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ON THE OPERATOR EQUATION AB = zBA
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Abstract. In this paper, we study the operator equation AB = zBA for bounded
operators A, B on a complex Hilbert space. In [10], J. Yang and H.-K. Du proved
that if A and B are normal operators, then |z| = 1 by using the Fuglede-Putnam
Theorem. In this paper, we give an elementary proof of this result without using the
Fuglede-Putnam Theorem and some examples. Then we shall relax normality in the
result by Yang and Du. A quasinormality of an operator is given by using Aluthge
transformation and the operator equality. 1

1 Introduction Commutation relations between operators on a complex Hilbert space
are important for the interpretation of quantum mechanical observables and the analysis of
their spectra. Accordingly, such relations have been extensively studied in the mathematical
literature (see, for example, the classic study of Putnam [6]). An interesting, related aspect
concerns the commutativity up to a factor for pairs of operators. Certain forms of non-
commutativity can be conveniently phrased in this way. This is the case with the famous
canonical (or Heisenberg) commutation relations for position Q and momentum P ,

QP − PQ ⊂ iI,

which can be recast in the form of the Weyl relations,

exp(iαQ) exp(iβP ) = exp(−iαβ) exp(iβP ) exp(iαQ), α, β ∈ R.

Another example, well known in the physical context, is an anticommutation relation
between Pauli spin matrices in C2, e.g., σxσy = −σyσx = iσz , where

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
and σz =

(
1 0
0 −1

)
.

We consider pairs of operators A and B on a complex Hilbert space H and explore the
conditions under which they can commute up to a factor, i.e.,

AB = λBA, λ ∈ C\{0}.

If A and B are unitary and λ = e2πiθ, then the C∗-algebra which is generated from A
and B is called noncommutative torus, and it is important in the area of noncommutative
geometry [4].

We are interested in the following two results. First, in [3] J. B. Brooke, P. Busch and
D. B. Pearson proved the following.
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Theorem A ([3]) Let A,B ∈ B(H) satisfy AB = zBA �= 0, z ∈ C. Then

(1) if A or B is selfadjoint, then z ∈ R;

(2) if both A and B are selfadjoint, then z ∈ {−1, 1}; and

(3) if both A and B are selfadjoint and one of them is positive, then z = 1.

Next, in [10] J. Yang and H.-K. Du showed the following.

Theorem B ([10]) Let A,B ∈ B(H) satisfy AB = zBA �= 0, z ∈ C. Then

(1) if either A or B is selfadjoint and the other is normal, then z ∈ {−1, 1}; and

(2) if both A and B are normal, then |z| = 1.

We remark that for the proof of (2), Yang and Du used the Fuglede-Putnam Theorem;
i.e., if N, M are normal and NT = TM for some T ∈ B(H), then N∗T = TM∗.

Let H be a complex Hilbert space and B(H) be the set of all bounded linear operators on
H. An operator T ∈ B(H) is called normal and hyponormal if T ∗T = TT ∗ and T ∗T ≥ TT ∗,
respectively. An operator T ∈ B(H) is called quasinormal and paranormal if T commutes
with T ∗T and ‖Tx‖2 ≤ ‖T 2x‖‖x‖ for all x ∈ H, respectively. It holds that

normal =⇒ quasinormal =⇒ hyponormal =⇒ paranormal.

For an operator T ∈ B(H), the spectrum, the spectral radius, the kernel and the range of
T are denoted by σ(T ), r(T ), ker(T ) and R(T ), respectively.

In this paper, first, we give a simple proof for (2) of Theorem B without using the
Fuglede-Putnam Theorem. Then we shall attempt to relax normality of operators in The-
orem B. We will give some examples related to the results. As an application, we give a
quasinormality of an operator via Aluthge transformation.

2 Results If A ∈ B(H) is normal, then we have

‖AB‖2 = ‖B∗A∗AB‖ = ‖B∗AA∗B‖ = ‖A∗B‖2.(2.1)

If B ∈ B(H) is normal, then we have

‖BA‖2 = ‖A∗B∗BA‖ = ‖A∗BB∗A‖ = ‖B∗A‖2 = ‖(B∗A)∗‖2 = ‖A∗B‖2.(2.2)

Therefore, we have an elementary proof for (2) of Theorem B.

Elementary proof for (2) of Theorem B. Since by (2.1) and (2.2) ‖AB‖ = ‖BA‖ and
‖AB‖ �= 0, we have |z| = 1. �

We shall attempt to relax normality in (2) of Theorem B. First, we have the following
result:

Theorem 1 Let A,B ∈ B(H) satisfy AB = zBA �= 0, z ∈ C. Then

(1) if both A∗ and B are hyponormal, then |z| ≤ 1; and

(2) if both A and B∗ are hyponormal, then |z| ≥ 1.
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Proof. (1) Since both A∗ and B are hyponormal, by (2.1) and (2.2), we have

|z|‖BA‖ = ‖AB‖ = ‖B∗A∗AB‖ 1
2 ≤ ‖B∗AA∗B‖ 1

2

= ‖A∗B‖ = ‖A∗BB∗A‖ 1
2 ≤ ‖A∗B∗BA‖ 1

2 = ‖BA‖.

Hence we have |z| ≤ 1.

(2) Since AB = zBA and z �= 0, we have BA = z−1AB for hyponormal operators A and
B∗. Hence we have |z−1| ≤ 1 by (1), that is, |z| ≥ 1. �

Especially, we have the following corollary:

Corollary 1 Let A,B ∈ B(H) satisfy AB = zBA �= 0, z ∈ C. Then

(1) if A is normal and B is hyponormal, then |z| ≤ 1; and

(2) if A is hyponormal and B is normal, then |z| ≥ 1.

Note 1. If AB = zBA �= 0 (A,B ∈ B(H), z ∈ C), then r(AB) = |z| · r(BA). Hence, if
r(AB) �= 0, then |z| = 1. And if |z| �= 1, then σ(AB) = {0} = σ(BA). Moreover, Brooke,
Busch and Pearson ([3]) showed the following:
(1) σ(AB) = σ(BA); and
(2) if 0 �∈ σ(AB), then both A and B are invertible.

Note 2. We shall attempt to relax the normalities of A and B in (2) of Theorem B, but
it is difficult by Example 1 which is stated in the next section. If the condition |z| = 1 is
relaxed into |z| ≤ 1, we can extend (2) of Theorem B to non-normal operators case as in
Theorem 1.

Theorem 2 Let A,B ∈ B(H) satisfy AB = zBA �= 0, z ∈ C. Let A be normal and B
satisfy ker(B) ⊂ ker(B∗). Then |z| ≤ 1, and moreover if |z| < 1, then 0 ∈ σ(A).

To prove Theorem 2, we prepare the following lemma:

Lemma 1 Let A, C be normal and AB = BC for B ∈ B(H). If B = U |B| is the polar
decomposition of B, then U∗|A|2U = U∗U |C|2U∗U .

To prove it, we note that for an operator X with the polar decomposition X = U |X |,
the following formula always holds:

lim
ε→+0

|X |(|X| + εI)−1 = U∗U.(2.3)

Proof of Lemma 1. Since AB = BC, by the Fuglede-Putnam Theorem we have A∗B = BC∗

and B∗A = CB∗. Therefore, it holds

B∗BC = B∗AB = CB∗B

and hence |B|C = C|B|. Since

B∗A∗AB = C∗B∗BC = C∗|B|2C = |B|C∗C|B|,
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we have

B∗|A|2B = |B|C∗C|B| ⇐⇒ |B|U∗|A|2U |B| = |B||C|2|B|
⇐⇒ U∗UU∗|A|2UU∗U = U∗U |C|2U∗U by (2.3)

⇐⇒ U∗|A|2U = U∗U |C|2U∗U. �

Proof of Theorem 2. Let B = U |B| be the polar decomposition of B. Put C = zA in
Lemma 1. Since zA is normal, it holds

U∗|A|2U = |z|2U∗U |A|2U∗U.(2.4)

By ker(B) ⊂ ker(B∗), U∗U ≥ UU∗. Hence, by U∗U · UU∗ = UU∗, U∗UU = U on R(U∗)
and U∗UU = U = 0 on ker(U ). Therefore, by H = R(U∗) ⊕ ker(U ),

U∗UU = U = UU∗U.

Then by (2.4),

U∗n+1|A|2Un+1 = |z|2U∗U · U∗n|A|2Un · U∗U = |z|2U∗n|A|2Un (n ≥ 1)

and

|z|2nU∗U |A|2U∗U = |z|2(n−1)U∗|A|2U by (2.4)

= |z|2(n−2)U∗2|A|2U2

= · · ·
= U∗n|A|2Un.

Assume |z| > 1. Then

‖A‖2 ≥ ‖U∗n|A|2Un‖ = |z|2n‖U∗U |A|2U∗U‖ −→ ∞.

Therefore, A is unbounded and it is a contradiction to A ∈ B(H). Hence |z| ≤ 1.

Assume |z| < 1. Then it holds U∗nUn ≥ U∗U by U∗U ≥ UU∗. Hence, if Ux �= 0, then
Unx �= 0. Also, it holds

U∗n|A|2Un = |z|2nU∗U |A|2UU∗ −→ 0.

Let a unit vector x be Ux �= 0. Then Unx �= 0 for every natural number n. Put xn = Unx.
Then since U is a partial isometry, ‖x1‖ ≤ ‖xn‖ ≤ 1 for every n and

‖Axn‖2 = (U∗n|A|2Unx, x) −→ 0.

Therefore, 0 ∈ σ(A). �

When A has some spectral condition, we can relax just normalities of A and B in (2) of
Theorem B to non-normal operator case.

Theorem 3 Let A,B ∈ B(H) satisfy AB = zBA �= 0, z ∈ C. Let A be hyponormal and
B be paranormal. If A is invertible or 0 is an isolated point of σ(A), then |z| = 1.
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To prove Theorem 3, we prepare the following lemma:

Lemma 2 ([7]) Let T be paranormal. If X is an invariant subspace for T , then the re-
striction T|X is also paranormal.

Proof of Theorem 3. We only prove as 0 is an isolated point of σ(A). Since H = R(A∗) ⊕
ker(A), we decompose A =

(
A1 0
A2 0

)
on R(A∗) ⊕ ker(A). Since A is hyponormal,

A∗A =
(

A∗
1A1 + A∗

2A2 0
0 0

)
and AA∗ =

(
A1A

∗
1 A1A

∗
2

A2A
∗
1 A2A

∗
2

)
,

it holds 0 ≥ A2A
∗
2. Hence A2 = 0 and A =

(
A1 0
0 0

)
. Since σ(A) = σ(A1)

⋃{0}, 0 is

an isolated point of σ(A1) if 0 ∈ σ(A1). Since A1 is hyponormal, 0 is an eigenvalue of A1.

It’s a contradiction and hence A1 is invertible. Let B =
(

B1 B2

B3 B4

)
on R(A∗) ⊕ ker(A).

By z �= 0 and AB = zBA, it holds A1B2 = B3A1 = 0. Since A1 is invertible, we have

B2 = B3 = 0. Hence, B =
(

B1 0
0 B4

)
. Therefore, R(A∗) is invariant for B and hence

B1 is paranormal by Lemma 2. Since B1 = zA−1
1 B1A1 and r(B1) �= 0, we have |z| = 1. �

Especially, we have the corollary.

Corollary 2 Let A,B ∈ B(H) satisfy AB = zBA �= 0, z ∈ C. Let A be normal and B be
paranormal. If A is invertible or 0 is an isolated point of σ(A), then |z| = 1.

Let T = U |T | be the polar decomposition of an operator T . The Aluthge transform
∆(T ) is defined by ∆(T ) = |T | 12 U |T | 12 in [1]. The Aluthge transform has good properties,
and many authors study it (see [2, 5, 8, 9]). We are interested in the condition of operators
A,B such that AB = BA holds under AB = zBA for some z ∈ C. But it is difficult to give
a solution. We can obtain a partial solution for the problem.

Theorem 4 Let T ∈ B(H) satisfy T = z∆(T ) for some z ∈ C. If σ(T ) �= {0}, then
T = ∆(T ); i.e., T is quasinormal.

Proof. By r(∆(T )) = r(T ) = |z|r(∆(T )) and r(T ) �= 0, we have |z| = 1. Let T = U |T | be
the polar decomposition with the kernel condition ker(T ) = ker(U ). Then we have

T = z∆(T ) ⇐⇒ U |T | = z|T | 12 U |T | 12
⇐⇒ U |T | 12 U∗U = z|T | 12 UU∗U by (2.3)

⇐⇒ U |T | 12 = z|T | 12 U.(2.5)

Then by |T | 12 ≥ 0 and (1) of Theorem A, z ∈ R, that is, z = ±1. If z = −1, then by (2.5),

U |T | 12 + |T | 12 U = 0 ⇐⇒ |T | 12 + U∗|T | 12 U = 0.

Since both |T | 12 and U∗|T | 12 U are positive, we have |T | = 0 and T = 0. It is a contradiction
to σ(T ) �= {0}. Hence z = 1. �
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An operator T is nilpotent if T n = 0 holds for some positive integer n, and T is quasinilpo-
tent if σ(T ) = {0} (i.e., lim

n→∞ ‖T n‖ 1
n = 0). Obviously, if T is nilpotent, then it is quasinilpo-

tent. But the converse does not hold. In [10], Yang and Du proved the following: Let
A,B ∈ B(H) satisfy AB = zBA �= 0 (z ∈ C). If A is normal and R(B) is dense, then AB
is not nilpotent. About this result, we give a result as follows:

Theorem 5 Let A,B ∈ B(H) satisfy AB = zBA �= 0, z ∈ C. If R(A) is dense and
ker(B) = {0}, then AB is not nilpotent.

Proof. Assume (AB)n = 0 for a natural number n. Then (AB)n = zn(BA)n = znB(AB)n−1A =
0. Since z �= 0, R(A) is dense and ker(B) = {0}, we have (AB)n−1 = 0. Therefore, by in-
duction we have AB = 0. It is a contradiction. �

3 Examples In (2) of Theorem B, we have |z| = 1 if AB = zBA holds for normal
operators A and B. One might think that Theorem 1 can be extended to non-normal
operators case. But it is difficult from the following example:

Example 1 Let H = �2 and, for z ∈ C,

A =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0 · · ·
0 z 0 0 · · ·
0 0 z2 0 · · ·
0 0 0 z3 · · ·
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎠

and B =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 · · ·
1 0 0 0 · · ·
0 1 0 0 · · ·
0 0 1 0 · · ·
...

...
...

. . . . . .

⎞
⎟⎟⎟⎟⎟⎠

.(3.1)

Then the operator equation AB = zBA holds. Also, A is normal and B is quasinormal.
We have the following three cases:

(1) If |z| = 1, then σ(AB) �= {0}.
(2) If |z| < 1, then σ(AB) = {0}. In this case, A is compact.

(3) If |z| > 1, then A is unbounded.

In Theorem 3, we obtain T = ∆(T ) if T = z∆(T ) and σ(T ) �= {0}. We can expect that
the second assumption σ(T ) �= {0} can be omitted. But it is false as the following example:

Example 2 Let H = �2 and, for 0 < z < 1, T ∈ B(H) be

T =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 · · ·
1 0 0 0 · · ·
0 1 0 0 · · ·
0 0 1 0 · · ·
...

...
...

. . . . . .

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0 · · ·
0 z2 0 0 · · ·
0 0 z4 0 · · ·
0 0 0 z6 · · ·
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 · · ·
1 0 0 0 · · ·
0 z2 0 0 · · ·
0 0 z4 0 · · ·
...

...
...

. . . . . .

⎞
⎟⎟⎟⎟⎟⎠

Then the operator equation T = 1
z ∆(T ) holds. But T �= ∆(T ).

In Theorem 4, we obtain that AB is not nilpotent, but we do not know whether AB is
quasinilpotent or not. Relating to the question, we give an example.
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Example 3 Let H = �2 and, for z ∈ C, A,B ∈ B(H) be

A =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0 · · ·
0 z 0 0 · · ·
0 0 z2 0 · · ·
0 0 0 z3 · · ·
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎠

, B =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 · · ·
0 0 1 0 · · ·
0 0 0 1 · · ·
0 0 0 0

. . .
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Then A is normal, R(B) = H and AB = z−1BA. It holds that

(1) if |z| < 1, then σ(AB) = {0}; i.e., AB is quasinilpotent;

(2) if |z| = 1, then σ(AB) �= {0}; i.e., AB is not quasinilpotent.

By Example 3, there exists an operator B with dense range and a normal operator A
such that AB is quasinilpotent. But AB must not be nilpotent by [10].
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