OPERATOR INEQUALITIES RELATED TO ANDO-HIAI INEQUALITY

MASATOSHI FUJII, MASATOSHI ITO, EIZABURO KAMEI AND AKEMI MATSUMOTO

Received February 6, 2009

Abstract

In this paper, firstly we shall show the equivalence relation between AndoHiai inequality "For $A, B>0, A \not \sharp_{\alpha} B \leq I$ ensures $A^{r} \not \sharp_{\alpha} B^{r} \leq I$ for $r \geq 1$ " and the inequalty " $A \geq B \geq 0$ ensures $A^{-r} \not \#_{p+r}^{p+r} B^{p} \leq I$ for $p \geq 0$ and $r \geq 0$." Next we shall show a complementary result of Ando-Hiai inequality: If $A \not \sharp_{\alpha} B \leq I$, then $A^{r} \sharp \alpha B^{r} \leq A \sharp \alpha B$ for $0 \leq r \leq 1$.

1. Introduction

In this paper, a capital letter means a bounded linear operator on a complex Hilbert space \mathcal{H}. An operator T is said to be positive (denoted by $T \geq 0)$ if $(T x, x) \geq 0$ for all $x \in \mathcal{H}$, and also an operator T is said to be strictly positive (denoted by $T>0$) if T is positive and invertible. The operator order $A \geq B$ among selfadjoint operators is naturally defined by $A-B \geq 0$. Now the most important order preserving inequality is the Löwner-Heinz inequality:
(LH) $\quad A \geq B \geq 0$ ensures $A^{\alpha} \geq B^{\alpha}$ for any $\alpha \in[0,1]$.
Furuta inequality established in 1987 is an epoch-making extension of (LH):

Furuta inequality [7]: If $A \geq B \geq 0$, then for each $r \geq 0$,

$$
\begin{equation*}
\left(A^{\frac{r}{2}} A^{p} A^{\frac{r}{2}}\right)^{\frac{1}{q}} \geq\left(A^{\frac{r}{2}} B^{p} A^{\frac{r}{2}}\right)^{\frac{1}{q}} \tag{i}
\end{equation*}
$$

and
(ii) $\quad\left(B^{\frac{r}{2}} A^{p} B^{\frac{r}{2}}\right)^{\frac{1}{q}} \geq\left(B^{\frac{r}{2}} B^{p} B^{\frac{r}{2}}\right)^{\frac{1}{q}}$
hold for p and q such that $p \geq 0$ and $q \geq 1$ with
(*) $\quad(1+r) q \geq p+r$.

Furuta inequality formally includes (LH) by putting $r=0$ in (i) or (ii) in above. We remark that alternative proofs of it were given in [2] and [10] and also an elementary one page proof in [8]. Tanahashi [11] showed that the domain determined by (*) for p, q and r is the best possible one for Furuta inequality.

[^0]As stated in [10], Furuta inequality can be arranged by using notion of α-power mean $\not \sharp_{\alpha}$ for $\alpha \in[0,1]$ introduced by Kubo-Ando as follows:

$$
A \not \sharp_{\alpha} B=A^{\frac{1}{2}}\left(A^{\frac{-1}{2}} B A^{\frac{-1}{2}}\right)^{\alpha} A^{\frac{1}{2}}
$$

for $A>0$ and $B \geq 0$.

Theorem F. If $A \geq B>0$, then

$$
\begin{equation*}
A^{-r} \sharp_{\frac{1+r}{p+r}} B^{p} \leq B \leq A \tag{F}
\end{equation*}
$$

holds for $p \geq 1$ and $r \geq 0$.

In our previous papers [6] and [5], the following result is the essence of (F), and also (C) is known as a characterization of chaotic order, that is, $\log A \geq \log B$ (see [3][4][9][12]).

Theorem A ([6]). If $A \geq B>0$, then

$$
\begin{equation*}
A^{-r} \not \forall_{p+r}^{p+r} B^{p} \leq I \tag{C}
\end{equation*}
$$

holds for $p \geq 0$ and $r \geq 0$.

On the other hand, Ando and Hiai [1] have showed the following inequality.

Theorem B ([1]). If $A \sharp_{\alpha} B \leq I$ for $\alpha \in(0,1)$, then

$$
\begin{equation*}
A^{r} \sharp_{\alpha} B^{r} \leq I \tag{AH}
\end{equation*}
$$

holds for $r \geq 1$.

By Theorem B , they obtained that for $A, B>0$,
(AH') $A^{-1} \sharp_{\frac{1}{p}} A^{\frac{-1}{2}} B^{p} A^{\frac{-1}{2}} \leq I$ implies $A^{-r} \sharp_{\frac{1}{p}}\left(A^{\frac{-1}{2}} B^{p} A^{\frac{-1}{2}}\right)^{r} \leq I$ for $p \geq 1$ and $r \geq 1$.
We remark that $\left(\mathrm{AH}^{\prime}\right)$ is equivalent to the main result of \log majorization. In [5], an extension of Theorem B is obtained as follows:

Theorem C ([5]). If $A \sharp_{\alpha} B \leq I$ for $\alpha \in(0,1)$, then

$$
\begin{equation*}
A^{r} \not \sharp_{\frac{\alpha r}{(1-\alpha) s+\alpha r}} B^{s} \leq I \tag{GAH}
\end{equation*}
$$

holds for $s \geq 1$ and $r \geq 1$.

In this paper, based on the idea of Theorem C, we shall show the equivalence relation between Theorem A and Theorem B. Next we shall show a complementary inequality related to Theorem A and Theorem B.

2. Main Results

Firstly we shall show the equivalence relation between Theorem A and Theorem B.

Theorem 1. Theorem A is equivalent to Theorem B.

Proof of Theorem 1. Suppose that Theorem A holds and that $A \not \sharp_{\alpha} B \leq I$. We put $p=\frac{1}{\alpha}>1$. Then the assumption $A \sharp_{\alpha} B \leq I$ says that

$$
B_{1}=\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{\alpha} \leq A^{-1}=A_{1}
$$

Applying Theorem A to $A_{1} \geq B_{1}$, we have

$$
A_{1}^{-r} \sharp \frac{r}{p+r} B_{1}^{p} \leq I \quad \text { for } r \geq 0
$$

Moreover it follows that for $p \geq 1$ and $r \geq 0$,

$$
\begin{aligned}
& A_{1}^{-r} \sharp_{\frac{1+r}{}}^{p+r} \\
&= B_{1}^{p}=B_{1}^{p} \sharp_{\frac{p-1}{p}}\left(A_{1}^{-r} \sharp_{\frac{r-1}{p+r}} A_{1}^{-r}=B_{1}^{p} \sharp_{\frac{p-1}{p}}^{p}\left(B_{1}^{p} \sharp_{\frac{p}{p+r}} A_{1}^{-r}\right)\right. \\
& B_{1}^{p} \sharp_{\frac{p-1}{p}} I=B_{1} \leq A_{1} .
\end{aligned}
$$

Summing up the above discussion, for each $p>1$,

$$
A \not \sharp_{\frac{1}{p}} B \leq I \Rightarrow A^{r} \sharp_{\frac{1+r}{p+r}} A^{-\frac{1}{2}} B A^{-\frac{1}{2}} \leq A^{-1} \text {, or } A^{r+1} \sharp_{\frac{1+r}{p+r}} B \leq I \text { for } r \geq 0 \text {. }
$$

Noting that

$$
B \sharp_{\frac{p-1}{p+r}} A^{r+1}=A^{r+1} \sharp_{\frac{1+r}{p+r}} B \leq I,
$$

we apply it for $p_{1}=\frac{p+r}{p-1}$ in the following way;

$$
I \geq B^{r+1} \sharp_{\frac{1+r}{p_{1}+r}} A^{r+1}=A^{r+1} \sharp_{\frac{1}{p}} B^{r+1}
$$

by $1-\frac{1+r}{p_{1}+r}=\frac{1}{p}$. Namely we obtain Theorem B.
The reverse implication: $\mathrm{B} \Rightarrow \mathrm{A}$ has been already shown in [5]. But we cite it for the sake of convenience: It suffices to show that (C) holds for $p, r>1$ under the assumption $A \geq B>0$ because it holds for $0 \leq p, r \leq 1$ by (LH). So we take arbitrary $p, r>1$, and put $\alpha=\frac{r}{p+r}$ and $q=\max \{p, r\}$. Then, as noted in above, if $A \geq B>0$, then (C) holds for $p_{1}=\frac{p}{q}$ and $r_{1}=\frac{r}{q}$, i.e.,

$$
A^{-r_{1}} \not \sharp_{\frac{r_{1}}{p_{1}+r_{1}}} B^{p_{1}} \leq I
$$

We here apply (AH) to this, that is, we have

$$
I \geq A^{-r_{1} q} \not \sharp_{\frac{r_{1} q}{p_{1} q+r_{1} q}} B^{p_{1} q}=A^{-r} \not \sharp_{p+r} B^{p},
$$

as desired.

Next we shall show a complement related to Theorem C.

Theorem 2. For $A, B>0$ and $\alpha \in[0,1]$, if $A \not \sharp_{\alpha} B \leq I$, then

$$
A \not \sharp_{\alpha} B \leq A^{\mu} \sharp \frac{\alpha \mu}{(1-\alpha) \lambda+\alpha \mu} B^{\lambda}
$$

for $\mu \in[0,1]$ and $\lambda \in[0,1]$.

Proof of Theorem 2. Put $C=A^{\frac{-1}{2}} B A^{\frac{-1}{2}}$. Then $A \not \sharp_{\alpha} B \leq I$ if and only if

$$
\begin{equation*}
A^{-1} \geq\left(A^{\frac{-1}{2}} B A^{\frac{-1}{2}}\right)^{\alpha}=C^{\alpha} \tag{2.1}
\end{equation*}
$$

By (2.1) and Löwner-Heinz theorem, we have

$$
\begin{aligned}
& A^{\mu} \#_{\frac{\alpha \mu}{(1-\alpha) \lambda+\alpha \mu}} B^{\lambda}=A^{\frac{1}{2}}\left(A^{-(1-\mu)} \sharp_{\frac{\alpha \mu}{1-\alpha) \lambda+\alpha \mu}}\left(A^{\frac{-1}{2}} B^{\lambda} A^{\frac{-1}{2}}\right)\right) A^{\frac{1}{2}} \\
& =A^{\frac{1}{2}}\left(A^{-(1-\mu)} \not \sharp_{\frac{\alpha \mu}{(1-\alpha) \lambda+\alpha \mu}}\left(A^{-1} \sharp_{\lambda} C\right)\right) A^{\frac{1}{2}} \\
& \geq A^{\frac{1}{2}}\left(C^{\alpha(1-\mu)} \sharp_{\frac{\alpha \mu}{(1-\alpha) \lambda+\alpha \mu}}\left(C^{\alpha} \sharp_{\lambda} C\right)\right) A^{\frac{1}{2}}=A^{\frac{1}{2}} C^{\alpha} A^{\frac{1}{2}}=A \sharp_{\alpha} B
\end{aligned}
$$

for $\mu \in[0,1]$ and $\lambda \in[0,1]$.

Corollary 3. For $A, B>0$ and $p>0, r>0$, if $A^{-r} \sharp \frac{r}{p+r} B^{p} \leq I$, then

$$
A^{-r} \not \mathbb{r}_{p+r} B^{p} \leq A^{-t} \not \sharp_{s+t} B^{s}
$$

for $s \in[0, p]$ and $t \in[0, r]$.

Proof of Corollary 3. Put $\lambda=\frac{s}{p}, \mu=\frac{t}{r}$ and $\alpha=\frac{r}{p+r}$. By replacing A with A^{-r} and B with B^{p} in Theorem 2, we can easily obtain Corollary 3.

References

[1] T.Ando and F.Hiai, Log majorization and complementary Golden-Thompson type inequalities, Linear Algebra Appl., 197, 198 (1994), 113-131.
[2] M.Fujii, Furuta's inequality and its mean theoretic approach, J. Operator Theory, 23 (1990), 67-72.
[3] M.Fujii, T.Furuta and E.Kamei, Furuta's inequality and its application to Ando's theorem, Linear Algebra Appl., 179 (1993), 161-169.
[4] M.Fujii, J.F.Jiang and E.Kamei, Characterization of chaotic order and its application to Furuta inequality, Proc. Amer. Math. Soc., 125 (1997), 3655-3658.
[5] M.Fujii and E.Kamei, Ando-Hiai inequality and Furuta inequality, Linear Algebra Appl., 416 (2006), 541-545.
[6] M.Fujii, E.Kamei and R.Nakamoto, An analysis on the internal structure of the celebrated Furuta inequality via operator mean, Sci. Math. Jpn., 62 (2005), 421-427.
[7] T.Furuta, $A \geq B \geq 0$ assures $\left(B^{r} A^{p} B^{r}\right)^{1 / q} \geq B^{(p+2 r) / q}$ for $r \geq 0, p \geq 0, q \geq 1$ with $(1+2 r) q \geq p+2 r$, Proc. Amer. Math. Soc., 101 (1987), 85-88.
[8] T.Furuta, An elementary proof of an order preserving inequality, Proc. Japan Acad. Ser. A Math. Sci., 65 (1989), 126.
[9] T.Furuta, Applications of order preserving operator inequalities, Oper. Theory Adv. Appl., 59 (1992), 180-190.
[10] E.Kamei, A satellite to Furuta's inequality, Math. Japon., 33 (1988), 883-886.
[11] K.Tanahashi, Best possibility of the Furuta inequality, Proc. Amer. Math. Soc., 124 (1996), 141-146.
[12] M.Uchiyama, Some exponential operator inequalities, Math. Inequal. Appl., 2 (1999), 469-471.
(Masatoshi Fujii) Deaprtment of Mathematics, Osaka Kyoiku University, Kashiwara, Osaka 582-8582, JAPAN

E-mail address: mfujii@cc.osaka-kyoiku.ac.jp
(Masatoshi Ito) Maebashi Institute of Technology, 460-1 Kamisadorimachi, Maebashi, Gunma 371-0816, JAPAN

E-mail address: m-ito@maebashi-it.ac.jp
(Eizaburo Kamei) Maebashi Institute of Technology, 460-1 Kamisadorimachi, Maebashi, Gunma 371-0816, JAPAN

E-mail address: kamei@maebashi-it.ac.jp
(Akemi Matsumoto) Nose Senior Highschool, Nose, Osaka 653-0122, JAPAN
E-mail address: m@nose.osaka-c.ed.jp

[^0]: 2000 Mathematics Subject Classification. Primary 47A63, 47A64.
 Key words and phrases. Positive operators, operator mean, Ando-Hiai inequality and Furuta inequality.

