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INTERVAL HAUSDORFFNESS AND INITIALITY

S. N. Hosseini
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Abstract. The geometric realization functor, |?|T : S�op �� KTop, is known to

commute with finite limits if the reflection of T [1] into the category of T0-spaces is a
Hausdorff space, where T is a cosimplicial k-space. We have previously shown that
for the categories Fco, ConsFco, Con, Lim, PsT , Born, and PreOrd, the initiality
of the inclusion of the boundary Ẏ0n of Y0n into Y0n guarantees the commutation

of finite limits by the geometric realization functor, |?|Y : S�op �� A. Here we

show that in the above mentioned categories the initiality condition may be viewed
as a generalized Hausdorff condition on the interval Y01, as is the case in the classical
situation where A is the category KTop.

1 Introduction We have shown, in [2], that for certain categories A the geometric real-
ization functor, |?|Y : S�op �� A, commutes with finite limits if and only if the collection

{in : Ẏ0n
�� �� Y0n} is strongly initial, where Y is the domain of a simplex structure, i.e.

a discrete fibration, g : Y �� D�op, in A. We have then applied this result to the
categories Fco, ConsFco, Con, Lim, PsT , Born, and PreOrd, and have shown that the
initiality of the inclusion of the boundary Ẏ0n of Y0n into Y0n guarantees the commutation
of finite limits by the geometric realization functor, |?|Y : S�op �� A. On the other

hand, the geometric realization functor, |?|T : S�op �� KTop, is known to commute
with finite limits if the reflection of T [1] into the category of T0-spaces is a Hausdorff space,
where T is a cosimplicial k-space, see [5].

In section 2 of the present article we give the preliminary resullts and then in section 3
we show that in the categories, Fco, ConsFco, Con, Lim, PsT , Born, and PreOrd, the
initiality condition may be viewed as a generalized Hausdorff condition on the interval Y01,
as is the case in the classical situation where A is the category KTop.

2 Preliminaries. Let A be a category with finite limits and coequalizers of reflexive
pairs that is geometric over the category S of sets via the morphism f . Assume that the
functor a ×− : A �� A preserves extremal epis, and the direct image f∗ : A �� S of

f preserves reflexive coequalizers, and reflects monos and terminals. Let g : Y �� D�op

be a simplex structure, and Let m and n be natural numbers, and �[n] the standard n-
simplex, see [2] and [3].
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2.1. Definition: Define Omn : �[m] ×�(m,n) �� �[n] to be the morphism induced
by composition.

2.2. Definition: Define the morphisms γmn and δmn by the following pullback diagrams.

Y0m × f∗�(m,n)

impr1
��

γmn

��������������

f∗(imn)pr2

��
Y1

d1

��
p.b.

g1 �� f∗�1

f∗(d0)

��
Y0 g0

�� f∗N

Y0m × f∗�(m,n)

γmn

��

δmn

��������������

��
Y1n

i1n

��
p.b.

d0n �� Y0n

i0n

��
p.b.

�� 1

f∗(n)

��
Y1

d0

�� Y0 g0
�� f∗N

where pr1, and pr2 are the projections of the product, and imn, and im are the obvious
inclusions. Define λmn to be the composition d0nδmn.

With Omn and λmn as above, we have:

2.3. Lemma: |Omn|Y = λmn.

Proof: By Lemma 2.2 of [2], we have |�[n]|Y = Y0n. It can be easily shown that
|�[m]×�(m,n)|Y = Y0m×f∗�(m,n). So we have |Omn|Y : Yom × f∗�(m,n) �� Y0n.
The diagram in the proof of [2], Lemma 2.2, together with the definitions of the maps Omn

and λmn show that |Omn|Y = λmn. �

The boundary �̇[n] of �[n] and the boundary Ẏ0n of Y0n are defined in [2], Definition
2.3, and we have:

2.4. Lemma: The image of Omn is Skm�[n]. In particular, the image of On−1,n is �̇[n].

Proof: The definition of n-skeleton together with that of Omn imply that the epi-mono

factorization of Omn is�[m] ×�(m,n)
∂mn �� Skm�[n]

imn �� �[n]

The second assertion of the lemma follows from definition of �̇[n]. �

2.5. Theorem: If f∗ preserves reflexive coequalizers, reflects monos, and f∗Y is filtered,
then Ẏ0n in A is the image of the morphism λn−1,n : Y0,n−1 × f∗�(n − 1, n) �� Y0n.

Proof: By Lemma 2.4, On−1,n is the composition:

�[n − 1] ×�(n − 1, n)
∂n �� �̇[n]

in �� �[n]

Applying the functor |?|Y to the above diagram, Lemma 1.3, and Lemma 2.2 of [2], give

λn−1,n as the compositionY0,n−1 × f∗�(n − 1, n)
|∂n| �� Ẏ0n

|in| �� Y0n. ∂n is an epi in S,
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and therefore a coequalizer. Since |?|Y preserves colimits, |∂n| is a coequalizer in A. Since
f∗ preserves reflexive coequalizers, and reflects monos, |∂n| is an e.e..

On the other hand by Lemma 2.5 of [2], and the assumption that f∗ reflects monos, it
follows that in = |in| is a mono. Hence Ẏ0n is the image of λn−1,n. �

3 Hausdorffness. Now let A be one of the categories Fco, ConsFco, Con, Lim, PsT ,
Born, and PreOrd, see [1], and [6]. If g : Y �� D�op is a simplex structure, then

products are preserved by the functor |?|Y : S�op �� A, see Lemma 1.3. of [2]. So by
Theorem 2.4 and Proposition 2.2 of [4], we can view Y01 as a linearly ordered set with min-
imum 0 and maximum 1. Furthermore, Y0n can be identified with the set {(y1, y2, ..., yn) :
0 ≤ y1 ≤ y2 ≤ ... ≤ yn ≤ 1}. It is not hard to see under this identification that the image
of the morphism λn−1,n : Y0,n−1 × f∗�(n − 1, n) �� Y0n, is the set, {(y1, y2, ..., yn) ∈
Y0n : y1 = 0, or yi−1 = yi some 1 < i ≤ n, or yn = 1} with the coinduced structure, see
Definition 2.2. It then follows from Theorem 2.5 that Ẏ0n ≡ {(y1, y2, ..., yn) ∈ Y0n : y1 =
0, or yi−1 = yi some 1 < i ≤ n, or yn = 1}, and we have the commutative diagram:

Y0,n−1 × f∗�(n − 1, n)

∂n

///

����������������

λn−1,n �� Y0n

Ẏ0n

in

		��������

where ∂n = |∂n|. Given a map µ : n − 1 �� n in �, the morphism λn−1,n induces a

morphism µ̂ : Y0,n−1 �� Y0n in A, which factors through Ẏ0n. If µ is a mono, (epi), then
µ̂ is the restriction of one of the maps δi (respectively σi) described in [4] p 53. Since the
obvious mono�[n] �� �� �[1]n is a retract, if |?|Y preserves products, thenY0n

�� �� Y n
01

is a retract. Hence the structure on Y0n is the induced structure from Y n
01. In what follows

a convergence space (X, C) is denoted by X∗, and the structure C(x) by X(x).

3.1. Definition: A convergence space X∗ is said to be Hausdorff if X(x)∩X(y) = {[{φ}]}
for all x �= y in X .

3.2. Theorem: (i) In Fco,Ẏ0n
�� in �� Y0n is initial for all n if and only if Y ∗

01 is Hausdorff
and F ∈ Y01(0), F �= [0] → F �⊆ [0], and F ∈ Y01(1), F �= [1] → F �⊆ [1].

(ii) In ConsFco,Ẏ0n
�� in �� Y0n is initial for all n if and only if Y ∗

01 is discrete.

(iii) In Con,Ẏ0n
�� in �� Y0n is initial for all n if and only if Y ∗

01 is Hausdorff and Y01(0)
and Y01(1) are discrete.

(iv) In Lim,Ẏ0n
�� in �� Y0n is initial for all n if and only if Y ∗

01 is Hausdorff.

(v) In PsT , Ẏ0n
�� in �� Y0n is initial for all n if and only if the following condition (In)

holds for all n:
(In) If U is an ultrafilter on Y n

01 with Uk, the kth projection of U , in Y01(yk), and
y = (y1, y2, ..., yn) is in Ẏ0n, then U contains ∂y ∪ Ẏ c

0n, where ∂y is the union of all the faces
containing y and Ẏ c

0n is the complement of Ẏ0n in Y n
01.

Furthermore for in to be initial for all n it is sufficient to have Y ∗
01 Hausdorff.

(vi) In Born,Ẏ0n
�� in �� Y0n is initial for all n with no further conditions needed.
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(vii) In PreOrd, Ẏ0n
�� in �� Y0n is initial for all n if and only if the preorder on Y01 is

symmetric.

Proof: (i) Since Ẏ0n has the coinduced structure, by 3.2.3. of [6], which holds for
Fco as well, we have Ẏ0n(y) = {F ∈ F (Ẏ0n) : ∃x ∈ Y0,n−1, µ ∈ �(n − 1, n), G ∈
Y0,n−1(x) such that µ̂(x) = y, and µ̂(G) ⊆ F}. Some computation shows that in is ini-
tial if and only if the following condition holds:

(In) For all y = (y1, y2, ..., yn) ∈ Ẏ0n and all Fk ∈ Y01(yk), k = 1, 2, ..., n, there is x ∈ Y0,n−1,
µ ∈ �(n−1, n), and G ∈ Y0,n−1(x) such that µ̂(x) = y and µ̂(G) ⊆ [(F1⊗F2⊗...⊗Fn)∧Ẏ0n].
Now suppose in is initial for all n and so (In) holds for all n. Therefore (I3) holds. Given
x < y, F ∈ Y01(x), F ′ ∈ Y01(y), let y1 = y2 = x, y3 = y, F1 = F2 = F , F3 = F ′ and note
that (y1, y2, y3) ∈ Ẏ03, Fk ∈ Y01(yk), and δ̂2(y1, y2) = (y1, y2, y3). (I3) implies the existence
of a G in Y02(y1, y3) such that δ̂2(G) ⊆ [(F1 ⊗F2 ⊗ F3) ∧ Ẏ03]. M ∈ G implies there are Ak

in Fk such that δ̂2(M) contains (A1 × A2 × A3) ∩ Ẏ03 which contains {(a, b, b) : a ∈ A1, b ∈
A2 ∩A3, a ≤ b}. It follows that a ∈ A1, b ∈ A2 ∩A3, a ≤ b implies a = b, or equivalently (*)
a ∈ A1, b ∈ A2∩A3 → a ≥ b. Let A = A1∩A2 ∈ F1∧F2 = F ∧F = F . By (*) we have (**)
a ∈ A, b ∈ A∩A3 → a ≥ b. From (**) it follows that if b1 and b2 are in A∩A3 then b1 = b2,
hence A ∩ A3 ⊆ {z0} for some z0. This implies F ∧ F ′ = [{φ}] or otherwise F ∧ F ′ = [z0],
in which case by (*) it follows that [z0, 1] ∈ F , where [z0, 1] = {x ∈ Y01 : z0 ≤ x ≤ 1}. Now
let y1 = x, y2 = y3 = y, F1 = F , F2 = F3 = F ′. A similar argument shows that either
F ∧ F ′ = [{φ}] or F ∧ F ′ = [z1] and [0, z1] ∈ F ′. Combining the above results we conclude
that for x < y, F ∈ Y01(x), F ′ ∈ Y01(y) we have either F ∧ F ′ = [{φ}] or (F ∧ F ′ = [z0],
[z0, 1] ∈ F and [0, z0] ∈ F ′). Assume F ∧ F ′ �= [{φ}]. Let y1 = y2 = x, y3 = y, F1 = [x],
F2 = F , and F3 = F ′, then (y1, y2, y3) ∈ Ẏ03, Fk ∈ Y01(yk) for k = 1, 2, 3. Apply (I3)
to get a filter G ∈ Y02(y1, y3) such that δ̂2(G) ⊆ [(F1 ⊗ F2 ⊗ F3) ∧ Ẏ03]. M ∈ G implies
δ̂2(M) contains (A1 × A2 × A3) ∩ Ẏ03 for some Ak ∈ Fk. It follows that {(a, b, b) : a ∈
A1, b ∈ A2 ∩ A3, a ≤ b} ⊆ δ̂2(M). Therefore a ∈ A1, b ∈ A2 ∩ A3 → a ≥ b. A1 ∈ F1 = [x],
so x ∈ A1, hence we have: (***) b ∈ A2 ∩ A3 → x ≥ b. Let A′

2 = A2 ∩ [z0, 1] ∈ F and
A′

3 = A3 ∩ [0, z0] ∈ F ′. So A′
2 ∩ A′

3 ∈ F ∧ F ′ �= [{φ}]. This implies A′
2 ∩ A′

3 �= φ. On the
other hand A′

2 ∩ A′
3 ⊆ [0, z0] ∩ [z0, 1] = {z0}, therefore {z0} = A′

2 ∩ A′
3 ⊆ A2 ∩ A3, that

is z0 ∈ A2 ∩ A3 and so by (***) we have x ≥ z0. Finally by letting y1 = x, y2 = y3 = y,
F1 = F , F2 = F ′, and F3 = [y] and applying (I3) we conclude y ≤ z0. It follows that
y ≤ z0 ≤ x, that is y ≤ x a contradiction. Hence F ∧ F ′ = [{φ}] and we have proved for
x �= y, F ∈ Y01(x), G ∈ Y01(y) implies F ∧ G = [{φ}]. It is easy to see that this is just
the Hausdorffness defined in Definition 1.6. This proves that Y ∗

01 is Hausdorff. To show
F ∈ Y01(0), F �= [0] implies F �⊆ [0], we use the fact that (I2) holds. Let y1 = y2 = 0
and take F ∈ Y01(0) and assume that F ⊆ [0]. Then x = 0 and µ = δ1 or δ2 and there
is a filter G in Y01(0) such that δ̂1(G) ⊆ [(F ⊗ F ) ∧ Ẏ02] or δ̂2(G) ⊆ [(F ⊗ F ) ∧ Ẏ02]. If
δ̂1(G) ⊆ [(F ⊗ F ) ∧ Ẏ02], then M ∈ G implies δ̂1(M) contains (A × B) ∩ Ẏ02 for some A

and B in F . 0 ∈ A since F ⊆ [0]. Therefore 0 × A ⊆ δ̂1(M) = ∆M . Thus A ⊆ {0} and
so F contains [0]. It follows that F = [0]. If δ̂2(G) ⊆ [(F ⊗ F ) ∧ Ẏ02], then M ∈ G implies
δ̂2(M) contains (A×B)∩ Ẏ02 for some A and B in F . ∆(A∩B) ⊆ (A×B)∩ Ẏ02 , therefore
∆(A ∩ B) ⊆ 0 × M . It follows that A ∩ B ⊆ {0}. A ∩ B ∈ F so F contains [0] and thus
F = [0]. A similar argument shows that F ∈ Y01(1) and F �= [1] implies F �⊆ [1]. To prove
the sufficiency, we need to show (In) holds for all n. We show (I3) holds, the rest is similar.

Let 0 �= x < y �= 1, F1, F2 ∈ Y01(x) and F3 ∈ Y01(y). Define G = [((F1 ∧F2)⊗F3)∧Y 02] ∈
Y02(x, y). Note that δ̂2(x, y) = (x, x, y). We need to show that δ̂2(G) ⊆ [(F1⊗F2⊗F3)∧Ẏ03].
M ∈ G implies M contains ((A ∩ B) × C) ∩ Y02 for some A ∈ F1, B ∈ F2, and C ∈ F2. So
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δ̂2(M) contains (∆(A∩B)×C)∩ Ẏ03 . Since F1 and F2 are in Y01(x), x �= 0, 1, Hausdorffness
implies F1 ∧ [0] = [{φ}], F1 ∧ [1] = [{φ}], etc. So we can assume without loss of generality
that 0 �∈ A, 1 �∈ B. It follows that ∆(A∩B) = (A×B)∩ Ẏ02, and therefore we have δ̂2(M)
contains (A×B ×C)∩ Ẏ03 ∈ [(F1 ⊗F2 ⊗F3)∧ Ẏ03], and so δ̂2(M) ∈ [(F1 ⊗F2 ⊗F3)∧ Ẏ03]
as desired. The cases for (y1, y2, y3) on the remaining faces of Ẏ03 follow similarly.

(ii) Let C denote the constant structure on Y01. It is not hard to check that in is
initial for all n, if and only if given Fk in C, k = 1, 2, ..., n, there is G in Y ∗

0,n−1 such that
δ̂k(G) ⊆ [(F1 ⊗ F2 ⊗ ... ⊗ Fn) ∧ Ẏ0n] for some k. Suppose in is initial for all n. Let F ∈ C,
it follows that there is G ∈ Y ∗

02 such that δ̂k(G) ⊆ [F ⊗ F ⊗ F ∧ Ẏ03]. M ∈ G implies
δ̂k(M) contains (A1 × A2 × A3) ∩ Ẏ03, for some A1, A2, A3 in F . Let A = A1 ∩ A2 ∩ A3,
then we have (*) (A × A × A) ∩ Ẏ03 ⊆ δ̂k(M). It follows that (**) if x and y are in A and
x ≤ y, then both (x, x, y) and (x, y, y) are in δ̂k(M). If k = 0, then δ̂0(M) = M × 1 and (*)
implies A ⊆ {1}, thus F contains [1]. If k = 1, then δ̂1(M) = {(a, b, b) : (a, b) ∈ M} and
(**) implies x, y ∈ A and x ≤ y → x = y or equivalently x, y ∈ A → x ≥ y. It follows that
A ⊆ {z0} for some z0 and therefore [z0] ⊆ F . If k = 2, it follows similarly that [z0] ⊆ F for
some z0. If k = 3, it follows that [0] ⊆ F . Hence in either case F in C implies [z] ⊆ F for
some z, that is, C is discrete. The sufficiency is trivial.

(iii) The proof is similar to that of Fco. In this case since [x] ∩ F is in Y01(x) for all F
in Y01(x), it follows that for x = 0 or 1, Y01(x) is discrete.

(iv) In Lim, in is initial for all n if and only if y = (y1, y2, ..., yn) ∈ Ẏ0n and Fk ∈ Y01(yk),
k = 1, 2, ..., n, implies there is a finite number of (xi, µi) in Y0,n−1 ×�(n− 1, n), and Gi in
Y0,n−1(xi) such that µ̂i(xi) = y and ∩[µ̂i(Gi)]i

⊆ [(F1 ⊗ F2 ⊗ ... ⊗ Fn) ∧ Ẏ0n]. The rest is
similar to the proof for Fco.

(v) Using 3.2.9. of [6], one can show Ẏ0n(y) = {F ∈ F (Ẏ0n) : U an ultrafilter ⊇ F →
∃x ∈ Y0,n−1, µ ∈ �(n−1, n), and ultrafilter E ∈ Y0,n−1(x) such that µ̂(x) = y and [µ̂(E) =
U ]} for each n. It is easy to show that in is initial if and only if given y ∈ Ẏ0n, F ∈ Y n

01(y),
we have [F ∧ Ẏ0n] is in Ẏ0n(y). Being in PsT , it then follows that in is initial if and
only if for any y ∈ Ẏ0n and U an ultrafilter in Y n

01(y), [U ∧ Ẏ0n] ∈ Ẏ0n(y). On the other
hand [U ∧ Ẏ0n] ∈ Ẏ0n(y), if and only if either [U ∧ Ẏ0n] = [{φ}] or there is x ∈ Y0,n−1,
µ ∈ �(n − 1, n), and an ultrafilter E ∈ Y0,n−1(x) such that [U ∧ Ẏ0n] = [µ̂(E)]. Using
the fact that U is an ultrafilter, and so for a given set either the set or its complement
is in U , it is easy to show that [U ∧ Ẏ0n] = [{φ}] exactly when U contains Ẏ c

0n and that
[U ∧ Ẏ0n] = [µ̂(E)] exactly when U contains ∂y.
Combining the above facts yields the statement (In) as required. To prove the other asser-
tion, suppose Y ∗

01 is Hausdorff. To show (I1) holds, let y = 0 in Ẏ01, and U an ultrafilter
in Y01(0). Y ∗

01 Hausdorff implies U �= [1], therefore {1} �∈ U . Since U is an ultrafilter,
it follows that {1}c = [0, 1) ∈ U . If {0} ∈ U , then U = [0], otherwise (0, 1] ∈ U , hence
(0, 1) = [0, 1)∩ (0, 1] ∈ U , that is U = [0] or (0, 1) = Ẏ c

01 ∈ U . For y = 1, a similar argument
shows if U is an ultrafilter in Y01(1), then U = [1] or Ẏ c

01 ∈ U . Hence (I1) holds. To show
(I2) holds, let y = (x, x), x �= 0, 1, U an ultrafilter in Y 2

01(x, x). It follows that U1 and U2

are in Y01(x). x �= 0 and Y ∗
01 Hausdorff imply U1 �= [0] and so there is A ∈ U1 such that

0 �∈ A. Similarly there is B ∈ U2 such that 1 �∈ B. If U does not contain Ẏ c
02, then Ẏ02 ∈ U .

Also A ×B ∈ U1 ⊗ U2 ⊆ U , therefore (A × B) ∩ Ẏ02 ∈ U . (A ×B) ∩ Ẏ02 = ∆(A ∩B) ⊆ ∂y.
It follows that ∂y ∈ U . For y = (0, x), x �= 0, 1, a similar argument shows that Ẏ c

02 is in U ,
etc. To show (I3) holds, let y = (y1, y2, y3), 0 �= y1 = y2 < y3 �= 1, and U an ultrafilter in
Y 3

01(y). Since y1 �= 0, y2 �= y3, y3 �= 1, and Y ∗
01 is Hausdorff, it follows that there are sets

A ∈ U1, B ∈ U2, C ∈ U3 such that 0 �∈ A, 1 �∈ C, and B ∩ C = φ. If Ẏ c
03 �∈ U , then Ẏ03 ∈ U

and so (A × B × C) ∩ Ẏ03 ∈ U . But (A × B × C) ∩ Ẏ03 ⊆ ∂y, hence ∂y ∈ U . Other cases
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follow similarly. Same argument holds for (In), n > 3.
(vi) By 3.3.3. of [6], we have the structure Ḃ0n on Ẏ0n is Ḃ0n = {B ⊆ Ẏ0n : B ⊆

∂n(M), for some M ∈ B(Y0,n−1 × �(n − 1, n))}. Some computation shows that Ḃ0n =
{B ⊆ Ẏ0n : B ⊆ ∪µ̂i(Ni)i , µi ∈ �(n − 1, n), Ni ∈ B0,n−1}. To show in is initial, we show if
B ⊆ Ẏ0n, and B ∈ B0n, then B ∈ Ḃ0n. Given such a set B, we have B ⊆ B1×B2× ...×Bn,
where Bi is the ith projection of B. We then have B = B∩Ẏ0n ⊆ (B1×B2×...×Bn)∩Ẏ0n ⊆
δ̂0(B1 ×B2 × ...×Bn−1 ∩ Y0,n−1) ∪ δ̂1(B1 ×B2 × ...×Bn−2 × (Bn−1 ∩Bn)∩ Y0,n−1)∪ ...∪
δ̂n−1((B1 ∩B2)×B3 × ...×Bn ∩ Y0,n−1)∪ δ̂n(B2 × ...×Bn ∩ Y0,n−1). Hence B is contained
in a finite union of sets of the form µ̂i(Ni), and each Ni is in B0,n−1. Therefore B is in Ḃ0n

as required.

(vii) Suppose in is initial for all n. ConsiderY0,n−1 ×�(n − 1, n)
∂n �� �� Ẏ0n. By 3.1.3.

of [6], y ≤ y′ in Ẏ0n if and only if there is a ∂n-chain from y to y′, that is, a finite chain
y = ω0 ≤ ω1 ≤ ... ≤ ωm = y′ such that for each k = 0, 1, ...,m − 1, there is a pair
(bk, µk) ≤ (b′k, µ′

k) in Y0,n−1 ×�(n− 1, n) such that µ̂k(bk) = ωk and µ̂′
k(b′k) = ωk+1. Since

�(n− 1, n) has the discrete structure, it follows that µk = µ′
k for each k. 0 �∼ 1 in Ẏ01, that

is 0 and 1 are not related in Ẏ01, since otherwise the existence of the chain implies 0=1.
Since i1 is initial, it follows that 0 �∼ 1 in Y01. In fact this is sufficient for i1 to be initial.
Suppose x �= 0 and 0 ≤ x in Y01. It follows that (0, x) ≤ (x, x) in Y02. Since i2 is initial
we conclude that (0, x) ≤ (x, x) in Ẏ02. The existence of the chain will imply x ≤ 0 in Y01.
One can similarly show that if x ≤ 0 then 0 ≤ x, and that the same holds with 0 replaced
by 1. In fact i1 and i2 are initial if and only if 0 �∼ 1, x ≤ 0 ⇔ 0 ≤ x, and x ≤ 1 ⇔ 1 ≤ x.
Similar computation shows i1, i2 and i3 are initial if and only if x1 ≤ x2 ⇔ x2 ≤ x1. It thus
follows that if in is initial for all n, then the preorder on Y01 is symmetric. The converse
can easily be proved. �
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