite, and Hsk
v(x) = 0 for each x ∈ Ek;

(ii) Hn−1+sk Ek = 0, and Hsk
v(x) < ∞ for each x ∈ Ek.

Then given ε > 0 and δ : A → R+, there is a δ-fine partition P :=
{
(B1, x1), . . . , (Bp, xp)

}
such that [P ] = A and

∣∣∣∣
p∑

i=1

f(x)|Bi| −
∫

∂∗A

v · νA dHn−1

∣∣∣∣ < ε.(2.1)

Proof. Enlarging the family {Ek}, condition (i) can be replaced by

(i*) |Ek|n−1+sk
< ∞, and Hsk

v(x) = 0 for each x ∈ Ek.

Since |A − intcA|n−1 < ∞, we may assume that E and
⋃

{k:sk>0} Ek are subsets of intcA.
Denote by D the set of all x ∈ E at which v is relatively differentiable, and let E0 := E−D
and s0 := 1. For integers k, j ≥ 0, let tk := n − 1 + sk and

Ek,j :=
{
x ∈ Ek : j − 1 < Hsk

v(x) ≤ j
}
.

As |Ek,j |sk
= 0 for j ≥ 1, the set S :=

⋃
{k:sk=0}

⋃∞
j=1 Ek,j is Hn−1 negligible. Since A is

compact, |v| is bounded by c > 0. Choose ε > 0, and find η > 0 so that ‖A ∩ B‖ ≤ ε/c
whenever B ∈ BVc and ‖B‖ < η; see [8, Proposition 1.9.2]. Let ck := 1 + |Ek,0|sk

, and let
γ and κ be the same constants as in Lemma 2.1 and Proposition 2.4, respectively.

Let F (B) :=
∫

∂∗B v·νB dHn−1 for each B ∈ BVc(A); see Remark 1.4, (2). By Remark 2.2
and Lemma 2.1, there is β : cl∗A → R+ such that for each B ∈ BVc(A),

(1)
∣∣F (B)

∣∣ ≤ εc−1
k 2−k‖B‖ if sk = 0 and d(B) < β(x) for x ∈ Ek,0 ∩ B,

and for each regular B ∈ BVc(A),

(2)
∣∣f(x)|B| − F (B)

∣∣ ≤ ε|B| if d(B) < β(x) for x ∈ D ∩ B,

(3)
∣∣F (B)

∣∣ ≤ εc−1
k 2−kd(B)tk if d(B) < β(x) for x ∈ Ek,0 ∩ B,

(4)
∣∣F (B)

∣∣ ≤ γjd(B)tk if d(B) < β(x) for x ∈ Ek,j ∩ B and j ≥ 1.

Choose δ : A → R+ and, making it smaller, assume δ ≤ β and Corollary 2.7 holds for δ.
Select a dyadic cube C containing A, and define θ : C → R+ by the formula

θ(x) :=

{
δ(x) if x ∈ A,
dist(x, cl∗A) if x ∈ C − A.
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By Proposition 2.4, there is a θ-fine dyadic partition P :=
{
(C1, x1), . . . , (Cp, xp)

}
such that

[P ] = C, and ∑
xi∈S

d(Ci)n−1 < η/(2n),
∑

xi∈Ek,0

d(Ci)tk ≤ κck for all k ≥ 0,

∑
xi∈Ek,j

d(Ci)tk ≤ εj−12−k−j for all k with sk > 0 and all j ≥ 1.
(2.2)

If Bi := A∩Ci, then Corollary 2.7 implies that Q :=
{
(Bi, xi) : xi ∈ A

}
is a δ-fine partition,

[Q] = A, and Bi is regular whenever xi ∈ intcA. Let

K :=
⋃

xi∈S

Ci and B :=
⋃

xi∈S

Bi = A ∩ K.

Then ‖K‖ ≤ 2n
∑

xi∈S d(Ci)n−1 < η, and hence
∣∣F (B)

∣∣ ≤ c‖B‖ ≤ ε. By property (1), and
the second of the inequalities (2.2),∑

{k:sk=0}

∑
xi∈Ek,0

∣∣F (Bi)
∣∣ ≤ ε

∑
{k:sk=0}

c−1
k 2−k

∑
xi∈Ek,0

‖A ∩ Ci‖

≤ ε
∑

{k:sk=0}
c−1
k 2−k

∑
xi∈Ek,0

(|intCi ∩ ∂∗A|n−1 + ‖Ci‖
)

≤ ε‖A‖ + 2nε
∑

{k:sk=0}
c−1
k 2−k

∑
xi∈Ek,0

d(Ci)n−1

≤ ε
(‖A‖ + 2nκ

)
.

The lemma follows from the previous inequalities and properties (2)–(4). Indeed, denoting
by I the left side of inequality (2.1), we obtain

I ≤
∑

xi∈D

∣∣∣f(xi)|Bi| − F (Bi)
∣∣∣ +

∣∣F (B)
∣∣ +

∑
{k:sk=0}

∑
xi∈Ek,0

∣∣F (Bi)
∣∣ +

∑
{k:sk>0}

∑
xi∈Ek,0

∣∣F (Bi)
∣∣ +

∑
{k:sk>0}

∞∑
j=1

∑
xi∈Ek,j

∣∣F (Bi)
∣∣ ≤

ε
∑

xi∈D

|Bi| + ε + ε
(‖A‖ + 2nκ

)
+

ε
∑

{k:sk>0}
c−1
k 2−k

∑
xi∈Ek,0

d(Bi)tk + γ
∑

{k:sk>0}

∞∑
j=1

j
∑

xi∈Ek,j

d(Bi)tk ≤

ε
(|A| + ‖A‖ + 1 + 2κ(n + 1) + 2γ

)
.

Lemma 2.9. Let A ∈ BVc and f ∈ L1(A,Ln). Given ε > 0, there is δ : A → R+ such
that for each δ-fine partition P :=

{
(B1, x1), . . . , (Bp, xp)

}
such that [P ] = A and∣∣∣∣

∫
A

f dLn −
p∑

i=1

f(xi)|Bi|
∣∣∣∣ < ε.(2.3)

Proof. Choose ε > 0, and using Vitali-Carathéodory theorem [13, Chapter 3, Theorem 7.6],
find extended real-valued functions g and h defined on A so that g is upper semicontinuous, h
is lower semicontinuous, g ≤ f ≤ h, and

∫
A
(h−g) dLn ≤ ε. There is a δ : A → R+ such that
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g(y) ≤ f(x)+ε and h(y) ≥ f(x)−ε for all x, y ∈ A with |x−y| < δ(x). Let P :=
{
(B1, x1),

. . . , (Bp, xp)
}

be a δ-fine partition with [P ] = A. Then∫
Bi

g dLn ≤
∫

Bi

f dLn ≤
∫

Bi

h dLn,∫
Bi

g dLn − ε|Bi| ≤ f(xi)|Bi| ≤
∫

Bi

h dLn + ε|Bi|

for i = 1, . . . , p, and consequently∣∣∣∣
∫

A

f dLn −
p∑

i=1

f(xi)|Bi|
∣∣∣∣ ≤

p∑
i=1

∣∣∣∣
∫

Bi

f dLn − f(xi)|Bi|
∣∣∣∣

≤
p∑

i=1

[∫
Bi

(h − g) dLn + ε|Bi|
]

≤
∫

A

(h − g) dLn + ε|A| ≤ ε
(
1 + |A|).

Proof of the Main Theorem. Assume first that A is a closed set. Choose ε > 0, and define
f as in Lemma 2.8. Then f ∈ L1(A,Ln) and

∫
A

f dLn =
∫

A
div v dLn. Select δ : A → R+

associated with f according to Lemma 2.9. By Lemmas 2.8, there is a δ-fine partition
P :=

{
(B1, x1), . . . , (Bp, xp)

}
such that [P ] = A and (2.1) holds. The choice of δ implies

that (2.3) holds as well. Thus∣∣∣∣
∫

A

div v dLn −
∫

∂∗A

v · νA dHm−1

∣∣∣∣ ≤
∣∣∣∣
∫

A

f dLn −
p∑

i=1

f(xi)|Bi|
∣∣∣∣ +

∣∣∣∣
p∑

i=1

f(x)|Bi| −
∫

∂∗A

v · νA dHn−1

∣∣∣∣ < 2ε,

and the desired equality (1.2) follows from the arbitrariness of ε.

For an arbitrary A with A = cl∗A, Theorem 1.3 yields a sequence {Ai} in BVc(A) such
that lim ‖A − Ai‖ = 0 and each Ai is a closed set. Observe div v(x) = div (v � Ai)(x) for
each x ∈ int∗Ai. Consequently∫

Ai

div v dLn =
∫

∂∗Ai

v · νAi dHm−1

for i = 1, 2, . . . , by the first part of the proof. Since v is bounded,

lim
∣∣∣∣
∫

∂∗A

v · νA dHm−1 −
∫

∂∗Ai

v · νAi dHm−1

∣∣∣∣ ≤
lim

∫
∂∗(A−Ai)

|v| dHm−1 ≤ sup
x∈A

∣∣v(x)
∣∣ lim ‖A − Ai‖ = 0.

As the isoperimetric inequality [4, Section 5.6.2] implies lim |A − Ai| = 0,∫
A

div v dLn = lim
∫

Ai

div v dLn

= lim
∫

∂∗Ai

v · νAi dHm−1 =
∫

∂∗A

v · νA dHm−1.
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3. Integration by parts

Theorem 3.1. Let U ⊂ R
n be an open set, let v : U → R

n and g : U → R be locally
bounded in U and pointwise Lipschitz in E ⊂ U . Assume that for k = 1, 2, . . . , there are
disjoint sets Ek and numbers 0 ≤ sk < 1 such that U − E =

⋃∞
k=1 Ek and one of the

following conditions holds:

(i) Hn−1+sk Ek is σ-finite, and Hsk
(gv)(x) = 0 for each x ∈ Ek;

(ii) Hn−1+sk Ek = 0, and Hsk
(gv)(x) < ∞ for each x ∈ Ek.

If the div v belongs to L1
loc(U, Ln) and Dg belongs to L1

loc(U, Ln; Rn), then∫
U

g div v dLn = −
∫

U

Dg · v dLn

whenever gv has compact support.

Proof. Find a dyadic figure A ⊂ U whose interior contains the support of w := gv. Since
both v and g are locally bounded, w satisfies the conditions of the Main Theorem. As
w � ∂A = 0 and div w = g div v +Dg ·v almost everywhere in U , an application of the Main
Theorem to w and A completes the argument.

As Theorem 3.1 is based on the Main Theorem for dyadic figures, its proof is elementary;
see Remark 1.4, (5). It can be applied to studying removable sets of partial differential
equations in divergence form [2, Section 4], such as the Cauchy-Riemann, Laplace, and
minimal surface equations. For illustration, we generalize a classical result of Besicovitch [1].

Theorem 3.2. Let U be an open subset of the complex plane C, let f : U → C, and let
E :=

{
x ∈ U : Lip f(x) < ∞}

. Assume that for k = 1, 2, . . . , there are disjoint sets Ek and
numbers 0 ≤ sk < 1 such that U − E =

⋃∞
k=1 Ek and one of the following conditions hold:

(i) H1+sk Ek is σ-finite, and Hsk
f(z) = 0 for each z ∈ Ek;

(ii) H1+sk Ek = 0, and Hsk
f(z) < ∞ for each z ∈ Ek.

If the complex derivative f ′(z) exists for almost all z ∈ U , then f can be redefined on the
set

{
z ∈ U : H0f(z) > 0

}
so that it is holomorphic in U .

Proof. Let ∂̄ := ∂/∂x+ i ∂/∂y where i :=
√−1, and choose ϕ ∈ C1

c (U ; C). Since f is locally
bounded and ∂̄f(z) = 0 for almost all z ∈ U , we obtain∫

U

f ∂̄ϕ dL2 = −
∫

U

ϕ ∂̄f dL2 = 0

by applying Theorem 3.1 to the vector fields u := (f,−�f ), v := (�f,f) and functions
g := ϕ, h := �ϕ. Thus f is a distributional solution of the Cauchy-Riemann equation
∂̄f = 0. As ∂̄ is an elliptic operator, f is equal almost everywhere to a holomorphic function
in U [12, Example 8.14]. The theorem follows, since f is continuous outside the H1 negligible
set

{
z ∈ U : H0f(z) > 0

}
.

Let g ∈ L1(Rn, Ln), and let {g > t} :=
{
x ∈ Rn : g(x) > t

}
for each t ∈ R. Since the

extended real-valued function t 	→ ∥∥{f > t}∥∥ is nonnegative and measurable [4, Section 5.5,
Lemma 1], we can define the extended real number

‖g‖ :=
∫

R

∥∥{f > t}∥∥dL1(t),(3.1)
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called the variation of g. If ‖g‖ < ∞, then g is called a BV function in Rn, in which case
the distributional gradient of g is a Radon measure in R

n, denoted by Dg. Clearly, E ⊂ R
n

is a BV set if and only if the indicator χE of E is a BV function; in which case ‖E‖ = ‖χE‖.
Remark 3.3. Our geometrically intuitive definitions of BV sets and BV functions are
nonstandard. However, in view of [4, Sections 5.11 and 5.5], they are equivalent to the
usual definitions given in [4, Section 5.1].

Let Ω ⊂ Rn be a bounded Lipschitz domain. A function g ∈ L1(Ω,Ln) is called a BV
function in Ω if its extension to Rn by zero is a BV function in Rn. If g is a BV function
in Ω, then a finite limit

Tr g(x) := lim
r→0+

1∣∣Ω ∩ B(x, r)
∣∣
∫

Ω∩B(x,r)

g dLn

exists for Hn−1 almost all x ∈ ∂Ω, and the function x 	→ Tr g(x) belongs to L1(∂Ω, Hn−1);
see [4, Section 5.3].

Theorem 3.4. Let Ω be a bounded Lipschitz domain, let v ∈ C(cl Ω; Rn), and let

E :=
{
x ∈ Ω : Lip v(x) < ∞}

.

Assume that for k = 1, 2, . . . , there are disjoint sets Ek and numbers 0 < sk < 1 such that
clΩ − E =

⋃∞
k=1 Ek and one of the following conditions holds:

(i) Hn−1+sk Ek is σ-finite, and Hsk
v(x) = 0 for each x ∈ Ek;

(ii) Hn−1+sk Ek = 0, and Hsk
v(x) < ∞ for each x ∈ Ek.

If the divergence div v belongs to L1(Ω,Ln), then∫
Ω

g div v dLn =
∫

∂Ω

(Tr g)v · νΩ dHm−1 −
∫

Ω

v · d(Dg)(3.2)

for each bounded BV function g in Ω.

Proof. There is a sequence {vi} in C1(Rn, Rn) that converges uniformly to v on cl Ω.
According to [4, Section 5.3], the identity (3.2) holds for each vi, and

lim
∫

∂Ω

(Tr g)vi · νΩ dHm−1 =
∫

∂Ω

(Tr g)v · νΩ dHm−1,

lim
∫

Ω

vi · d(Dg) =
∫

Ω

v · d(Dg).

by the dominated convergence theorem. Let wi = vi − v and ci := supx∈clΩ
∣∣wi(x)

∣∣. The
Fubini and Main theorems, together with equality (3.1), yield∣∣∣∣

∫
clΩ

g div wi dLn

∣∣∣∣ =
∣∣∣∣
∫

R

(∫
{g>t}

div wi

)
dL1(t)

∣∣∣∣
=

∣∣∣∣
∫

R

(∫
∂∗{g>t}

wi · ν{g>t} dHm−1

)
dL1(t)

∣∣∣∣
≤ ci

∫
R

∥∥{g > t}∥∥dL1(t) = ci‖g‖.

The theorem follows, since lim ci = 0 implies

lim
∫

Ω

g div vi dLn =
∫

Ω

g div v dLn.
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