INTERVAL HAUSDORFFNESS AND INITIALITY

S. N. Hosseini

Received December 14, 2008; revised December 24, 2008

Abstract

The geometric realization functor, $|?|_{T}: S^{\triangle^{o p}} \longrightarrow K T o p$, is known to commute with finite limits if the reflection of $T[1]$ into the category of T_{0}-spaces is a Hausdorff space, where T is a cosimplicial k-space. We have previously shown that for the categories Fco, ConsFco, Con, Lim, PsT, Born, and PreOrd, the initiality of the inclusion of the boundary $\dot{Y}_{0 n}$ of $Y_{0 n}$ into $Y_{0 n}$ guarantees the commutation of finite limits by the geometric realization functor, $|?|_{Y}: S^{\triangle^{o p}} \longrightarrow A$. Here we show that in the above mentioned categories the initiality condition may be viewed as a generalized Hausdorff condition on the interval Y_{01}, as is the case in the classical situation where A is the category $K T o p$.

1 Introduction We have shown, in [2], that for certain categories A the geometric realization functor, $|?|_{Y}: S^{\triangle^{o p}} \longrightarrow A$, commutes with finite limits if and only if the collection $\left\{i_{n}: \dot{Y}_{0 n} \longrightarrow Y_{0 n}\right\}$ is strongly initial, where Y is the domain of a simplex structure, i.e. a discrete fibration, $g: Y \longrightarrow D \triangle^{o p}$, in A. We have then applied this result to the categories Fco, ConsFco, Con, Lim, PsT, Born, and PreOrd, and have shown that the initiality of the inclusion of the boundary $\dot{Y}_{0 n}$ of $Y_{0 n}$ into $Y_{0 n}$ guarantees the commutation of finite limits by the geometric realization functor, $|?|_{Y}: S^{\triangle^{o p}} \longrightarrow A$. On the other hand, the geometric realization functor, $|?|_{T}: S^{\triangle^{o p}} \longrightarrow K T o p$, is known to commute with finite limits if the reflection of $T[1]$ into the category of T_{0}-spaces is a Hausdorff space, where T is a cosimplicial k-space, see [5].

In section 2 of the present article we give the preliminary resullts and then in section 3 we show that in the categories, Fco, ConsFco, Con, Lim, PsT, Born, and PreOrd, the initiality condition may be viewed as a generalized Hausdorff condition on the interval Y_{01}, as is the case in the classical situation where A is the category KTop.

2 Preliminaries. Let A be a category with finite limits and coequalizers of reflexive pairs that is geometric over the category S of sets via the morphism f. Assume that the functor $a \times-: A \longrightarrow A$ preserves extremal epis, and the direct image $f_{*}: A \longrightarrow S$ of f preserves reflexive coequalizers, and reflects monos and terminals. Let $g: Y \longrightarrow D \triangle^{o p}$ be a simplex structure, and Let m and n be natural numbers, and $\triangle[n]$ the standard n simplex, see [2] and [3].

[^0]2.1. Definition: Define $O_{m n}: \Delta[m] \times \Delta(m, n) \longrightarrow \triangle[n]$ to be the morphism induced by composition.
2.2. Definition: Define the morphisms $\gamma_{m n}$ and $\delta_{m n}$ by the following pullback diagrams.

where $p r_{1}$, and $p r_{2}$ are the projections of the product, and $i_{m n}$, and i_{m} are the obvious inclusions. Define $\lambda_{m n}$ to be the composition $d_{0 n} \delta_{m n}$.

With $O_{m n}$ and $\lambda_{m n}$ as above, we have:
2.3. Lemma: $\left|O_{m n}\right|_{Y}=\lambda_{m n}$.

Proof: By Lemma 2.2 of [2], we have $|\Delta[n]|_{Y}=Y_{0 n}$. It can be easily shown that $|\Delta[m] \times \Delta(m, n)|_{Y}=Y_{0 m} \times f^{*} \Delta(m, n)$. So we have $\left|O_{m n}\right|_{Y}: Y_{o m} \times f^{*} \Delta(m, n) \longrightarrow Y_{0 n}$. The diagram in the proof of [2], Lemma 2.2, together with the definitions of the maps $O_{m n}$ and $\lambda_{m n}$ show that $\left|O_{m n}\right|_{Y}=\lambda_{m n}$.

The boundary $\dot{\Delta}[n]$ of $\triangle[n]$ and the boundary $\dot{Y}_{0 n}$ of $Y_{0 n}$ are defined in [2], Definition 2.3, and we have:
2.4. Lemma: The image of $O_{m n}$ is $S k^{m} \triangle[n]$. In particular, the image of $O_{n-1, n}$ is $\triangle[n]$.

Proof: The definition of n-skeleton together with that of $O_{m n}$ imply that the epi-mono factorization of $O_{m n}$ is $\triangle[m] \times \triangle(m, n) \xrightarrow{\partial_{m n}} S k^{m} \triangle[n] \xrightarrow{i_{m n}} \triangle[n]$

The second assertion of the lemma follows from definition of $\dot{\Delta}[n]$.
2.5. Theorem: If f_{*} preserves reflexive coequalizers, reflects monos, and $f_{*} Y$ is filtered, then $\dot{Y}_{0 n}$ in A is the image of the morphism $\lambda_{n-1, n}: Y_{0, n-1} \times f^{*} \triangle(n-1, n) \longrightarrow Y_{0 n}$.

Proof: By Lemma 2.4, $O_{n-1, n}$ is the composition:

$$
\Delta[n-1] \times \Delta(n-1, n) \xrightarrow{\partial_{n}} \dot{\Delta}[n] \xrightarrow{i_{n}} \Delta[n]
$$

Applying the functor $|?|_{Y}$ to the above diagram, Lemma 1.3, and Lemma 2.2 of [2], give $\lambda_{n-1, n}$ as the composition $Y_{0, n-1} \times f^{*} \triangle(n-1, n) \xrightarrow{\left|\partial_{n}\right|} \dot{Y}_{0 n} \xrightarrow{\left|i_{n}\right|} Y_{0 n} . \partial_{n}$ is an epi in S,
and therefore a coequalizer. Since $|?|_{Y}$ preserves colimits, $\left|\partial_{n}\right|$ is a coequalizer in A. Since f_{*} preserves reflexive coequalizers, and reflects monos, $\left|\partial_{n}\right|$ is an e.e..

On the other hand by Lemma 2.5 of [2], and the assumption that f_{*} reflects monos, it follows that $i_{n}=\left|i_{n}\right|$ is a mono. Hence $\dot{Y}_{0 n}$ is the image of $\lambda_{n-1, n}$.

3 Hausdorffness. Now let A be one of the categories Fco, ConsFco, Con, Lim, PsT, Born, and PreOrd, see [1], and [6]. If $g: Y \longrightarrow D \triangle^{o p}$ is a simplex structure, then products are preserved by the functor $|?|_{Y}: S^{\triangle^{o p}} \longrightarrow A$, see Lemma 1.3. of [2]. So by Theorem 2.4 and Proposition 2.2 of [4], we can view Y_{01} as a linearly ordered set with minimum 0 and maximum 1. Furthermore, $Y_{0 n}$ can be identified with the set $\left\{\left(y_{1}, y_{2}, \ldots, y_{n}\right)\right.$: $\left.0 \leq y_{1} \leq y_{2} \leq \ldots \leq y_{n} \leq 1\right\}$. It is not hard to see under this identification that the image of the morphism $\quad \lambda_{n-1, n}: Y_{0, n-1} \times f^{*} \triangle(n-1, n) \longrightarrow Y_{0 n}$, is the set, $\left\{\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in\right.$ $Y_{0 n}: y_{1}=0$, or $y_{i-1}=y_{i}$ some $1<i \leq n$, or $\left.y_{n}=1\right\}$ with the coinduced structure, see Definition 2.2. It then follows from Theorem 2.5 that $\dot{Y}_{0 n} \equiv\left\{\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in Y_{0 n}: y_{1}=\right.$ 0 , or $y_{i-1}=y_{i}$ some $1<i \leq n$, or $\left.y_{n}=1\right\}$, and we have the commutative diagram:

where $\partial_{n}=\left|\partial_{n}\right|$. Given a map $\mu: n-1 \longrightarrow n$ in \triangle, the morphism $\lambda_{n-1, n}$ induces a morphism $\hat{\mu}: Y_{0, n-1} \longrightarrow Y_{0 n}$ in A, which factors through $\dot{Y}_{0 n}$. If μ is a mono, (epi), then $\hat{\mu}$ is the restriction of one of the maps δ_{i} (respectively σ_{i}) described in [4] p 53. Since the obvious mono $\triangle[n] \longrightarrow \triangle[1]^{n}$ is a retract, if $|?|_{Y}$ preserves products, then $Y_{0 n} \longrightarrow Y_{01}^{n}$ is a retract. Hence the structure on $Y_{0 n}$ is the induced structure from Y_{01}^{n}. In what follows a convergence space (X, C) is denoted by X^{*}, and the structure $C(x)$ by $X(x)$.
3.1. Definition: A convergence space X^{*} is said to be Hausdorff if $X(x) \cap X(y)=\{[\{\phi\}]\}$ for all $x \neq y$ in X.
3.2. Theorem: (i) In $F \operatorname{co}, \dot{Y}_{0 n} \xrightarrow{i_{n}} Y_{0 n}$ is initial for all n if and only if Y_{01}^{*} is Hausdorff and $F \in Y_{01}(0), F \neq[0] \rightarrow F \nsubseteq[0]$, and $F \in Y_{01}(1), F \neq[1] \rightarrow F \nsubseteq[1]$.
(ii) In ConsFco, $\dot{Y}_{0 n} \xrightarrow{i_{n}} Y_{0 n}$ is initial for all n if and only if Y_{01}^{*} is discrete.
(iii) In Con, $\dot{Y}_{0 n} \xrightarrow{i_{n}} Y_{0 n}$ is initial for all n if and only if Y_{01}^{*} is Hausdorff and $Y_{01}(0)$ and $Y_{01}(1)$ are discrete.
(iv) In $\operatorname{Lim}, \dot{Y}_{0 n} \xrightarrow{i_{n}} Y_{0 n}$ is initial for all n if and only if Y_{01}^{*} is Hausdorff.
(v) In $P s T, \dot{Y}_{0 n} \xrightarrow{i_{n}} Y_{0 n}$ is initial for all n if and only if the following condition $\left(I_{n}\right)$ holds for all n :
$\left(I_{n}\right)$ If U is an ultrafilter on Y_{01}^{n} with U_{k}, the k th projection of U, in $Y_{01}\left(y_{k}\right)$, and $y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ is in $\dot{Y}_{0 n}$, then U contains $\partial_{y} \cup \dot{Y}_{0 n}^{c}$, where ∂_{y} is the union of all the faces containing y and $\dot{Y}_{0 n}^{c}$ is the complement of $\dot{Y}_{0 n}$ in Y_{01}^{n}.

Furthermore for i_{n} to be initial for all n it is sufficient to have Y_{01}^{*} Hausdorff.
(vi) In Born, $\dot{Y}_{0 n} \xrightarrow{i_{n}} Y_{0 n}$ is initial for all n with no further conditions needed.
(vii) In PreOrd, $\dot{Y}_{0 n} \xrightarrow{i_{n}} Y_{0 n}$ is initial for all n if and only if the preorder on Y_{01} is symmetric.

Proof: (i) Since $\dot{Y}_{0 n}$ has the coinduced structure, by 3.2.3. of [6], which holds for $F c o$ as well, we have $\dot{Y}_{0 n}(y)=\left\{F \in F\left(\dot{Y}_{0 n}\right): \exists x \in Y_{0, n-1}, \mu \in \triangle(n-1, n), G \in\right.$ $Y_{0, n-1}(x)$ such that $\hat{\mu}(x)=y$, and $\left.\hat{\mu}(G) \subseteq F\right\}$. Some computation shows that i_{n} is initial if and only if the following condition holds:
$\left(I_{n}\right)$ For all $y=\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in \dot{Y}_{0 n}$ and all $F_{k} \in Y_{01}\left(y_{k}\right), k=1,2, \ldots, n$, there is $x \in Y_{0, n-1}$, $\mu \in \triangle(n-1, n)$, and $G \in Y_{0, n-1}(x)$ such that $\hat{\mu}(x)=y$ and $\hat{\mu}(G) \subseteq\left[\left(F_{1} \otimes F_{2} \otimes \ldots \otimes F_{n}\right) \wedge \dot{Y}_{0 n}\right]$. Now suppose i_{n} is initial for all n and so $\left(I_{n}\right)$ holds for all n. Therefore $\left(I_{3}\right)$ holds. Given $x<y, F \in Y_{01}(x), F^{\prime} \in Y_{01}(y)$, let $y_{1}=y_{2}=x, y_{3}=y, F_{1}=F_{2}=F, F_{3}=F^{\prime}$ and note that $\left(y_{1}, y_{2}, y_{3}\right) \in \dot{Y}_{03}, F_{k} \in Y_{01}\left(y_{k}\right)$, and $\hat{\delta}_{2}\left(y_{1}, y_{2}\right)=\left(y_{1}, y_{2}, y_{3}\right)$. ($\left.I_{3}\right)$ implies the existence of a G in $Y_{02}\left(y_{1}, y_{3}\right)$ such that $\hat{\delta}_{2}(G) \subseteq\left[\left(F_{1} \otimes F_{2} \otimes F_{3}\right) \wedge \dot{Y}_{03}\right] . M \in G$ implies there are A_{k} in F_{k} such that $\hat{\delta}_{2}(M)$ contains $\left(A_{1} \times A_{2} \times A_{3}\right) \cap \dot{Y}_{03}$ which contains $\left\{(a, b, b): a \in A_{1}, b \in\right.$ $\left.A_{2} \cap A_{3}, a \leq b\right\}$. It follows that $a \in A_{1}, b \in A_{2} \cap A_{3}, a \leq b$ implies $a=b$, or equivalently (*) $a \in A_{1}, b \in A_{2} \cap A_{3} \rightarrow a \geq b$. Let $A=A_{1} \cap A_{2} \in F_{1} \wedge F_{2}=F \wedge F=F$. By (*) we have (${ }^{* *}$) $a \in A, b \in A \cap A_{3} \rightarrow a \geq \bar{b}$. From $\left(^{* *}\right)$ it follows that if b_{1} and b_{2} are in $A \cap A_{3}$ then $b_{1}=b_{2}$, hence $A \cap A_{3} \subseteq\left\{z_{0}\right\}$ for some z_{0}. This implies $F \wedge F^{\prime}=[\{\phi\}]$ or otherwise $F \wedge F^{\prime}=\left[z_{0}\right]$, in which case by $\left({ }^{*}\right)$ it follows that $\left[z_{0}, 1\right] \in F$, where $\left[z_{0}, 1\right]=\left\{x \in Y_{01}: z_{0} \leq x \leq 1\right\}$. Now let $y_{1}=x, y_{2}=y_{3}=y, F_{1}=F, F_{2}=F_{3}=F^{\prime}$. A similar argument shows that either $F \wedge F^{\prime}=[\{\phi\}]$ or $F \wedge F^{\prime}=\left[z_{1}\right]$ and $\left[0, z_{1}\right] \in F^{\prime}$. Combining the above results we conclude that for $x<y, F \in Y_{01}(x), F^{\prime} \in Y_{01}(y)$ we have either $F \wedge F^{\prime}=[\{\phi\}]$ or $\left(F \wedge F^{\prime}=\left[z_{0}\right]\right.$, $\left[z_{0}, 1\right] \in F$ and $\left.\left[0, z_{0}\right] \in F^{\prime}\right)$. Assume $F \wedge F^{\prime} \neq[\{\phi\}]$. Let $y_{1}=y_{2}=x, y_{3}=y, F_{1}=[x]$, $F_{2}=F$, and $F_{3}=F^{\prime}$, then $\left(y_{1}, y_{2}, y_{3}\right) \in \dot{Y}_{03}, F_{k} \in Y_{01}\left(y_{k}\right)$ for $k=1,2,3$. Apply (I_{3}) to get a filter $G \in Y_{02}\left(y_{1}, y_{3}\right)$ such that $\hat{\delta}_{2}(G) \subseteq\left[\left(F_{1} \otimes F_{2} \otimes F_{3}\right) \wedge \dot{Y}_{03}\right] . M \in G$ implies $\hat{\delta}_{2}(M)$ contains $\left(A_{1} \times A_{2} \times A_{3}\right) \cap \dot{Y}_{03}$ for some $A_{k} \in F_{k}$. It follows that $\{(a, b, b): a \in$ $\left.A_{1}, b \in A_{2} \cap A_{3}, a \leq b\right\} \subseteq \hat{\delta}_{2}(M)$. Therefore $a \in A_{1}, b \in A_{2} \cap A_{3} \rightarrow a \geq b$. $A_{1} \in F_{1}=[x]$, so $x \in A_{1}$, hence we have: $(* * *) b \in A_{2} \cap A_{3} \rightarrow x \geq b$. Let $A_{2}^{\prime}=A_{2} \cap\left[z_{0}, 1\right] \in F$ and $A_{3}^{\prime}=A_{3} \cap\left[0, z_{0}\right] \in F^{\prime}$. So $A_{2}^{\prime} \cap A_{3}^{\prime} \in F \wedge F^{\prime} \neq[\{\phi\}]$. This implies $A_{2}^{\prime} \cap A_{3}^{\prime} \neq \phi$. On the other hand $A_{2}^{\prime} \cap A_{3}^{\prime} \subseteq\left[0, z_{0}\right] \cap\left[z_{0}, 1\right]=\left\{z_{0}\right\}$, therefore $\left\{z_{0}\right\}=A_{2}^{\prime} \cap A_{3}^{\prime} \subseteq A_{2} \cap A_{3}$, that is $z_{0} \in A_{2} \cap A_{3}$ and so by (${ }^{* * *}$) we have $x \geq z_{0}$. Finally by letting $y_{1}=x, y_{2}=y_{3}=y$, $F_{1}=F, F_{2}=F^{\prime}$, and $F_{3}=[y]$ and applying $\left(I_{3}\right)$ we conclude $y \leq z_{0}$. It follows that $y \leq z_{0} \leq x$, that is $y \leq x$ a contradiction. Hence $F \wedge F^{\prime}=[\{\phi\}]$ and we have proved for $x \neq y, F \in Y_{01}(x), G \in Y_{01}(y)$ implies $F \wedge G=[\{\phi\}]$. It is easy to see that this is just the Hausdorffness defined in Definition 1.6. This proves that Y_{01}^{*} is Hausdorff. To show $F \in Y_{01}(0), F \neq[0]$ implies $F \nsubseteq[0]$, we use the fact that $\left(I_{2}\right)$ holds. Let $y_{1}=y_{2}=0$ and take $F \in Y_{01}(0)$ and assume that $F \subseteq[0]$. Then $x=0$ and $\mu=\delta_{1}$ or δ_{2} and there is a filter G in $Y_{01}(0)$ such that $\hat{\delta}_{1}(G) \subseteq\left[(F \otimes F) \wedge \dot{Y}_{02}\right]$ or $\hat{\delta}_{2}(G) \subseteq\left[(F \otimes F) \wedge \dot{Y}_{02}\right]$. If $\hat{\delta}_{1}(G) \subseteq\left[(F \otimes F) \wedge \dot{Y}_{02}\right]$, then $M \in G$ implies $\hat{\delta}_{1}(M)$ contains $(A \times B) \cap \dot{Y}_{02}$ for some A and B in $F .0 \in A$ since $F \subseteq[0]$. Therefore $0 \times A \subseteq \hat{\delta}_{1}(M)=\Delta M$. Thus $A \subseteq\{0\}$ and so F contains [0]. It follows that $F=[0]$. If $\hat{\delta}_{2}(G) \subseteq\left[(F \otimes F) \wedge \dot{Y}_{02}\right]$, then $M \in G$ implies $\hat{\delta}_{2}(M)$ contains $(A \times B) \cap \dot{Y}_{02}$ for some A and B in $F . \Delta(A \cap B) \subseteq(A \times B) \cap \dot{Y}_{02}$, therefore $\Delta(A \cap B) \subseteq 0 \times M$. It follows that $A \cap B \subseteq\{0\}$. $A \cap B \in F$ so F contains [0] and thus $F=[0]$. A similar argument shows that $F \in Y_{01}(1)$ and $F \neq[1]$ implies $F \nsubseteq[1]$. To prove the sufficiency, we need to show $\left(I_{n}\right)$ holds for all n. We show $\left(I_{3}\right)$ holds, the rest is similar.
Let $0 \neq x<y \neq 1, F_{1}, F_{2} \in Y_{01}(x)$ and $F_{3} \in Y_{01}(y)$. Define $G=\left[\left(\left(F_{1} \wedge F_{2}\right) \otimes F_{3}\right) \wedge Y 02\right] \in$ $Y_{02}(x, y)$. Note that $\hat{\delta}_{2}(x, y)=(x, x, y)$. We need to show that $\hat{\delta}_{2}(G) \subseteq\left[\left(F_{1} \otimes F_{2} \otimes F_{3}\right) \wedge \dot{Y}_{03}\right]$. $M \in G$ implies M contains $((A \cap B) \times C) \cap Y_{02}$ for some $A \in F_{1}, B \in F_{2}$, and $C \in F_{2}$. So
$\hat{\delta}_{2}(M)$ contains $(\Delta(A \cap B) \times C) \cap \dot{Y}_{03}$. Since F_{1} and F_{2} are in $Y_{01}(x), x \neq 0,1$, Hausdorffness implies $F_{1} \wedge[0]=[\{\phi\}], F_{1} \wedge[1]=[\{\phi\}]$, etc. So we can assume without loss of generality that $0 \notin A, 1 \notin B$. It follows that $\Delta(A \cap B)=(A \times B) \cap \dot{Y}_{02}$, and therefore we have $\hat{\delta}_{2}(M)$ contains $(A \times B \times C) \cap \dot{Y}_{03} \in\left[\left(F_{1} \otimes F_{2} \otimes F_{3}\right) \wedge \dot{Y}_{03}\right]$, and so $\hat{\delta}_{2}(M) \in\left[\left(F_{1} \otimes F_{2} \otimes F_{3}\right) \wedge \dot{Y}_{03}\right]$ as desired. The cases for $\left(y_{1}, y_{2}, y_{3}\right)$ on the remaining faces of \dot{Y}_{03} follow similarly.
(ii) Let C denote the constant structure on Y_{01}. It is not hard to check that i_{n} is initial for all n, if and only if given F_{k} in $C, k=1,2, \ldots, n$, there is G in $Y_{0, n-1}^{*}$ such that $\hat{\delta}_{k}(G) \subseteq\left[\left(F_{1} \otimes F_{2} \otimes \ldots \otimes F_{n}\right) \wedge \dot{Y}_{0 n}\right]$ for some k. Suppose i_{n} is initial for all n. Let $F \in C$, it follows that there is $G \in Y_{02}^{*}$ such that $\hat{\delta}_{k}(G) \subseteq\left[F \otimes F \otimes F \wedge \dot{Y}_{03}\right] . M \in G$ implies $\hat{\delta}_{k}(M)$ contains $\left(A_{1} \times A_{2} \times A_{3}\right) \cap \dot{Y}_{03}$, for some A_{1}, A_{2}, A_{3} in F. Let $A=A_{1} \cap A_{2} \cap A_{3}$, then we have $\left(^{*}\right)(A \times A \times A) \cap \dot{Y}_{03} \subseteq \hat{\delta}_{k}(M)$. It follows that $\left({ }^{* *}\right)$ if x and y are in A and $x \leq y$, then both (x, x, y) and (x, y, y) are in $\hat{\delta}_{k}(M)$. If $k=0$, then $\hat{\delta}_{0}(M)=M \times 1$ and $\left({ }^{*}\right)$ implies $A \subseteq\{1\}$, thus F contains [1]. If $k=1$, then $\hat{\delta}_{1}(M)=\{(a, b, b):(a, b) \in M\}$ and $\left.{ }^{* *}\right)$ implies $x, y \in A$ and $x \leq y \rightarrow x=y$ or equivalently $x, y \in A \rightarrow x \geq y$. It follows that $A \subseteq\left\{z_{0}\right\}$ for some z_{0} and therefore $\left[z_{0}\right] \subseteq F$. If $k=2$, it follows similarly that $\left[z_{0}\right] \subseteq F$ for some z_{0}. If $k=3$, it follows that $[0] \subseteq F$. Hence in either case F in C implies $[z] \subseteq F$ for some z, that is, C is discrete. The sufficiency is trivial.
(iii) The proof is similar to that of $F c o$. In this case since $[x] \cap F$ is in $Y_{01}(x)$ for all F in $Y_{01}(x)$, it follows that for $x=0$ or $1, Y_{01}(x)$ is discrete.
(iv) In $\operatorname{Lim}, i_{n}$ is initial for all n if and only if $y=\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in \dot{Y}_{0 n}$ and $F_{k} \in Y_{01}\left(y_{k}\right)$, $k=1,2, \ldots, n$, implies there is a finite number of $\left(x_{i}, \mu_{i}\right)$ in $Y_{0, n-1} \times \triangle(n-1, n)$, and G_{i} in $Y_{0, n-1}\left(x_{i}\right)$ such that $\hat{\mu}_{i}\left(x_{i}\right)=y$ and $\cap\left[\hat{\mu}_{i}\left(G_{i}\right)\right] \subseteq\left[\left(F_{1} \otimes F_{2} \otimes \ldots \otimes F_{n}\right) \wedge \dot{Y}_{0 n}\right]$. The rest is similar to the proof for Fco.
(v) Using 3.2.9. of [6], one can show $\dot{Y}_{0 n}(y)=\left\{F \in F\left(\dot{Y}_{0 n}\right): U\right.$ an ultrafilter $\supseteq F \rightarrow$ $\exists x \in Y_{0, n-1}, \mu \in \triangle(n-1, n)$, and ultrafilter $E \in Y_{0, n-1}(x)$ such that $\hat{\mu}(x)=y$ and $[\hat{\mu}(E)=$ $U]\}$ for each n. It is easy to show that i_{n} is initial if and only if given $y \in \dot{Y}_{0 n}, F \in Y_{01}^{n}(y)$, we have $\left[F \wedge \dot{Y}_{0 n}\right]$ is in $\dot{Y}_{0 n}(y)$. Being in $P s T$, it then follows that i_{n} is initial if and only if for any $y \in \dot{Y}_{0 n}$ and U an ultrafilter in $Y_{01}^{n}(y),\left[U \wedge \dot{Y}_{0 n}\right] \in \dot{Y}_{0 n}(y)$. On the other hand $\left[U \wedge \dot{Y}_{0 n}\right] \in \dot{Y}_{0 n}(y)$, if and only if either $\left[U \wedge \dot{Y}_{0 n}\right]=[\{\phi\}]$ or there is $x \in Y_{0, n-1}$, $\mu \in \triangle(n-1, n)$, and an ultrafilter $E \in Y_{0, n-1}(x)$ such that $\left[U \wedge \dot{Y}_{0 n}\right]=[\hat{\mu}(E)]$. Using the fact that U is an ultrafilter, and so for a given set either the set or its complement is in U, it is easy to show that $\left[U \wedge \dot{Y}_{0 n}\right]=[\{\phi\}]$ exactly when U contains $\dot{Y}_{0 n}^{c}$ and that $\left[U \wedge \dot{Y}_{0 n}\right]=[\hat{\mu}(E)]$ exactly when U contains ∂_{y}.
Combining the above facts yields the statement $\left(I_{n}\right)$ as required. To prove the other assertion, suppose Y_{01}^{*} is Hausdorff. To show $\left(I_{1}\right)$ holds, let $y=0$ in \dot{Y}_{01}, and U an ultrafilter in $Y_{01}(0)$. Y_{01}^{*} Hausdorff implies $U \neq[1]$, therefore $\{1\} \notin U$. Since U is an ultrafilter, it follows that $\{1\}^{c}=[0,1) \in U$. If $\{0\} \in U$, then $U=[0]$, otherwise $(0,1] \in U$, hence $(0,1)=[0,1) \cap(0,1] \in U$, that is $U=[0]$ or $(0,1)=\dot{Y}_{01}^{c} \in U$. For $y=1$, a similar argument shows if U is an ultrafilter in $Y_{01}(1)$, then $U=[1]$ or $\dot{Y}_{01}^{c} \in U$. Hence (I_{1}) holds. To show $\left(I_{2}\right)$ holds, let $y=(x, x), x \neq 0,1, U$ an ultrafilter in $Y_{01}^{2}(x, x)$. It follows that U_{1} and U_{2} are in $Y_{01}(x) . x \neq 0$ and Y_{01}^{*} Hausdorff imply $U_{1} \neq[0]$ and so there is $A \in U_{1}$ such that $0 \notin A$. Similarly there is $B \in U_{2}$ such that $1 \notin B$. If U does not contain \dot{Y}_{02}^{c}, then $\dot{Y}_{02} \in U$. Also $A \times B \in U_{1} \otimes U_{2} \subseteq U$, therefore $(A \times B) \cap \dot{Y}_{02} \in U .(A \times B) \cap \dot{Y}_{02}=\Delta(A \cap B) \subseteq \partial_{y}$. It follows that $\partial_{y} \in U$. For $y=(0, x), x \neq 0,1$, a similar argument shows that \dot{Y}_{02}^{c} is in U, etc. To show $\left(I_{3}\right)$ holds, let $y=\left(y_{1}, y_{2}, y_{3}\right), 0 \neq y_{1}=y_{2}<y_{3} \neq 1$, and U an ultrafilter in $Y_{01}^{3}(y)$. Since $y_{1} \neq 0, y_{2} \neq y_{3}, y_{3} \neq 1$, and Y_{01}^{*} is Hausdorff, it follows that there are sets $A \in U_{1}, B \in U_{2}, C \in U_{3}$ such that $0 \notin A, 1 \notin C$, and $B \cap C=\phi$. If $\dot{Y}_{03}^{c} \notin U$, then $\dot{Y}_{03} \in U$ and so $(A \times B \times C) \cap \dot{Y}_{03} \in U$. But $(A \times B \times C) \cap \dot{Y}_{03} \subseteq \partial_{y}$, hence $\partial_{y} \in U$. Other cases
follow similarly. Same argument holds for $\left(I_{n}\right), n>3$.
(vi) By 3.3.3. of [6], we have the structure $\dot{B}_{0 n}$ on $\dot{Y}_{0 n}$ is $\dot{B}_{0 n}=\left\{B \subseteq \dot{Y}_{0 n}: B \subseteq\right.$ $\partial_{n}(M)$, for some $\left.M \in B\left(Y_{0, n-1} \times \triangle(n-1, n)\right)\right\}$. Some computation shows that $\dot{B}_{0 n}=$ $\left\{B \subseteq \dot{Y}_{0 n}: B \subseteq \dot{\cup} \hat{\mu}_{i}\left(N_{i}\right), \mu_{i} \in \triangle(n-1, n), N_{i} \in B_{0, n-1}\right\}$. To show i_{n} is initial, we show if $B \subseteq \dot{Y}_{0 n}$, and $B \in B_{0 n}$, then $B \in \dot{B}_{0 n}$. Given such a set B, we have $B \subseteq B_{1} \times B_{2} \times \ldots \times B_{n}$, where B_{i} is the i th projection of B. We then have $B=B \cap \dot{Y}_{0 n} \subseteq\left(B_{1} \times B_{2} \times \ldots \times B_{n}\right) \cap \dot{Y}_{0 n} \subseteq$ $\hat{\delta}_{0}\left(B_{1} \times B_{2} \times \ldots \times B_{n-1} \cap Y_{0, n-1}\right) \cup \hat{\delta}_{1}\left(B_{1} \times B_{2} \times \ldots \times B_{n-2} \times\left(B_{n-1} \cap B_{n}\right) \cap Y_{0, n-1}\right) \cup \ldots \cup$ $\hat{\delta}_{n-1}\left(\left(B_{1} \cap B_{2}\right) \times B_{3} \times \ldots \times B_{n} \cap Y_{0, n-1}\right) \cup \hat{\delta}_{n}\left(B_{2} \times \ldots \times B_{n} \cap Y_{0, n-1}\right)$. Hence B is contained in a finite union of sets of the form $\hat{\mu}_{i}\left(N_{i}\right)$, and each N_{i} is in $B_{0, n-1}$. Therefore B is in $\dot{B}_{0 n}$ as required.
(vii) Suppose i_{n} is initial for all n. Consider $Y_{0, n-1} \times \triangle(n-1, n) \xrightarrow{\partial_{n}} \dot{Y}_{0 n}$. By 3.1.3. of [6],y $y y^{\prime}$ in $\dot{Y}_{0 n}$ if and only if there is a ∂_{n}-chain from y to y^{\prime}, that is, a finite chain $y=\omega_{0} \leq \omega_{1} \leq \ldots \leq \omega_{m}=y^{\prime}$ such that for each $k=0,1, \ldots, m-1$, there is a pair $\left(b_{k}, \mu_{k}\right) \leq\left(b_{k}^{\prime}, \mu_{k}^{\prime}\right)$ in $Y_{0, n-1} \times \triangle(n-1, n)$ such that $\hat{\mu}_{k}\left(b_{k}\right)=\omega_{k}$ and $\hat{\mu}_{k}^{\prime}\left(b_{k}^{\prime}\right)=\omega_{k+1}$. Since $\triangle(n-1, n)$ has the discrete structure, it follows that $\mu_{k}=\mu_{k}^{\prime}$ for each $k .0 \nsim 1$ in \dot{Y}_{01}, that is 0 and 1 are not related in \dot{Y}_{01}, since otherwise the existence of the chain implies $0=1$. Since i_{1} is initial, it follows that $0 \nsim 1$ in Y_{01}. In fact this is sufficient for i_{1} to be initial. Suppose $x \neq 0$ and $0 \leq x$ in Y_{01}. It follows that $(0, x) \leq(x, x)$ in Y_{02}. Since i_{2} is initial we conclude that $(0, x) \leq(x, x)$ in \dot{Y}_{02}. The existence of the chain will imply $x \leq 0$ in Y_{01}. One can similarly show that if $x \leq 0$ then $0 \leq x$, and that the same holds with 0 replaced by 1 . In fact i_{1} and i_{2} are initial if and only if $0 \nsim 1, x \leq 0 \Leftrightarrow 0 \leq x$, and $x \leq 1 \Leftrightarrow 1 \leq x$. Similar computation shows i_{1}, i_{2} and i_{3} are initial if and only if $x_{1} \leq x_{2} \Leftrightarrow x_{2} \leq x_{1}$. It thus follows that if i_{n} is initial for all n, then the preorder on Y_{01} is symmetric. The converse can easily be proved.

References

[1] H. Herlich, Topological Functors, , General Topolgy and its Applications, 4 (1974), 125-142.
[2] S. N. Hosseini, Commutation of Geometric Realization Functor and Finite Limits, Scientiae Mathematicae Japonicae Online (2008), 331-340.
[3] S. Mac Lane, Categories for the Working Mathematician, New York-Heidelberg-Berlin, Springer (1971).
[4] M. V. Mielke, The interval in algebraic topology, Illinois Journal of Math., Vol. 25, No. 1, (1981).
[5] M. V. Mielke, Exact intervals, Illinois Journal of Math., Vol. 25, No. 4, (1981).
[6] L. D. Nel, Initially structured categories and cartesian closedness, Can. Journal of Math., Vol. XXVII, No. 6, (1975), 1361-1377.

Author's address:
Seyed Naser Hosseini, Department of Mathematics, Shahid Bahonar University of Kerman, Kerman, Iran.

[^0]: 2006 Mathematics Subject Classification. 18A20, 18A35, 18G30.
 Key words and phrases. geometric realization functor, cosimplicial k-space, simplex structure, initiality, Hausdorffness, convergence space.

 Supported partially by Mahani Research Center, Shahid Bahonar University of Kerman.

