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Abstract. Let E be a smooth, strictly convex and reflexive Banach space, let Y ∗ be
a closed linear subspace of the dual space E∗ of E and let ΠY ∗ be the generalized
projection of E∗ onto Y ∗. Then, the mapping EY ∗ of E into E defined by EY ∗ =
J−1ΠY ∗J is called the generalized conditional expectation with respect to Y ∗, where J
is the normalized duality mapping from E into E∗. In this paper, we prove two results
which are related to norm one linear projections and generalized conditional expectations
in Banach spaces.

1. Introduction

Let E be a smooth Banach space and let E∗ be the dual space of E. The function
φ : E × E → R is defined by

φ(x, y) = ‖x‖2 − 2〈x, Jy〉 + ‖y‖2

for each x, y ∈ E, where J is the normalized duality mapping from E into E∗. Let C be a
nonempty closed convex subset of E and let T be a mapping from C into itself. Then, T is
called generalized nonexpansive if the set F (T ) of fixed points of T is nonempty and

φ(Tx, y) ≤ φ(x, y)

for all x ∈ C and y ∈ F (T ); see Ibaraki and Takahashi [23]. Such nonlinear operators are
connected with the resolvents of maximal monotone operators in Banach spaces. When
E is a smooth, strictly convex and reflexive Banach space and C is a nonempty closed
convex subset of E, Alber [1] also defined a nonlinear projection ΠC of E onto C called the
generalized projection. Motivated by Alber [1] and Ibaraki and Takahashi [23], Kohsaka
and Takahashi [34] proved the following result: Let E be a smooth, strictly convex and
reflexive Banach space, let C∗ be a nonempty closed convex subset of E∗ and let ΠC∗ be
the generalized projection of E∗ onto C∗. Then the mapping R defined by R = J−1ΠC∗J is
a sunny generalized nonexpansive retraction of E onto J−1C∗. When Y ∗ is a closed linear
subspace of E∗, the authors [20] also defined the mapping EY ∗ = J−1ΠY ∗J and called
EY ∗ the generalized conditional expectation with respect to Y ∗. Then, they obtained some
results for generalized conditional expectations in the Banach space.

In this paper, we study the relationship between norm one linear projections and gener-
alized conditional expectations in a smooth, strictly convex and reflexive Banach space.

2. Preliminaries

Throughout this paper, we assume that a Banach space E with the dual space E∗ is real.
We denote by N and R the sets of all positive integers and all real numbers, respectively.
We also denote by 〈x, x∗〉 the dual pair of x ∈ E and x∗ ∈ E∗. A Banach space E is said to
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be strictly convex if ‖x + y‖ < 2 for x, y ∈ E with ‖x‖ ≤ 1, ‖y‖ ≤ 1 and x �= y. A Banach
space E is said to be smooth provided

lim
t→0

‖x + ty‖ − ‖x‖
t

exists for each x, y ∈ E with ‖x‖ = ‖y‖ = 1. Let E be a Banach space. With each x ∈ E,
we associate the set

J(x) = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2}.
The multivalued operator J : E → E∗ is called the normalized duality mapping of E. From
the Hahn-Banach theorem, Jx �= ∅ for each x ∈ E. We know that E is smooth if and only if
J is single-valued. If E is strictly convex, then J is one-to-one, i.e., x �= y ⇒ J(x)∩J(y) = ∅.
If E is reflexive, then J is a mapping of E onto E∗. So, if E is reflexive, strictly convex and
smooth, then J is single-valued, one-to-one and onto. In this case, the normalized duality
mapping J∗ from E∗ into E is the inverse of J , that is, J∗ = J−1; see [43] for more details.
Let E be a smooth Banach space and let J be the normalized duality mapping of E. We
define the function φ : E × E → R by

φ(x, y) = ‖x‖2 − 2〈x, Jy〉 + ‖y‖2

for all x, y ∈ E. We also define the function φ∗ : E∗ × E∗ → R by

φ∗(x∗, y∗) = ‖x∗‖2 − 2〈x∗, J−1y∗〉 + ‖y∗‖2

for all x∗, y∗ ∈ E∗. It is easy to see that (‖x‖ − ‖y‖)2 ≤ φ(x, y) for all x, y ∈ E. Thus, in
particular, φ(x, y) ≥ 0 for all x, y ∈ E. We also know the following:

φ(x, y) = φ(x, z) + φ(z, y) + 2〈x − z, Jz − Jy〉(2.1)

for all x, y, z ∈ E. It is easy to see that

φ(x, y) = φ∗(Jy, Jx)(2.2)

for all x, y ∈ E. If E is additionally assumed to be strictly convex, then

φ(x, y) = 0 ⇔ x = y.(2.3)

Let C be a nonempty closed convex subset of a smooth, strictly convex and reflexive Banach
space E. For an arbitrary point x of E, the set

{z ∈ C : φ(z, x) = min
y∈C

φ(y, x)}
is always nonempty and a singleton. Let us define the mapping ΠC of E onto C by z = ΠCx
for every x ∈ E, i.e.,

φ(ΠCx, x) = min
y∈C

φ(y, x)

for every x ∈ E. Such ΠC is called the generalized projection of E onto C; see Alber [1].
The following lemma is due to Alber [1] and Kamimura and Takahashi [31].

Lemma 2.1 ([1, 31]). Let C be a nonempty closed convex subset of a smooth, strictly con-
vex and reflexive Banach space E and let (x, z) ∈ E × C. Then, the following hold:
(a) z = ΠCx if and only if 〈y − z, Jx − Jz〉 ≤ 0 for all y ∈ C;
(b) φ(z,ΠCx) + φ(ΠCx, x) ≤ φ(z, x).

From this lemma, we can prove the following lemma.

Lemma 2.2. Let M be a closed linear subspace of a smooth, strictly convex and reflexive
Banach space E and let (x, z) ∈ E × M Then, z = ΠMx if and only if

〈J(x) − J(z),m〉 = 0 for any m ∈ M.
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Let D be a nonempty closed convex subset of a smooth Banach space E, let T be a
mapping from D into itself and let F (T ) be the set of fixed points of T . Then, T is said
to be generalized nonexpansive [23] if F (T ) is nonempty and φ(Tx, u) ≤ φ(x, u) for all
x ∈ D and u ∈ F (T ). Let C be a nonempty subset of E and let R be a mapping from
E onto C. Then R is said to be a retraction, or a projection if Rx = x for all x ∈ C. It
is known that if a mapping P of E into E satisfies P 2 = P , then P is a projection of E
onto {Px : x ∈ E}. The mapping R is also said to be sunny if R(Rx + t(x − Rx)) = Rx
whenever x ∈ E and t ≥ 0. A nonempty subset C of a smooth Banach space E is said to
be a generalized nonexpansive retract (resp. sunny generalized nonexpansive retract) of E
if there exists a generalized nonexpansive retraction (resp. sunny generalized nonexpansive
retraction) R from E onto C. The following lemmas were proved by Ibaraki and Takahashi
[23].

Lemma 2.3 ([23]). Let C be a nonempty closed subset of of a smooth and strictly convex
Banach space E and let R be a retraction from E onto C. Then, the following are equivalent:
(a) R is sunny and generalized nonexpansive;
(b) 〈x − Rx, Jy − JRx〉 ≤ 0 for all (x, y) ∈ E × C.

Lemma 2.4 ([23]). Let C be a nonempty closed sunny and generalized nonexpansive retract
of a smooth and strictly convex Banach space E. Then, the sunny generalized nonexpansive
retraction from E onto C is uniquely determined.

Lemma 2.5 ([23]). Let C be a nonempty closed subset of a smooth and strictly convex
Banach space E such that there exists a sunny generalized nonexpansive retraction R from
E onto C and let (x, z) ∈ E × C. Then, the following hold:
(a) z = Rx if and only if 〈x − z, Jy − Jz〉 ≤ 0 for all y ∈ C;
(b) φ(Rx, z) + φ(x,Rx) ≤ φ(x, z).

Let C be a nonempty closed convex subset of a smooth, strictly convex and reflexive
Banach space E. For an arbitrary point x of E, the set

{z ∈ C : ‖z − x‖ = min
y∈C

‖y − x‖}

is always nonempty and a singleton. Let us define the mapping PC of E onto C by z = PCx
for every x ∈ E, i.e.,

‖PCx − x‖ = min
y∈C

‖y − x‖
for every x ∈ E. Such PC is called the metric projection of E onto C; see [43]. The following
lemma is in [43].

Lemma 2.6 ([43]). Let C be a nonempty closed convex subset of a smooth, strictly convex
and reflexive Banach space E and let (x, z) ∈ E × C. Then, z = PCx if and only if
〈y − z, J(x− z)〉 ≤ 0 for all y ∈ C.

An operator A ⊂ E × E∗ with domain D(A) = {x ∈ E : Ax �= ∅} and range R(A) =
∪{Ax : x ∈ D(A)} is said to be monotone if 〈x− y, x∗− y∗〉 ≥ 0 for any (x, x∗), (y, y∗) ∈ A.
An operator A is said to be strictly monotone if 〈x−y, x∗−y∗〉 > 0 for any (x, x∗), (y, y∗) ∈
A (x �= y). A monotone operator A is said to be maximal if its graph G(A) = {(x, x∗) :
x∗ ∈ Ax} is not properly contained in the graph of any other monotone operator. If A
is maximal monotone, then the set A−10 = {u ∈ E : 0 ∈ Au} is closed and convex (see
[44] for more details). Let J be the normalized duality mapping from E into E∗. Then,
J is monotone. If E is strictly convex, then J is one to one and strictly monotone. The
following theorem is well-known; for instance, see [43].
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Theorem 2.1. Let E be a reflexive, strictly convex and smooth Banach space and let
A : E → 2E∗

be a monotone operator. Then A is maximal if and only if R(J + rA) = E∗

for all r > 0. Further, if R(J + A) = E∗, then R(J + rA) = E∗ for all r > 0.

3. Generalized conditional expectations

In this section, we discuss sunny generalized nonexpansive retractions which are con-
nected with conditional expectations in the probability theory. We start with two theorems
proved by Kohsaka and Takahashi [34].

Theorem 3.1 ([34]). Let E be a smooth, strictly convex and reflexive Banach space, let
C∗ be a nonempty closed convex subset of E∗ and let ΠC∗ be the generalized projection
of E∗ onto C∗. Then the mapping R defined by R = J−1ΠC∗J is a sunny generalized
nonexpansive retraction of E onto J−1C∗.

Theorem 3.2 ([34]). Let E be a smooth, reflexive and strictly convex Banach space and
let D be a nonempty subset of E. Then, the following conditions are equivalent.
(1) D is a sunny generalized nonexpansive retract of E;
(2) D is a generalized nonexpansive retract of E;
(3) JD is closed and convex.

In this case, D is closed.

Motivated by these theorems, the authors defined the following nonlinear operator: Let
E be a reflexive, strictly convex and smooth Banach space and let J be the normalized
duality mapping from E onto E∗. Let Y ∗ be a closed linear subspace of the dual space E∗

of E. Then, the generalized conditional expectation EY ∗ with respect to Y ∗ is defined as
follows:

EY ∗ := J−1ΠY ∗J,

where ΠY ∗ is the generalized projection from E∗ onto Y ∗. Such generalized conditional
expectations are deeply connected with conditional expectations in the probability theory;
see [21].

Let Y be a nonempty subset of a Banach space E and let Y ∗ be a nonempty subset of
the dual space E∗. Then, we define the annihilator Y ∗

⊥ of Y ∗ and the annihilator Y ⊥ of Y
as follows:

Y ∗
⊥ = {x ∈ E : f(x) = 0 for all f ∈ Y ∗}

and
Y ⊥ = {f ∈ E∗ : f(x) = 0 for all x ∈ Y }.

Theorem 3.3 ([2, 20]). Let E be a reflexive, strictly convex and smooth Banach space and
let I be the identity operator of E into itself. Let Y ∗ be a closed linear subspace of the
dual space E∗ and let EY ∗ be the generalized conditional expectation with respect to Y ∗.
Then, the mapping I − EY ∗ is the metric projection of E onto Y ∗

⊥. Conversely, let Y be
a closed linear subspace of E and let PY be the metric projection of E onto Y . Then, the
mapping I − PY is the generalized conditional expectation EY ⊥ with respect to Y ⊥, i.e.,
I − PY = EY ⊥ .

In general, we know from Deutsch [13, 14] that the metric projection is not linear.
Let E be a normed linear space and let x, y ∈ E. We say that x is orthogonal to y in

the sense of Birkhoff-James (or simply, x is BJ-orthogonal to y), denoted by x ⊥ y if

‖x‖ ≤ ‖x + λy‖
for all λ ∈ R; see [6, 28, 29, 30]. We know that for x, y ∈ E, x ⊥ y if and only if there
exists f ∈ J(x) with 〈y, f〉 = 0; see [43]. In general, x ⊥ y does not imply y ⊥ x. An
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operator T of E into itself is called left-orthogonal (resp. right-orthogonal) if for each
x ∈ E, Tx ⊥ (x − Tx) (resp. (x − Tx) ⊥ Tx).

Let E be a normed linear space and let Y1, Y2 ⊂ E be closed linear subspaces. If
Y1 ∩ Y2 = {0} and for any x ∈ E there exists a unique pair y1 ∈ Y1, y2 ∈ Y2 such that

x = y1 + y2,

and any element of Y1 is BJ-orthogonal to any element of Y2, i.e., y1 ⊥ y2 for any y1 ∈
Y1, y2 ∈ Y2, then we represent the space E as

E = Y1 ⊕ Y2 and Y1 ⊥ Y2.

For an operator T of E into itself, the kernel of T is denoted by ker(T ), i.e.,

ker(T ) = {x ∈ E : Tx = 0}.
We also know the following theorem for generalized conditional expectations in a Banach

space.

Theorem 3.4 ([20]). Let E be a strictly convex, reflexive and smooth Banach space and
let Y ∗ be a closed linear subspace of the dual space E∗ of E such that for any y1, y2 ∈
J−1Y ∗, y1 + y2 ∈ J−1Y ∗. Then, J−1Y ∗ is a closed linear subspace of E and the generalized
conditional expectation EY ∗ with respect to Y ∗ is a norm one linear projection from E to
J−1Y ∗. Further, the following hold:
(1) E = J−1Y ∗ ⊕ ker(EY ∗) and J−1Y ∗ ⊥ ker(EY ∗);
(2) the operator I − EY ∗ is the metric projection onto ker(EY ∗).

In general, a nonzero bounded linear projection on a Banach space has a norm which
is more than or equal to 1. So, a norm one linear projection plays an important role in
functional analysis; see [36, 37, 41]. Now using nonlinear functional analytic methods, we
derive the following two representation theorems for norm one linear projections; see also
[5, 9].

Theorem 3.5. Let E be a strictly convex, reflexive and smooth Banach space. Any norm
one linear projection P of E into itself with Y = {Px : x ∈ E} can be represented as
the generalized conditional expectation EJY with respect to JY , where J is the normalized
duality mapping of E.

Proof. Let P be a linear projection of E into itself with ‖P‖ = 1. Then, the subsets
X = {x ∈ E : Px = 0} and Y = {Px ∈ E : x ∈ E} are closed linear subspaces of E.
In fact, since the operators P and Q = I − P are bounded linear projections, we have
that X and Y = {x ∈ E : Qx = 0} are closed. Let P ∗ be the adjoint operator of P ,
i.e., P ∗ : E∗ → E∗ is a bounded linear operator defined by 〈Px, x∗〉 = 〈x,P ∗x∗〉 for any
x ∈ E, x∗ ∈ E∗. P ∗ is a linear projection on E∗ and ‖P‖ = ‖P ∗‖ = 1. In fact, since
〈x, (P ∗)2x∗〉 = 〈Px,P ∗x∗〉 = 〈P 2x, x∗〉 = 〈Px, x∗〉 = 〈x,P ∗x∗〉, we have that P ∗ is a linear
projection on E∗.

From this, for any x ∈ Y we have

‖P ∗Jx‖ ≤ ‖Jx‖ = ‖x‖.
Further, for any x ∈ Y we have

〈x,P ∗Jx〉 = 〈Px, Jx〉 = 〈x, Jx〉 = ‖x‖2

⇒ 〈x,P ∗Jx〉 = ‖x‖2 ≤ ‖x‖‖P ∗Jx‖
⇒ ‖x‖ ≤ ‖P ∗Jx‖.

Then, we obtain ‖P ∗Jx‖ = ‖x‖ and 〈x,P ∗Jx〉 = ‖x‖2. From the uniqueness of the normal-
ized duality mapping, we have P ∗Jx = Jx. The set Y ∗ = {P ∗x∗ ∈ E∗ : x∗ ∈ E∗} satisfies
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that JY ⊂ Y ∗. Since E is reflexive, we have P ∗∗ = P . So, J∗Y ∗ ⊂ Y . Then, we obtain
that

JY = Y ∗.
JY is a closed linear subspace of E∗.

From Theorem 3.4, the generalized conditional expectation EJY with respect to JY is a
norm one linear projection of E onto Y ⊂ E. Further, for any x ∈ Y = P (E) = EJY (E)
we have Px = EJY x = x. Setting Y ∗

1 = {E∗
JY x∗ ∈ E∗ : x ∈ E∗}, we have from above

arguments that for any x∗ ∈ JY we have P ∗x∗ = x∗ and E∗
JY x∗ = x∗. For any x ∈ E we

have

‖EJY x − Px‖2 = 〈J(EJY x − Px), EJY x − Px〉
= 〈J(EJY x − Px), EJY x〉 − 〈J(EJY x − Px), Px〉
= 〈E∗

JY J(EJY x − Px), x〉 − 〈P ∗J(EJY x − Px), x〉
= 〈J(EJY x − Px), x〉 − 〈J(EJY x − Px), x〉 = 0

So, we obtain P = EJY .

Let E be a Banach space and let C be a nonempty closed convex subset of E. Then, a
mapping T of C into itself with F (T ) �= ∅ is said to be quasi-nonexpansive if ‖Tx − m‖ ≤
‖x − m‖ for all m ∈ F (T ) and x ∈ C.

Theorem 3.6. Let E be a strictly convex, reflexive and smooth Banach space and let Y ∗

be a closed linear subspace of the dual space E∗ of E. If a projection P of E onto J−1Y ∗ is
quasi-nonexpansive, that is, ‖Px−m‖ ≤ ‖x−m‖ for all m ∈ J−1Y ∗ and x ∈ E, then P is
the generalized conditional expectation EY ∗ with respect to Y ∗. Furthermore, P is a norm
one linear projection.

Proof. Let P be a projection of E onto J−1Y ∗ satisfying ‖Px − m‖ ≤ ‖x − m‖ for all
m ∈ J−1Y ∗ and x ∈ E. Since Y ∗ is a closed linear subspace of E∗ and J−1αx = αJ−1x
for all x ∈ E and α ∈ R, we have that for all α ∈ R with α �= 0,

x ∈ J−1Y ∗ ⇔ αx ∈ J−1Y ∗.

Fix x ∈ E and m ∈ J−1Y ∗ such that x �∈ J−1Y ∗ and m �= 0. For any k > 0, we have that
x

k
− m �= 0. So, we have from the Hahn-Banach theorem that there exists ξk ∈ E∗ such

that
〈x

k
− m, ξk

〉
=

∥∥∥x

k
− m

∥∥∥ and ‖ξk‖ = 1. Then, we have that〈
Px

k
− m, ξk

〉
≤

∥∥∥∥Px

k
− m

∥∥∥∥ =
1
k
‖Px − km‖

≤ 1
k
‖x − km‖ =

∥∥∥x

k
− m

∥∥∥
=

〈x

k
− m, ξk

〉
.

So,
〈x − Px, ξk〉 ≥ 0.

We also have from the Hahn-Banach theorem that there exists ξm of E∗ such that 〈m, ξm〉 =
‖m‖ and ‖ξm‖ = 1. Since the norm of E∗ is strictly convex, such ξm is uniquely determined.

In fact, if η �= ξm satisfies above properties, then
∥∥∥∥η + ξm

2

∥∥∥∥ < 1 and

‖m‖
∥∥∥∥η + ξm

2

∥∥∥∥ ≥
〈

m,
η + ξm

2

〉
= ‖m‖.
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This is a contradiction. When k tends to infinity,
x

k
−m converges to −m strongly. Further,

ξk converges to −ξm in weak∗ topology. In fact, let kn > 0 for all n ∈ N and kn → ∞.
Then xn =

x

kn
−m converges to −m. Since {ξn} = {ξkn} is bounded, there exists a subnet

{ξnα} of {ξn} converging to some ξ ∈ E∗ in weak∗ topology. We may show ξ = −ξm. Since
the norm of E∗ is lower semicontinuous in the weak∗ topology, we have

‖ξ‖ ≤ lim inf
α

‖ξnα‖ = 1.

On the other hand, we have that

|〈−m, ξ〉 − ‖xnα‖| = |〈−m, ξ〉 − 〈xnα , ξnα〉|
≤ |〈−m, ξ − ξnα〉| + |〈−m − xnα , ξnα〉|.

Since 〈−m, ξ − ξnα〉 → 0 and 〈−m − xnα , ξnα〉 → 0, we have

‖xnα‖ → −〈m, ξ〉 = 〈m,−ξ〉.
Since ‖xnα‖ → ‖m‖, we have 〈m,−ξ〉 = ‖m‖. So we have

‖m‖ = 〈m,−ξ〉 ≤ ‖m‖‖ξ‖
and hence ‖ξ‖ ≥ 1. Therefore, we have ‖ξ‖ = 1, 〈m,−ξ〉 = ‖m‖ and ξ = −ξm. Any weak∗

convergent subnet of {ξn} converges to −ξm in weak∗ topology. Then, we have that ξk

converges to −ξm in weak∗ topology as k → ∞. So, we obtain

〈x − Px, ξm〉 ≤ 0.

We know that Jm = ‖m‖ξm. Then we have that 〈x − Px, Jm〉 ≤ 0 for any m ∈ J−1Y ∗

with m �= 0. Since Y ∗ is a closed linear subspace of E∗, we have that

〈x − Px, y∗〉 = 0

for any y∗ ∈ Y ∗. We also know that for any x, Px ∈ J−1Y ∗. That Px ∈ J−1Y ∗ and
〈x − Px, y∗〉 = 0 for any y∗ ∈ Y ∗ imply that JPx ∈ Y ∗ and 〈J−1Jx − J−1JPx, y∗〉 = 0
for any y∗ ∈ Y ∗. From the definition of ΠY ∗ , we have JPx = ΠY ∗Jx. So, we obtain
Px = J−1ΠY ∗Jx. This implies Px = EY ∗x. So, we have P = EY ∗ . We also have that
the range of P is convex. In fact, let x, y ∈ P (E) = J−1Y ∗ and 0 ≤ α ≤ 1. Putting
z = αx + (1 − α)y, we have ‖Pz − x‖ ≤ ‖z − x‖ and ‖Pz − y‖ ≤ ‖z − y‖. Hence, we have
that

‖x − y‖ ≤ ‖x − Pz‖ + ‖Pz − y‖ ≤ ‖x − z‖ + ‖z − y‖ = ‖x − y‖.
This implies that ‖x − z‖ = ‖x − Pz‖ and ‖y − z‖ = ‖y − Pz‖. Since E is strictly convex,
we have z = Pz. Therefore, P (E) = J−1Y ∗ is convex. So, for any y1, y2 ∈ J−1Y ∗, we have
y1 + y2

2
∈ J−1Y ∗. From

y1 + y2

2
∈ J−1Y ∗, we have y1 + y2 ∈ J−1 1

2Y ∗ = J−1Y ∗. Then, for

any y1, y2 ∈ J−1Y ∗, we have y1 + y2 ∈ J−1Y ∗. So, we have from Theorem 3.4 that J−1Y ∗

is a closed linear subspace of E. Further, from Theorem 3.4, the mapping P = EY ∗ is a
norm one linear projection.

Using Theorems 3.5 and 3.6, we obtain the following corollary.

Corollary 3.1. Let E be a strictly convex, reflexive and smooth Banach space and let Y ∗ be
a closed linear subspace of the dual space E∗ of E. If the generalized conditional expectation
EY ∗ is a quasi-nonexpansive projection of E onto J−1Y ∗, then it is a norm one linear
projection and J−1Y ∗ is a closed linear subspace in E. Conversely, any norm one linear
projection is a quasi-nonexpansive generalized conditional expectation.
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Proof. If the generalized conditional expectation EY ∗ is also a quasi-nonexpansive projec-
tion of E onto J−1Y ∗, from Theorem 3.6 it is a norm one linear projection.

Conversely, from Theorem 3.5, any norm one linear projection is both a generalized
conditional expectation and a quasi-nonexpansive projection.

4. Ando’s theorem

Let (Ω,A, µ) be a probability space. For any p with 1 ≤ p < ∞, let Lp(A) be the space
of real valued measurable functions such that

∫
Ω |x(ω)|pdµ < ∞. For p = ∞ we denote

by L∞(A) the space of real valued measurable functions such that ess sup |x(ω)| < ∞. For
any p with 1 ≤ p < ∞, L∞(A) is a subspace of Lp(A). For any p with 1 ≤ p < ∞,
the space E = Lp(A) with ‖x‖ = (

∫
Ω
|x(ω)|pdµ)1/p is a Banach space. Further, we know

that the space Lp(A) with 1 < p < ∞ is uniformly convex and uniformly smooth. The
dual pair of E = Lp(A) with 1 < p < ∞ is described as follows: Lp(A)∗ = Lq(A) in
which q is the conjugate exponent of p, i.e., q satisfies 1

p + 1
q = 1. The duality is given as

〈x, x∗〉 =
∫
Ω

x∗(ω)x(ω)dµ for x ∈ Lp(A) and x∗ ∈ Lq(A). For any p, q with 1 < p, q < ∞
and 1

p + 1
q = 1, we denote by Jp the normalized duality mapping of Lp(A). Then, we know

that for any x ∈ Lp(A) with x �= 0,

Jpx = ‖x‖2−p
p |x|p−2x

and Jp: Lp(A) → Lq(A) is one to one and onto. Further, we know that J−1
p = Jq : Lq(A) →

Lp(A).
For p with 1 ≤ p ≤ ∞ and A ∈ A, we define a linear projection 1A : Lp(A) → Lp(A) as

follows: For any x = x(ω) ∈ Lp(A),

1Ax = 1Ax(ω) =

{
x(ω), if ω ∈ A,

0, if ω �∈ A.

And a family of subsets R is called a ring if and only if ∅ ∈ R and for all A and B in R,
we have A ∪ B ∈ R and B\A ∈ R. A ring R is called a σ ring if and only if any countable
union of sets in R is in R.

In 1966, Ando [3] showed that for 1 < p < ∞ with p �= 2, all norm one linear projections
on Lp are similar to conditional expectations; see also [18]. Using our representation theorem
(Theorem 3.5), we shall derive Ando’s theorem ([35, p. 160]). Before deriving it, we need
the following lemmas.

Lemma 4.1 ([35]). Let P be a norm one linear projection on E = Lp(A) with 1 < p < ∞
and p �= 2. If y ∈ P (E), then

1supp{y} ◦ P = P ◦ 1supp{y},

where supp{y} = {ω ∈ Ω : y = y(ω) �= 0} ∈ A.

Lemma 4.2 ([35]). Suppose 1 < p < ∞ and p �= 2, and let P be a norm one linear
projection on Lp(A). Define F0 to be the set of supports of all functions whose equivalence
classes are in P (E). Then, the following hold:

(1) F0 is a sub-σ ring of A;
(2) for fixed y ∈ P (E), y−1 · Px is F0 measurable for any x ∈ E such that supp{x} ⊂

supp{y}.
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If y ∈ Lp(A, µ), then the measure |y|pdµ restricted to any sub-ring F0 of A is finite. By
the Radon-Nikodym theorem we may define the conditional expectation EF0,|y|p for the
measure |y|pdµ relative to sub-ring F. EF0,|y|p is uniquely determined by the equation∫

A

z · |y|pdµ =
∫

A

(
EF0,|y|pz

) |y|pdµ (A ∈ F0)(4.1)

for z ∈ L1(Ω,A, |y|pdµ), and the condition that EF0,|y|pz is F0 measurable; see [35, p. 158–
159]. Using these lemmas, we can obtain Ando’s theorem.

Theorem 4.1 ([35]). Suppose 1 < p < ∞ with p �= 2 and that P is a norm one linear
projection on E = Lp(A, µ). If y ∈ P (E) and x ∈ E such that supp{x} ⊂ supp{y}, then

Px = yEF0,|y|p(x · y−1).

Proof. We may consider that ‖y‖ = 1. From Theorem 3.3 and the same argument in the
proof of Theorem 3.6, we have for any x ∈ E,

〈x − Px, Jy〉 = 0.

Since for any z1, z2 ∈ E,
∫
Ω z1 · Jz2d < ∞ and from Lemma 4.1 we have supp{Px} ⊂

supp{y}, we have that for any x ∈ E such that supp{x} ⊂ supp{y} and A ∈ F0,

〈1Ax − P ◦ 1Ax, Jy〉 = 0

⇒〈1Ax − 1A ◦ Px, Jy〉 = 0

⇒
∫

Ω

1Ax · Jydµ =
∫

Ω

1A ◦ Px · Jydµ

⇒
∫

A

x · Jydµ =
∫

A

Px · Jydµ

⇒
∫

A

x · |y|py−1dµ =
∫

A

Px · |y|py−1dµ

⇒
∫

A

(x · y−1)|y|pdµ =
∫

A

(Px · y−1)|y|pdµ < ∞.

Since Px · y−1 is F0 measurable, from the uniqueness of EF0,|y|p we have

Px · y−1 = EF0,|y|p(x · y−1).

Since supp{Px} ⊂ supp{y}, we obtain

Px = yEF0,|y|p(x · y−1).
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