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Abstract. Using fuzzy filters in the sense of P. Eklund and W. Gähler [2], it turns out that
fuzzy preuniform convergence spaces introduced in [11] form a strong topological universe in which
fuzzy topological spaces as well as fuzzy (quasi) uniform spaces can be studied. Thus, better tools
such as the existence of natural function spaces, the existence of one-point extensions (and con-
sequently, the hereditariness of quotient maps), and the productivity of quotient maps are available.

0 Introduction. In 1968 fuzzy topological spaces have been introduced by C.L. Chang [1]. To-
gether with the fuzzy continuous maps between them they form a topological construct provided
that in the definition of a fuzzy topological space X the requirement is incorporated that all fuzzy
subsets of X given by constant maps are fuzzy open. This has been pointed out by R. Lowen [8].
Concerning fuzzy filters, in this paper a definition due to P. Eklund and W. Gähler [2] is used which
fuzzificates additionally the membership of filter elements. This leads to an alternative definition
of fuzzy uniform spaces introduced by W. Gähler et al. [6] in 1998. Omitting a certain symmetry
condition in this definition one obtains fuzzy quasiuniform spaces analogously to the non-fuzzy
case.
In 2005 the author [10] studied preuniform convergence spaces which form a strong topological
universe, i.e. a topological construct which is 1o cartesian closed (i.e. natural function spaces
exist), 2o extensional (i.e. one-point extensions exist), and in which 3o (arbitrary) products of quo-
tients are quotients. Furthermore, they are suitable for generalizing topological spaces as well as
quasiuniform spaces. This is very remarkable since neither topological spaces nor (quasi) uniform
spaces fulfill the above mentioned convenient properties 1o, 2o, and 3o with the following exception:
3o is true for uniform spaces, and it is unknown whether 3o is true for quasiuniform spaces (cf. [10]).

The aim of this paper is to realize that the fuzzyfication of preuniform convergence spaces
which has been started in [11] leads to a strong topological universe too, and thus improves fuzzy
topological spaces and fuzzy (quasi) uniform spaces. Since in non-symmetric convenient topology
(cf. [10]) mainly preuniform convergence spaces are investigated we are now in the position to have
a suitable framework for non-symmetric fuzzy convenient topology.
Finally, adding a certain symmetry condition to the definition of a fuzzy preuniform convergence
space we obtain a fuzzy semiuniform convergence space, whose non-fuzzy analogue is mainly studied
in convenient topology (cf. [9]). Since the construct FSUConv of fuzzy semiuniform convergence
spaces is closely related to the construct FPUConv of fuzzy preuniform convergence spaces, it
results that is a strong topological universe too. Therefore, the foundations of fuzzy convenient
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topology are also established.

The terminology of this paper corresponds to [9] and [11].

1 Preliminaries. In the following let L be a frame with different least element 0 and greatest
element 1, e.g. L = {0, 1} or L = [0, 1] (= closed unit interval).

1.1. Remark. For each set X, LX can be endowed with a partial order ≤ defined as follows:

f ≤ g iff f(x) ≤ g(x) for each x ∈ L.

As in L, for the infima and suprema in LX the symbols ∧ and
�

as well as ∨ and
�

will be used
respectively, e.g. for each pair (f, g) ∈ LX × LX and each x ∈ X, (f ∧ g)(x) = f(x) ∧ g(x) and
(f ∨ g)(x) = f(x) ∨ g(x).

1.2. Definition An L-fuzzy filter (short: a fuzzy filter) on a non-empty set X is a map F : LX → L
such that the following are satisfied:
FFil1) F(l) = l for each l ∈ L, where l : X → L is defined by l(x) = l for each x ∈ X.
FFil2) F(f ∧ g) = F(f) ∧ F(g) for all f, g ∈ LX .
The set of all fuzzy filters on X is denoted by FL(X), where FL(∅) = ∅.

1.3. Remarks.

(1) If F is a fuzzy filter on X, then F(f) ≤ F(g) for all f, g ∈ LX such that f ≤ g. Furthermore,
for each f ∈ LX , F(f) ≤ sup f = sup {f(x) : x ∈ X}.

(2) For each x ∈ X, there is a fuzzy filter ẋ : LX → L defined by ẋ(f) = f(x) for each f ∈ LX .

(3) If F and G are fuzzy filters on X, then F is called coarser than G (or G is called finer than
F), denoted by F ⊂ G, iff F(f) ≤ G(f) for each f ∈ LX .

1.4. Definition. A fuzzy filter base on a non-empty set X is a non-empty subset B of LX such
that the following are satisfied:
FB1) l ∈ B for each l ∈ L.
FB2) For each (f, g) ∈ B × B there is some h ∈ B such that h ≤ f ∧ g and sup h = sup f ∧ sup g.

1.5. Remark. Each fuzzy filter base B on X generates a fuzzy filter F on X defined by

F(f) =
�

g≤f, g∈B
sup g for each f ∈ LX .

Conversely, each fuzzy filter F on X can be generated by a fuzzy filter base on X, even a greatest
one, denoted by base F , where base F = {f ∈ LX : F(f) = sup f}.

1.6. Proposition. Let f : X → Y be a map, F a fuzzy filter on X, and B a base of F . Define
for each g ∈ LX , g+ ∈ LY by

g+(y) =

���
�

x∈f−1(y)

g(x) for y ∈ f [X]

0 otherwise
,

Then {g+ : g ∈ B}∪{l : l ∈ L} is a base of the fuzzy filter f(F), defined by f(F)(h) = F(h ◦ f) for
each h ∈ LY , where f(F) is called the image of F under f . If f is surjective, then {g+ : g ∈ B}
is a base of f(F).

1.7. Definition. Let f : X → Y be a map, and F a fuzzy filter on Y . Then the inverse image of
F under f is the coarsest fuzzy filter G on X such that F ⊂ f(G) provided that it exists. Usually,
we write f−1(F) instead of G. If X ⊂ Y and i : X → Y denotes the inclusion map, then i−1(F) is
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also called the trace of F .

1.8. Proposition. (cf. [4; proposition 9]). Let f : X → Y be a map, F a fuzzy filter on Y , and
B a base of F . Then f−1(F) exists iff sup g = sup(g ◦ f) for each g ∈ B. If f−1(F) exists, then
{g ◦ f : g ∈ B} is a base of f−1(F).

1.9. Definition. Let M be a non-empty set of fuzzy filters on X. Then a fuzzy filter
�

F∈M
F ,

called the intersection of all F ∈ M, is defined by (
�

F∈M
F)(f) =

�
F∈M

F(f) for each f ∈ LX .

1.10. Proposition. Let M be a non-empty set of fuzzy filters on a set X, and f : X → Y a map.
Then

f(
�

F∈M
F) =

�
F∈M

f(F).

Proof. For each u ∈ LX , f(
�

F∈M
F)(u) = (

�
F∈M

F)(u ◦ f) =
�

F∈M
F(u ◦ f) =

�
F∈M

f(F)(u) =� �
F∈M

f(F)
�
(u).

1.11 Proposition. Let f : X → Y be a map, H a fuzzy filter on X, and K a fuzzy filter on Y
such that K ⊂ f(H). Then f−1(K) exists.

Proof. Let M = {F ∈ FL(X) : K ⊂ f(F)}. By assumption, M 
= ∅. By 1.10, f(
�

F∈M
F) =�

F∈M
f(F) ⊃ K, i.e.

�
F∈M

F is the coarsest fuzzy filter on X whose image under f contains K. By

definition,
�

F∈M
F = f−1(K).

1.12 Proposition. (cf. [5; Proposition 3.8]). Let f : X → Y be a map, F a fuzzy filter on X, and
G a fuzzy filter on Y . The inverse image of f(F) under f always exists and

f−1
�
f(F)

�
⊂ F .

If the inverse image of G under f exists, then

f
�
f−1(G)

�
⊃ G.

1.13. Definition. Let (Xi)i∈I be a non-empty family of non-empty sets, and Fi a fuzzy filter on
Xi for each i ∈ I . If pi :

	
i∈I

Xi → Xi denotes the i-th projection, then the coarsest fuzzy filter

F on
	
i∈I

Xi such that pi(F) = Fi for each i ∈ I is called the product of (Fi)i∈I , where
	
i∈I

Fi is

written instead of F , or F1 × F2 in case I = {1, 2}.

1.14. Proposition. (cf. [4; proposition 19]). If I is a non-empty set and for each i ∈ I,Fi is a
fuzzy filter on Xi, and Bi is a base of Fi, then

B = {


j∈J

fj ◦ pj : J ⊂ I finite and fj ∈ Bj for all j ∈ J}

is a fuzzy filter base on
	
i∈I

Xi generating the product
	
i∈I

Fi of (Fi)i∈I .

1.15. Corollary. Let (Xi)i∈I be a non-empty family of non-empty sets and let Fi and Gi be fuzzy
filters on Xi such that Fi ⊂ Gi for each i ∈ I . Then

	
i∈I

Fi ⊂	Gi.
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Proof. Use 1.14 and note that Fi ⊂ Gi implies base Fi ⊂ base Gi.

1.16. Proposition. Let f : X → Y be a map and F , G ∈ FL(Y ). Then (f × f)−1(F × G) exists
iff f−1(F) and f−1(G) exist. If (f × f)−1(F × G) exists, then

(f × f)−1(F × G) = f−1(F) × f−1(G).

Proof.

(1) If (f × f)−1(F × G) exists, then

(f × f)
�
(f × f)−1(F × G)

�
⊃ F × G.

Let p1
Y (resp. p2

Y ) be the first (resp. second) projection from Y ×Y to Y , and p1
X (resp. p2

X)
the first (resp. the second) projection from X × X to X. Hence,

p1
Y

�
(f × f)

�
(f × f)−1(F × G)

��
= f

�
p1

X

�
(f × f)−1(F × G)

�� ⊃ p1
Y (F × G) = F ,

and analogously,

f
�
p2

X

�
(f × f)−1(F × G)

�� ⊃ G.

By 1.11, f−1(F) and f−1(G) exist.

(2) If f−1(F) and f−1(G) exist,

f
�
f−1(F)

� ⊃ F and f
�
f−1(G)

� ⊃ G

(cf. 1.12). Thus, f
�
f−1(F)

�× f
�
f−1(G)

�
= f × f

�
f−1(F) × f−1(G)

� ⊃ F × G (cf. [11; 1.13
and 1.14]). Consequently, by 1.11, (f × f)−1(F × G) exists.

(3) If (f × f)−1(F × G) exists, it follows from 1) that f−1(F) and f−1(G) exist too. By [3;
proposition 7], B = {h ◦ p1 ∧ k ◦ p2 : h ∈ base F , k ∈ base G} is a base of F × G where
p1 (resp. p2) denotes the first (resp. second) projection from Y × Y to Y . Thus, by 1.8.,
B′ = {u ◦ (f × f) : u ∈ B} is a base of (f × f)−1(F × G). Using [3; proposition 7] and 1.8
again, B′′ = {(h◦f)◦p′

1 ∧(k◦f)◦p′
2 : h ∈ base F , k ∈ base G} is a base of f−1(F)×f−1(G),

where p′
1 (resp. p′

2) denotes the first (resp. second) projection from X ×X to X. Obviously,
(h ◦ f) ◦ p′

1 ∧ (k ◦ f) ◦ p′
2 =

�
(h ◦ p1) ∧ (k ◦ p2)

� ◦ (f × f) for all h ∈ base F and k ∈ base G.
Therefore, B′ = B′′, which implies

(f × f)−1(F × G) = f−1(F) × f−1(G).

1.17. Remark. In [11] the construct FPUConv of fuzzy preuniform convergence spaces (and
fuzzy uniformly continuous maps) has been introduced where a fuzzy preuniform convergence space
is a pair (X, FJX) such that X is a set and FJX is a set of fuzzy filters on X × X satisfying the
following conditions:

UC1) ˙(x, x) ∈ FJX for each x ∈ X, and
UC2) F ∈ FJX whenever G ∈ FJX and G ⊂ F ;

and a map f : (X,FJX) → (Y, FJY ) between fuzzy preuniform convergence spaces is fuzzy uni-
formly continuous iff (f × f)(F) ∈ FJY for each F ∈ FJX . It has been proved that FPUConv
is a cartesian closed topological construct. In the following, further ’convenient properties’ will be
proved, and besides many other kinds of spaces fuzzy topological and fuzzy (quasi) uniform spaces
are regarded as fuzzy preuniform convergence spaces.
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2 The strong topological universe FPUConv of fuzzy preuniform convergence spaces
2.1. Theorem. FPUConv is extensional. In particular, for each (X,FJX) ∈ |FPUConv|,
(X∗, FJX∗) is the one-point extension, where X∗ = X ∪ {∞X} with ∞X 
∈ X, and FJX∗ = {H ∈
FL(X∗ × X∗): the trace of H on X × X exists and belongs to FJX or the trace of H on X × X
does not exist }.

Proof. Let (X,FJX) be a fuzzy preuniform convergence space. Put X∗ = X ∪{∞X} with ∞X 
∈
X, and let i : X → X∗ be the inclusion map. For each F ∈ FL(X × X) define F∗ : LX∗×X∗ → L
by

F∗(h) = F(h|X × X).

Then F∗ ∈ FL(X∗ × X∗). Furthermore,
FJX∗ = {H ∈ FL(X∗ × X∗) : (i × i)−1(H) exists and belongs to FJX or (i × i)−1(H) does not
exist }
is an FPUConv-structure on X∗:

1. a) For each x ∈ X, ẋ × ẋ = ˙(x, x) ∈ FJX∗ , since (i × i)−1
� ˙(x, x)

�
exists by 1.8 because

suph = suph|X × X for each

h ∈ base ˙(x, x)
�

i.e. h(x, x) = suph
�

and (i× i)−1(ẋ× ẋ) = i−1(ẋ)× i−1(ẋ) (cf. 1.16),
where i−1(ẋ) exists too and is equal to ẋ on X, i.e. (i × i)−1(ẋ × ẋ) = ẋ × ẋ ∈ FJX .

b) ∞̇X × ∞̇X ∈ FJX∗ since (i × i)−1(∞̇X × ∞̇X) does not exist because h ∈ LX∗×X∗

defined by

h(y, y′) =



1 if (y, y′) ∈ (X∗ × {∞X}) ∪ ({∞X} × X∗)

0 if (y, y′) ∈ X × X

fulfills (∞̇X × ∞̇X)(h) = suph, but sup h 
= sup(h|X × X)( cf .1.8).

2. If F ∈ FJX∗ , and G ∈ FL(X∗ × X∗) such that F ⊂ G, then a) (i × i)−1(G) does not exist,
which implies G ∈ FJX∗ , or b) (i × i)−1(G) exists which implies G ∈ FJX∗ too: It follows
from the existence of (i × i)−1(G) that for each h ∈ base G, suph = sup h|X × X, and con-
sequently, since base F ⊂ base G, sup h = sup h|X × X for each
h ∈ base F , i.e. (i × i)−1(F) exists. Furthermore, (i × i)−1(F) ⊂ (i × i)−1(G) (cf. 1.7 and
1.12). Since F ∈ FJX∗ , (i × i)−1(F) ∈ FJX , and thus (i × i)−1(G) ∈ FJX , i.e. G ∈ FJX∗ .

Next, (i × i)−1(F∗) exists and
(∗) (i × i)−1(F∗) = F :
The existence of (i × i)−1(F∗) follows, for each h ∈ base F∗, from

sup(h|X × X) ≤ sup h = F∗(h) = F(h|X × X) ≤ sup(h|X × X)

(use 1.8.).
In order to prove (∗), consider base F = {k ∈ LX×X : F(k) = sup k} and the following base B∗ of
(i × i)−1(F∗) according to 1.8:

B∗ = {h|X × X : F∗(h) = sup h}.
It suffices to verify that B∗ = base F :

1. Let k = h|X × X ∈ B∗, i.e. F(k) = F∗(h) = suph. Since suph = sup k, we obtain
k ∈ base F .

2. Let k ∈ base F , i.e. F(k) = sup k. Define h ∈ LX∗×X∗
by

h(y, y′) =



0 if (y, y′) ∈ (X∗ × {∞X}) ∪ ({∞X} × X∗)

k(y, y′) if (y, y′) ∈ X × X

Then h|X × X = k, and F∗(h) = F(h|X × X) = F(k) = sup k = suph, i.e. k ∈ B∗.
(X∗, FJX∗) is the one-point extension of (X,FJX) provided that the following can be proved:
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1) (X,FJX) is a subspace of (X∗, FJX∗), and

2) if (Y, FJY ) is a fuzzy preuniform convergence space, (Z, FJZ) a subspace of (Y, FJY ), and
f : (Z, FJZ) → (X,FJX) a fuzzy uniformly continuous map, then

f∗ : (Y, FJY ) → (X∗, FJX∗) defined by f∗(y) =



f(y) if y ∈ Z

∞X if y ∈ Y \ Z

is fuzzy uniformly continuous.

1) means that FJX is equal to

FJX = {F ∈ FL(X × X) : (i × i)(F) ∈ FJX∗} :

Let F ∈ FJX , i.e. (i × i)(F) ∈ FJX∗ . Then (i × i)−1
�
(i × i)(F)

� ⊂ F (cf. [1.12]) which implies
F ∈ FJX , because (i× i)−1

�
(i× i)(F)

� ∈ FJX by assumption. Conversely, let F ∈ FJX . By (∗),
(i× i)−1(F∗) = F , and thus, F∗ ∈ FJX∗. Since (i× i)(F) ⊃ F∗, (i× i)(F) ∈ FJ ∗

X , i.e. F ∈ FFX .

2) Without loss of generality, let Z ⊂ Y and Z 
= Y . Now let G ∈ FJY , and let j : Z → Y be the
inclusion map. By 1.8, (j × j)−1(G) exists iff for each k ∈ base G, sup k = sup(k|Z × Z). Let us
distinguish the following cases:
Case 1. (j × j)−1(G) does not exist.
Case 2. (j × j)−1(G) exists.
In each case we have to prove that (f∗ × f∗)(G) ∈ FJX∗ .

Concerning ’case 1’ it suffices to prove that (i × i)−1
�
(f∗ × f∗)(G)

�
does not exist:

By assumption, there is some k ∈ base G �i.e. G(k) = sup k
�

such that sup(k|Z × Z) 
= sup k, i.e.

sup(k|Z × Z) < sup k. Define h ∈ LX∗×X∗
by

h(x, x′) =



sup(k|Z × Z) if (x, x′) ∈ X × X

sup k if (x, x′) ∈ ({∞X} × X∗) ∪ (X∗ × {∞X}) .

Obviously, sup (h|X × X) = sup (k|Z × Z) 
= sup k = sup h. Furthermore, h ∈ base (f∗ × f∗)(G)
because (f∗ × f∗)(G)(h) = G�h ◦ (f∗ × f∗)

�
= sup k = suph (note: k ≤ h ◦ (f∗ × f∗) by definition

of h and f∗; then sup k ≤ �
l≤h◦(f∗×f∗),l∈ base G

sup l = G�h ◦ (f∗ × f∗)
�
, and (f∗ × f∗)(G)(h) ≤

suph(= sup k) is always valid). Hence, (j × j)−1
�
(f∗ × f∗)(G)

�
does not exist (cf. 1.8).

Since in ’case 2’ (j × j)−1(G) exists and (Z, FJZ) is a subspace of (Y, FJY ),
(j × j)−1(G) belongs to FJZ .
It follows from the fuzzy uniform continuity of f that (f × f)

�
(j × j)−1(G)

� ∈ FJX . In order to
prove that f∗ × f∗(G) belongs to FJX∗ it suffices therefore to check that
α)(i × i)−1

�
(f∗ × f∗)(G)

�
exists, and

β) (i × i)−1
�
(f∗ × f∗)(G)

�
= (f × f)

�
(j × j)−1(G)

�
.

α) is proved indirectly: If (i× i)−1
�
(f∗ × f∗)(G)

�
would not exist there were some h ∈ base (f∗ ×

f∗)(G), i.e. suph =
�
(f∗ × f∗)(G)

�
(h) = G�h ◦ (f∗ × f∗)

�
, such that suph|X × X 
= sup h, i.e.

suph|X × X < suph. Then, k ∈ LY ×Y could be defined by

k(y, y′) =



sup (h|X × X) if (y, y′) ∈ Z × Z

sup h if (y, y′) ∈ (Y × Y )\(Z × Z)
.

Thus, sup k = suph, and sup k|Z × Z = suph|X × X, i.e. sup k 
= sup k|Z × Z. Furthermore,
k ∈ base G, i.e. sup k ≤ G(k), since obviously h◦(f∗×f∗) ≤ k, and consequently G�h◦(f∗×f∗)

�
=

suph = sup k ≤ G(k). Hence, (j × j)−1(G) would not exist in contrast to our assumption in case
2.
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Concerning β),
B = {(k|Z × Z)+ : k ∈ base G} �{l̄ : l ∈ L} is a base of (f × f)

�
(j × j)−1(G)

�
, where

(k|Z × Z)+(x, x′) =

���
�

(z,z′)∈(f×f)−1(x,x′)
(k|Z × Z)(z, z′) if (x, x′) ∈ (f × f)[Z × Z]

0 otherwise

(cf. 1.6),
and B′ = {k+|X × X : k ∈ base G} �{l̄ : l ∈ L} is a base of (i × i)−1

�
(f∗ × f∗)(G)

�
, where

k+(x, x′) =

���
�

(y,y′)∈(R∗×R∗)−1(x,x′)
k(y, y′) if (x, x′) ∈ (f∗ × f∗)[Y × Y ]

0 otherwise.

Obviously for each k ∈ base G, (k|Z × Z)+ = k+|X × X, i.e. B = B′, which implies β).

2.2. Proposition. Let I be a non-empty set, (fi : Xi → Yi)i∈I a family of surjective maps, and
Fi ∈ FL(Xi) for each i ∈ I . Then	

i∈I

fi(
	
i∈I

Fi) =
	
i∈I

fi(Fi).

Proof: For each i ∈ I , let Bi = base Fi, and let pi :
	
i∈I

Xi → Xi be the i-th projection. By 1.14,

B = { �
j∈J

hj ◦ pj : J ⊂ I is finite, and hj ∈ Bj for each j ∈ J} is a base of
	
i∈I

Fi, and by 1.6,

B+ = {( �
j∈J

hj ◦ pj)
+ : J ⊂ I is finite and hj ∈ Bj for each j ∈ J} is a base of

	
i∈I

fi(
	
i∈I

Fi), where

(
�

j∈J

hj ◦ pj)
+ ∈ L

�

i∈I
Yi

is defined by

� 

j∈J

(hj ◦ pj)
�+�

(yi)
�

=
�

(xi)∈(
�

i∈I
fi)

−1
�
(yi)
� � 


j∈J

hj ◦ pj

��
(xi)

�

since
	
i∈I

fi :
	
i∈I

Xi → 	
i∈I

Yi is surjective.

Furthermore, for each i ∈ I , B+
i = {h+

i : hi ∈ Bi} is a base of fi(Fi), where h+
i ∈ LYi is defined by

h+
i (yi) =

�
xi∈f−1

i (yi)

hi(xi), and

�B+ = {


j∈J

h+
j ◦ p′

j : J ⊂ I is finite, and hj ∈ Bj for each j ∈ J}

is a base of
	
i∈I

fi(Fi), where p′
j :
	
i∈I

Yi → Yj denotes the j-th projection. Since L fulfills an inifinite

distributive law it is easily checked that for each finite J ⊂ I ,� 

j∈J

hj ◦ pj

�+

=


j∈J

h+
j ◦ p′

j .

Thus, B+ = �B+, i.e. the assertion is proved.
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2.3. Theorem. In FPUConv products of quotient maps are quotient maps.

Proof. Let I be a non-empty set,
�
fi : (Xi, FJXi) → (Yi, FJYi)

�
i∈I

a family of quotient maps,
and

(X,FJX)

�
fi

i∈I

−−−−−→ (Y, FJY )

pi | | p ′
i↓ ↓

(Xi, FJXi)
fi−−−−−→ (Yi, FJYi)

the corresponding product diagram in FPUConv, where (X,FJX) =	
i∈I

(Xi, FJXi), and (Y, FJY ) =
	
i∈I

(Yi, FJYi). Since all fi are surjective,
	
i∈I

fi is surjective. For

each i ∈ I, FJYi = {F ∈ FL(Yi×Yi) : there is some Gi ∈ FJXi with (fi×fi)(Gi) ⊂ F} because fi is
a quotient map. Let FJ ′

Y = {K ∈ FL(Y ×Y ) : there is some G ∈ FJX with (
	
i∈I

fi×	
i∈I

fi)(G) ⊂ K}.
Then FJY = {H ∈ FL(Y × Y ) : (p′

i × p′
i)(H) ∈ FJYi for each i ∈ I} is equal to FJ ′

Y , i.e.
	
i∈I

fi is

a quotient map:

1) If K ∈ FJ ′
Y , then there is some G ∈ FJX with (

	
i∈I

fi × 	
i∈I

fi)(G) ⊂ K. Since
	
i∈I

fi is fuzzy

uniformly continuous, it follows that K ∈ FJY .

2) If H ∈ FJY , then (p′
i × p′

i)(H) ∈ FJYi for each i ∈ I . Thus, for each i ∈ I , there is
some Gi ∈ FJXi such that (fi × fi)(Gi) ⊂ (p′

i × p′
i)(H). Identifying

	
i∈I

Xi × Xi with	
i∈I

Xi×	
i∈I

Xi, and
	
i∈I

Yi×Yi with
	
i∈I

Yi×	
i∈I

Yi, we get
	
i∈I

(fi×fi) =
	
i∈I

fi×	
i∈I

fi, and using

2.2.,
� 	

i∈I

fi × 	
i∈I

fi

�� 	
i∈I

Gi

�
=
� 	

i∈I

fi × fi

�� 	
i∈I

Gi

�
=
	
i∈I

(fi × fi)(Gi) ⊂ 	
i∈I

(p′
i × p′

i)(H) ⊂
H which implies H ∈ FJ ′

Y since
	
i∈I

Gi ∈ FJX .

2.4. Theorem. FPUConv is a strong topological universe.

Proof. 2.1, 2.3 and [11; 2.5].

3 Fuzzy preconvergence spaces and fuzzy topological spaces
3.1. Remark. In [11] it has been proved that the construct FPConv of fuzzy preconvergence
spaces (and fuzzy uniformly continuous maps) is bicoreflective in FPUConv, and concretely iso-
morphic to the construct FGConv of fuzzy generalized convergence spaces (and fuzzy continuous
maps). Furthermore, FPConv is closed under formation of finite products in FPUConv (cf. [11;
3.9]). Next, we will prove the following:

3.2. Proposition. FPConv is closed under formation of subspaces (in FPUConv).

Proof. Let (Y, FJY ) ∈ |FPConv|, and (X,FJX) a subspace of (Y,FJY ) in FPUConv, where
X ⊂ Y . It suffices to prove that FJX ⊂ FJqFJX

since the inverse inclusion is always valid. Let
H ∈ FJX . Then (i × i)(H) ∈ FJY = FJqFJY

(where i : X → Y denotes the inclusion map), i.e.
(i × i)(H) ⊃ ẏ × G for some (G, y) ∈ qFJY . By 1.12, 1.11, and 1.16 we obtain

H ⊃ (i × i)−1
�
(i × i)(H)

� ⊃ (i × i)−1(ẏ × G) = i−1(ẏ) × i−1(G).

Since i−1(ẏ) exists, y ∈ X
�

By 1.12, ẏ ⊂ i(i−1(ẏ)
�
, i.e. for each u ∈ LY , ẏ(u) = u(y) ≤

i−1(ẏ)(u ◦ i) ≤ sup(u ◦ i); if y ∈ Y \X, then for u ∈ LY defined by

u(z) =



0 if z ∈ X

1 if z ∈ Y \X ,
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u(y) = 1 ≤ sup u|X = 0, i.e. 0 = 1 - a contradiction.
�
. Let (ẏ)X ∈ FL(X) and (ẏ)Y ∈ FL(Y ) be

defined by

(ẏ)X(u) = u(y)for each u ∈ LX , and

(ẏ)Y (v) = v(y) for each v ∈ LY , respectively .

Then

(∗) (ẏ)X ⊂ i−1
�
(ẏ)Y

�
because base (ẏ)X = {u ∈ LX : u(y) = supu} is contained in the base B = {v|X : v ∈ base(ẏ)Y } of

i−1
� ˙(y)Y

� �
u ∈ base(ẏ)X , i.e. u(y) = sup u, implies u = v|X with v(y) = sup v, i.e. u ∈ B, where

v ∈ LY is defined by

v(z) =



u(z) if z ∈ X

0 if z ∈ Y \X �
.

Since (ẏ)X is a fuzzy ultrafilter (cf. [2]), it follows from (∗)

i−1�(ẏ)Y

�
= (ẏ)X .

Thus, H ⊃ (ẏ)X × i−1(G), where (ẏ)X × i−1(G) ∈ FJX (note that (ẏ)Y ×G ∈ FJY by assumption,
and i × i

�
(ẏ)X × i−1(G)

�
= (ẏ)Y × i

�
i−1(G)

� ⊃ (ẏ)Y × G�. Consequently, H ∈ FJqFJX
.

3.3. Theorem. FGConv is extensional. In particular, for each (X, q) ∈ |FGConv| the one-point
extension (X∗, q∗) is formed as follows:

X∗ = X ∪ {∞X} with ∞X /∈ X, and

q∗ = {(F∗, x∗) ∈ FL(X∗) × X∗ : i−1(ẋ∗) does not exist or

i−1(F∗) does not exist or (i−1(F∗), x∗) ∈ q}
where i : X → X∗ denotes the inclusion map.

Proof. Since FGConv is bicoreflectively embedded in FPUConv (cf. 3.1) and closed under
formation of subspaces (cf. 3.2), it follows from [9; 3.25] that FGConv is extensional, and the one-
point extensions in FGConv are formed as in FPUConv and then the bicoreflector is applied,
i.e. the underlying fuzzy generalized convergence space has to be formed (see [11; 3.2] for the
definition):
Let (X, q) ∈ |FGConv|, and let (X∗, FJX∗) be the one-point extension of (X,FJq) ∈ |FPUConv|
where FJq = {H ∈ FL(X × X) : there is some (F , x) ∈ q with ẋ ×F ⊂ H}.
If (X∗, q∗) is the one-point extension of (X, q), then (F∗, x∗) ∈ q∗ iff ẋ × F∗ ∈ FJX∗ , i.e.

1. (i × i)−1(ẋ∗ × F∗) exists and belongs to FJq or

2. (i × i)−1(ẋ∗ × F∗) does not exist.

By 1.16, the second case is equivalent to�����
a)i−1(ẋ∗) does not exist

or

b)i−1(F∗) does not exist.

The first case is equivalent to
�
i−1(F∗), x∗� ∈ q, which is easily checked (use 1.16 again).

3.4. Theorem. In FGConv products of quotient maps are quotient maps.

Proof. Since PGConv is bicoreflectively embedded in FPUConv it is topological, and the initial
and final structures in FGConv are formed as follows:
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1. If X is a set,
�
(Xi, qi)

�
i∈I

a family of fuzzy generalized convergence spaces, and (fi : X →
Xi)i∈I a family of maps, then q = {(F , x) ∈ FL(X) × X :

�
fi(F), fi(x)

� ∈ qi for each i ∈ I}
is the initial FGConv-structure on X w.r.t. the given data.

2. If X is a set,
�
(Xi, qi)

�
i∈I

a family of fuzzy generalized convergence spaces, and (fi : Xi →
X)i∈I a family of maps such that X =

�
i∈I

fi[Xi], then

q = {(F , x) ∈ FL(X) ×X : there are some i ∈ I and some (Fi, xi) ∈ qi with fi(Fi) ⊂ F and
fi(xi) = x}
is the final FGConv-structure on X w.r.t. the given data.

Let I be a non-empty set,
�
fi : (Xi, qi) → (Yi, ri)

�
i∈I

a family of quotient maps, and

(
	

i∈I Xi, q)

�
fi

i∈I

−−−−−→ (
	

i∈I Yi, r)

pi | | p ′
i↓ ↓

(Xi, qi)
fi−−−−−→ (Yi, ri)

the corresponding product diagram in FGConv, where
	
i∈I

fi is surjective since all fi are surjective.

It remains to prove the following equivalence:

(H, y) ∈ r
�

i.e.
�
p′

i)(H), p′
i(y)

� ∈ ri for each i ∈ I
�

⇔ There is some
�G, (xi)

� ∈ q with (
	
i∈I

fi)(G) ⊂ H and (
	
i∈I

fi)
�
(xi)

�
=
�
fi(xi)

�
i∈I

= y.

” ⇐ ”. Since the above diagram commutes,
	
i∈I

fi is fuzzy continuous, and the assertion is obvious.

” ⇒ ”.
�
p′

i(H), p′
i(y)

� ∈ ri for each i ∈ I implies the existence of some (Gi, xi) ∈ qi with fi(Gi) ⊂
p′

i(H), and fi(xi) = p′
i(y) for each i ∈ I . Thus, using 2.2.,

	
i∈I

fi(
	
i∈I

Gi) =
	
i∈I

fi(Gi) ⊂ 	
i∈I

p′
i(H) ⊂

H. Since
� 	

i∈I

Gi, (xi)
� ∈ q,

� 	
i∈I

fi(
	
i∈I

Gi),
	
i∈I

fi

�
(xi)

�� ∈ r, where
	
i∈I

fi

�
(xi)

�
=
�
fi(xi)

�
= y.

Consequently, (H, y) ∈ r.

3.5. Theorem. FGConv (� FPConv) is a strong topological universe.

Proof. 3.3., 3.4., and [11; 3.11].

3.6. Definitions

1) A fuzzy topological space is a pair (X, t) where X is a set and t ⊂ LX a fuzzy topology on X,
i.e the following are satisfied:

FTop1) All constant maps from X to L belong to t (this includes the empty map ∅ : ∅ → L in
case X = ∅).

FTop2) f, g ∈ t implies f ∧ g ∈ t.

FTop3) s ⊂ t implies
�

s ∈ t.

If t is a fuzzy topology on X, then the elements of t are called fuzzy open subsets of X.

2) A map f : (X, t) → (X ′, t′) between fuzzy topological spaces is called fuzzy continuous
provided that f−1(g′) = g′ ◦ f ∈ t for each g′ ∈ t′.

3) Let (X, t) be a fuzzy topological space, and f ∈ LX . Then the interior of f with respect to
t, denoted by inttf , is defined as follows:

inttf =
�

g≤f, g∈t

g



FUZZY TOPOLOGICAL SPACES AND FUZZY (QUASI) UNIFORM SPACES 11

3.7. Remarks.

1) Concerning the interior of a fuzzy subset w.r.t. a fuzzy topology t, the following are satisfied:

α) inttc = c for each constant map c : X → L.

β) inttf ≤ f for each f ∈ LX .

γ) inttf∧ inttg = intt(f ∧ g) for all f, g ∈ LX .

δ) intt (inttf) = inttf for each f ∈ LX .

If (X, t) is a fuzzy topological space, then for each x ∈ X, a fuzzy filter Ut(x) : LX → L is
defined by

Ut(x)(f) = (inttf)(x) for each f ∈ LX ,

called the fuzzy neighborhood filter of x with respect to t.

2) If (X, q) is a fuzzy generalized convergence space, then for each x ∈ X, the fuzzy neighborhood
filter Uq(x) of x with respect to q is defined by�Uq(x)

�
(g) = (

�
H q−→x

H)(g) for each g ∈ LX , where (
�

H q−→x

H)(g) =
�

H q−→x

H(g). Furthermore,

for each g ∈ LX the interior intqg of g w.r.t. q can be defined as follows:
(intqg)(x) =

�Uq(x)
�
(g) for each x ∈ X, and intq∅ = ∅ in case X = ∅.

Hence, the interior of a fuzzy subset with respect to q fulfills the three conditions correspond-
ing to α), β), γ) in 3.7.1).

3) By means of the interior operator intq : LX → LX defined as under 2) for each fuzzy
generalized convergence space (X, q) a fuzzy topology tq is defined by

f ∈ tq iff intqf = f.�
note: f ∈ LX is fuzzy open in (X, tq) iff f(x) ≤ H(f) for each (H, x) ∈ q

�
.

3.8. Definitions.

1) A fuzzy generalized convergence space (X, q) is called topological iff there is a fuzzy topology
t on X such that

(F , x) ∈ q iff F ⊃ Ut(x).

2) A fuzzy preuniform convergence space (X,FJX) is called topological provided that it is a
fuzzy preconvergence space whose underlying fuzzy generalized convergence space (X, qFJX )
(cf. [11; 3.1 and 3.2])is topological.

3.9. Remark. Obviously, a fuzzy preuniform convergence space (X,FJX) is topological iff there
is a fuzzy topology t on X such that FJX = {F ∈ FL(X × X) : there is some x ∈ X with
F ⊃ ẋ × Ut(x)}.

3.10. Proposition. The construct T-FGConv of topological fuzzy generalized convergence spaces
(and fuzzy continuous maps) is concretely isomorphic to the construct FTop of fuzzy topological
spaces (and continuous maps), and bireflective in FGConv.

Proof.

1) For each fuzzy topology t on a set X define a topological fuzzy generalized convergence space
structure qt by (F , x) ∈ qt iff F ⊃ Ut(x).
Then the following are satisfied:

1. tqt = t for each fuzzy topology t on a set X, and

2. qtq = q for each topological fuzzy generalized convergence space structure q on a set X.
Concerning 1., f ∈ t iff inttf = f , and f ∈ tqt iff intqtf = f . Thus, the proof is finished
if inttf = intqtf for each f ∈ LX : For each x ∈ X, ( intqtf)(x) = (

�
Hqt−→x

H)(f) =

Ut(x)(f) = (inttf)(x).
2. follows from 1., since q = qt for some fuzzy topology t and tqt = t, i.e. q = qt =
qtqt

= qtq .
Furthermore, we have:
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3. If f : (X, q) → (X ′, q′) is a fuzzy continuous map between fuzzy generalized convergence
spaces, then f : (X, tq) → (X ′, tq′) is fuzzy continuous, i.e. h′ ◦f ∈ tq for each h′ ∈ tq′ :

Since f : (X, q) → (X ′, q′) is fuzzy continuous,
�
f(H), f(x)

� ∈ q′ for each (H, x) ∈ q,
and if h′ ∈ tq′ , h

′�f(x)
� ≤ f(H)(h′) = H(h′ ◦ f), i.e. h′ ◦ f ∈ tq.

4. If f : (X, t) → (X ′, t′) is a fuzzy continuous map between fuzzy topological spaces, then
f : (X, qt) → (X ′, qt′) is fuzzy continuous too:

Let (F , x) ∈ qt, i.e. F ⊃ Ut(x). In order to prove that�
f(F), f(x)

� ∈ qt′ , i.e. f(F) ⊃ U ′
t

�
f(x)

�
, it must be checked that for each h ∈

LX′
,Ut′

�
f(x)

�
(h) = (intt′h)

�
f(x)

� ≤ f(F)(h) = F(h ◦ f). Since f : (X, t) → (X ′, t′)
is fuzzy continuous, and intt′h ∈ t′, (intt′h) ◦ f ∈ t. Then it follows from F ⊃ Ut(x)

that Ut(x)
�
(intt′h)◦f

�
=
�
intt

�
(intt′h)◦f

��
(x) =

�
(intt′h)◦f

�
(x) ≤ F�(intt′h)◦f

� ≤
F(h ◦ f).

It follows from 1., 2., 3., and 4., that T-FGConv is concretely isomorphic to FTop.

2) If (X, q) ∈ |FGConv|, then 1X : (X, q) → (X, qtq ) is the bireflection of (X, q) w.r.t. T-
FGConv: Obviously, q ≤ qtq . Let (X ′, q′) ∈ |T-FGConv|, i.e. q′ = qt′ for some fuzzy
topology t′ on X ′, and f : (X, q) → (X ′, q′) a fuzzy continuous map. Then we have to prove
that f : (X, qtq ) → (X ′, q′) is fuzzy continuous too. In other words: It must be checked that
f : (X, tq) → (X ′, t′) is fuzzy continuous: Let g′ ∈ t′, i.e. g′ = intt′g

′. In order to prove
g′ ◦ f ∈ tq, let (H, x) ∈ q. Then f(H) ⊃ Ut′

�
f(x)

�
by assumption. Thus,

g′�f(x)
�

= (intt′g
′)
�
f(x)

�
=
�
Ut′
�
f(x)

��
(g′) ≤ f(H)(g′) = H(g′ ◦ f).

Consequently, g′ ◦ f ∈ tq.

3.11. Remark. By means of 3.10 we need not distinguish between topological fuzzy generalized
convergence spaces and fuzzy topological spaces.

3.12. Definition. Let (X, q) be a fuzzy generalized convergence space and 1X : (X, q) → (X, qtq )
the bireflection of (X, q) w.r.t. T-FGConv. Then (X, qtq )

�
or (X, tq)

�
is called the underlying

fuzzy topological space of the fuzzy generalized convergence space (X, q).

3.13. Corollary The construct T-FPUConv of topological fuzzy preuniform convergence spaces
(and fuzzy uniformly continuous maps) is concretely isomorphic to T-FGConv.

Proof. The concrete isomorphism from FPConv to FGConv (cf. [11; 3.4]) leads to a concrete
isomorphism from T-PUConv to T-FGConv.

3.14. Remark. It follows from 3.10 and 3.13 that FTop is concretely isomorphic to T-FPUConv,
i.e. we need not distinguish between fuzzy topological spaces and topological fuzzy preuniform con-
vergence spaces, in other words: FTop can be embedded into FPUConv.

4 Fuzzy semiuniform convergence spaces and fuzzy filter spaces

4.1. Remark. In [11] we have proved that the construct FSUConv of fuzzy semiuniform con-
vergence spaces (and fuzzy uniformly continuous maps) is cartesian closed, and bireflective and
bicoreflective in FPUConv. In the following further convenient properties are verified.

4.2. Proposition. FSUConv is extensional and one-point extensions in FSUConv are formed
as in FPUConv.



FUZZY TOPOLOGICAL SPACES AND FUZZY (QUASI) UNIFORM SPACES 13

Proof. By [9; 3.2.6] it suffices to prove that FSUConv is closed under formation of one-point
extensions in FPUConv: Let (X,FJX) ∈ |FSUConv|, and let (X∗, FJX∗) be the one-point
extension of (X,FJX) in FPUConv, i.e. X∗ = X ∪ {∞X} with ∞X /∈ X, and FJX∗ = {F∗ ∈
FL(X∗ × X∗) : (i × i)−1(F∗) exists and belongs to FJX or (i × i)−1(F∗) does not exist}, where
i : X → X∗ denotes the inclusion map. In order to prove that (X∗, FJX∗) ∈ |FSUConv|, let
F∗ ∈ FJX∗.
Then
1. (i × i)−1(F∗) exists and belongs to FJX

or
2. (i × i)−1(F∗) does not exist.

In the first case (i× i)−1(F∗−1) exists, and (i× i)−1(F∗−1) =
�
(i× i)−1(F∗)

�−1
which implies that

(i× i)−1(F∗−1) belongs to FJX , i.e. F∗−1 ∈ FJX∗ (The existence of (i× i)−1(F∗−1) follows from
the fact that {h−1 : h ∈ base F∗} is a base of F∗−1, and for each h ∈ base F∗, suph−1 = suph =
suph|X ×X = suph−1|X ×X since (i× i)−1(F∗) exists. Furthermore, B = {h−1|X ×X : h ∈ base

F∗} is a base of (i × i)−1(F∗−1) as well as a base of
�
(i × i)−1(F∗)

�−1
because (h|X × X)−1 =

h−1|X × X for each h ∈ base F∗.).
Concerning the second case, by assumption, there is some h ∈ B = base F∗ such that sup
h = suph−1 
= suph|X × X = suph−1|X × X, i.e. there is some h−1 ∈ B−1 such that sup
h−1 
= suph−1|X × X, which implies that (i × i)−1(F∗−1) does not exist, i.e. F∗−1 ∈ FJX∗ .

4.3. Theorem. FSUConv is a strong topological universe.

Proof.

1) By [11; 2.8] FSUConv is a cartesian closed topological construct.

2) By 4.2, FSUConv is extensional.

3) Since FSUConv is bireflective and bicoreflective in FPUConv (cf. [11; 2.7]), products and
quotients in FSUConv are formed as in FPUConv. Thus, by 2.3, in FSUConv products
of quotient maps are quotient maps.

4.4. Remark. In [11] it has been proved that the (topological) construct FFil of fuzzy filter spaces
(and fuzzy Cauchy continuous maps) is concretely isomorphic to a subconstruct of FPUConv,
denoted by FFil-D-FPUConv and called the construct of FFil-determined fuzzy preuniform
convergence spaces, i.e. it can be embedded in FPUConv, even in FSUConv (use [11; 4.3]),
and FFil ∼= FFil-D-FPUConv is a cartesian closed topological construct. Before proving futher
convenient properties we need the following:

4.5. Proposition. FFil-D-FPUConv is bireflective in FPUConv (and thus in FSUConv).

Proof.

a) FFil-D-FPUConv is closed under the formation of subspaces in
FPUConv:
Let (X,FJX) ∈ |FFil-D-FPUConv| and let (U, FJU ) be a subspace of (X,FJX) in FPU-
Conv, where without loss of generality U ⊂ X and U 
= ∅. Then we have to prove that
FJU ⊂ FJγFJU

, where FJγFJU
= {F ∈ FL(U × U) : there is some G ∈ FL(U) with

G × G ∈ FJU and G × G ⊂ F}, since FJγFJU
⊂ FJU is always valid. Let F ∈ FJU . By

assumption there is some G ∈ FL(X) such that G × G ⊂ (i × i)(F) and G × G ∈ FJX . Thus
by 1.11, (i × i)−1(G × G) exists, and by 1.16, i−1(G) exists too and we have
(∗) (i × i)−1(G × G) = i−1(G) × i−1(G).
Using 1.12,
(∗∗) F ⊃ (i × i)−1

�
(i × i)(F)

�
.

It follows from (∗) and (∗∗) that F ⊃ i−1(G)× i−1(G) where i−1(G) ∈ γFJU = {H ∈ FL(U) :
(i × i)(H×H) ∈ FJX} because of
(i×i)

�
(i×i)−1(G×G)

� ⊃ G×G by 1.12, i.e. (i×i)
�
(i×i)−1(G×G)

� ∈ FJX since G×G ∈ FJX .
Consequently, F ∈ FJγFJU

.
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b) FFil-D-FPUConv is closed under the formation of products in FPUConv: Let (Xi, FJXi)i∈I

be a family of FFil-determined fuzzy preuniform convergence spaces where without loss
of generality Xi 
= ∅ for each i ∈ I , and (X,FJX) their product in FPUConv, i.e.
X =

	
i∈I

Xi, and FJX = {F ∈ FL(
	
i∈I

Xi × 	
i∈I

Xi) : pi × pi(F) ∈ FJXi for each i ∈ I}
where pi :

	
i∈I

Xi → Xi denotes the i-th projection. In order to prove that (X,FJX) is

FFil-determined, let F ∈ FJX . Then for each i ∈ X, there is some Gi ∈ FL(Xi) such that
Gi×Gi ∈ FJXi and pi×pi(F) ⊃ Gi×Gi since (Xi, FJXi) is FFil-determined. Consequently,

(1)
	
i∈I

Gi × Gi ⊂ 	
i∈I

pi × pi(F) (cf. 1.15),

and

(2)
	
i∈I

(pi × pi)(F) ⊂ F (where
	
i∈I

Xi × 	
i∈I

Xi and
	
i∈I

Xi × Xi are identified).

Furthermore,

(3)
	
i∈I

Gi × 	
i∈I

Gi ⊂ 	
i∈I

Gi × Gi :

For each i ∈ I let p1
i and p2

i be the first and the second projection with domain Xi ×Xi

respectively, and let p1 and p2 be the first and the second projection with domain	
i∈I

Xi × 	
i∈I

Xi respectively. Then p1 =
	
i∈I

p1
i and p2 =

	
i∈I

p2
i (up to identification).

Using 2.2., we obtain p1(
	
i∈I

Gi ×Gi) =
	
i∈I

p1
i (
	
i∈I

Gi ×Gi) =
	
i∈I

p1
i (Gi ×Gi) =

	
i∈I

Gi, and

analogously, p2(
	
i∈I

Gi × Gi) =
	
i∈I

Gi. Hence,
	
i∈I

Gi × 	
i∈I

Gi ⊂ 	
i∈I

Gi × Gi.

It follows from (1), (2) and (3) that F ⊃ 	
i∈I

Gi × 	
i∈I

Gi, where
	
i∈I

Gi ∈ γFJX , i.e.
	
i∈I

Gi ×	
i∈I

Gi ∈ FJX , since pi ×pi(
	
i∈I

Gi × 	
i∈I

Gi) = pi(
	
i∈I

Gi)×pi(
	
i∈I

Gi) = Gi ×Gi ∈ FJXi for each

i ∈ I . Thus, (X,FJX) is FFil-determined.

c) FFil-D-FPUConv contains all indiscrete FPUConv-objects: For each set M and each

l ∈ L define l
M ∈ LM by l

M
(x) = l for each x ∈ M . Let (X,FJX) ∈ |FPUConv| be

indiscrete, i.e. FJX = FL(X × X). If F ∈ FJX , then BX×X = {lX×X
: l ∈ L} is a

fuzzy filter base generating a fuzzy filter (BX×X) ⊂ F . Furthermore, the fuzzy filter base

BX = {lX : l ∈ L} generates a fuzzy filter G = (BX) such that G × G ⊂ F . (Note that the
base B′

X×X = {v ◦ p2 ∧ u ◦ p1 : u, v ∈ BX} of G × G coincides with BX×X). Thus, (X,FJX)
is FFil-determined.

By a), b) and c) the assertion of the proposition is proved (cf. [9; 2.2.11.2) and 2.2.4]).

4.6. Theorem. FFil-D-FPUConv (∼= FFil) is a strong topological universe.

Proof. Using [11; 4.6] and 4.5 Fil-D-FPUConv is a bicoreflective and bireflective subconstruct
of FPUConv. Since FPUConv is a strong topological universe, FFil-D-FPUConv is a strong
topological universe too where the natural function spaces and one-point extensions in FFil-D-
FPUConv arise from the natural function spaces and one-point extensions in FPUConv by
bicoreflective modification.

4.7. Remarks.

1) Since FFil is concretely isomorphic to FFil-D-FPUConv it follows from 4.6 that FFil is
a strong topological universe where the natural function spaces in FFil have been described
in [11; 4.8], and the one-point extensions are formed as follows:
Let (X, γ) ∈ |FFil|, X∗ = X ∪ {∞X} with ∞X /∈ X, and let i : X → X∗ be the inclusion
map. Then (X∗, γ∗) is the one-point extension of (X, γ), where γ∗ = {F ∈ FL(X∗) : i−1(F)
exists and belongs to γ or i−1(F) does not exist }.
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2) Corresponding to the non-fuzzy case a fuzzy filter space (X, γ) is called complete provided
that for each F ∈ γ there is some x ∈ X such that F ∩ ẋ ∈ γ. Furthermore, the construct
CFFil of complete fuzzy filter spaces (and fuzzy Cauchy continuous maps) is bicoreflective in
FFil and closed under formation of products in FFil. In [7] a fuzzy Kent convergence space
(X, q) (cf. [11; 3.5]) for the definition) is called symmetric iff (F , y) ∈ q whenever (F , x) ∈ q
and F(f) ≤ f(y) for all f ∈ LX . It is easily checked that the construct FKConvS of sym-
metric fuzzy Kent convergence spaces (and fuzzy continuous maps) is concretely isomorphic
to CFFil. This implies that FKConvS is a strongly cartesian closed topological construct,
but it is not extensional since extensionality is not even fulfilled in the case L = {0, 1}, i.e. in
the non-fuzzy case (cf. [9; 3.2.7. ©4 ]). Obviously, symmetric fuzzy Kent convergence spaces
can also be described as complete FFil-determined fuzzy preuniform convergence spaces,
where a fuzzy preuniform convergence space (X,FJX) is called complete provided that its
underlying fuzzy filter space (X, γFJX ) (cf. [11; 4.2]) is complete.

3) Let (X, γ) be a fuzzy filter space, and qγ = {(F , x) ∈ FL(X) × X : F ∩ ẋ ∈ γ}. Then
(X, qγ) is a symmetric fuzzy Kent convergence space, called the underlying symmetric fuzzy
Kent convergence space of (X, γ). In particular, a fuzzy filter space (X, γ) is complete iff
each F ∈ γ converges in (X, qγ). If (X, γFJX ) is the underlying fuzzy filter space of a fuzzy
preuniform convergence space (X,FJX) (cf. 2)), then (X, qγFJX

) is also called the underlying
symmetric fuzzy Kent convergence space of (X,FJX).

5 Fuzzy (quasi) uniform spaces
5.1. Definitions.(cf. [6; 13]).

1) (a) Let X be a non-empty set and U a fuzzy filter on X × X. Consider the following
conditions:

FU1) U ⊂ ˙(x, x) for each x ∈ X,
FU2) U = U−1, where U−1(u) = U(u−1) for each u ∈ LX×X and u−1(x, y) = u(y, x)
for each (x, y) ∈ X × X.
If FU1) is fulfilled, then consider also
FU3) U ⊂ U ◦ U , where U ◦ U is the fuzzy filter on X × X defined by U ◦ U(u) =�
v ∈ base U, v◦v≤u

U(v) for each u ∈ LX×X , and for each v ∈ LX×X the composition v ◦v

is defined by v ◦ v(x, y) =
�

z∈X

v(x, z) ∧ v(z, y) for each (x, y) ∈ X × X.

Then U is called a fuzzy quasiuniformity on X provided that FU1) and FU3) are satisfied
and it is called a fuzzy uniformity on X provided that FU1), FU2) and FU3) are fulfilled.

(b) A fuzzy (quasi) uniformity on the empty set ∅ is a map U : L∅ → L, where L∅ = {∅},
such that U(∅) = 1.

(c) A fuzzy (quasi) uniform space is a pair (X,U) where X is a set and U a fuzzy (quasi)
uniformity on X.

2) A map f : (X,U) → (X ′,U ′) between fuzzy quasiuniform spaces is called fuzzy uniformly
continuous iff U ′ ⊂ (f × f)(U).

3) The construct of fuzzy uniform spaces (resp.fuzzy quasiuniform spaces) [and fuzzy uniformly
continuous maps] is denoted by FUnif (resp. FQUnif).

5.2. Remark. In case L = {0, 1} the fuzzy (quasi) uniform spaces may be identified with the
usual (quasi) uniform spaces.

5.3. Definition. A fuzzy preuniform convergence space (X,FJX) is called (quasi) uniform pro-
vided that there is a fuzzy (quasi) uniformity U on X such that FJX = [U ], where [U ] = {F ∈
FL(X × X) : U ⊂ F}.

5.4. Remarks. 1) It is easily checked that the construct QU-FPUConv of quasiuniform fuzzy
preuniform convergence spaces (and fuzzy uniformly continuous maps) is concretely isomorphic
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to FQUnif. Obviously, a uniform fuzzy preuniform convergence space is a fuzzy semiuniform
convergence space, and the construct U-FSUConv of uniform fuzzy semiuniform convergence
spaces (and fuzzy uniformly continuous maps) is concretely isomorphic to FUnif. Therefore, fuzzy
quasiuniform spaces (resp. fuzzy uniform spaces) can be studied in the better behaved framework
of fuzzy preuniform convergence spaces (resp. fuzzy semiuniform convergence spaces). Thus, fuzzy
topological spaces as well as fuzzy (quasi) uniform spaces can be improved by regarding them as
fuzzy preuniform convergence spaces.
2) By 1) FQUnif and FUnif may be regarded as subcontructs of FPUConv (up to isomorphism).
They are bireflective in FPUConv:
For each (X,FJX) ∈ |FPUConv|, 1X : (X,FJX) → (X, [U ]) is the bireflection of (X,FJX)
with respect to FQUnif (resp. FUnif) where U is the finest fuzzy quasiuniformity (resp. finest
fuzzy uniformity) which is contained in each F ∈ FJX . Consequently, FQUnif and FUnif are
topological constructs. (X,U) is called the underlying fuzzy (quasi) uniform space of (X,FJX).
3) The initial structures in FUnif (or FQUnif) are formed as follows:
Let X be a non-empty set, ((Xi,Ui))i∈I a family of fuzzy (quasi) uniform spaces, Bi a base of Ui

for each i ∈ I , and (fi : X → Xi)i∈I a family of maps. In case I 
= ∅, B = { �
j∈J

uj ◦ (fj ×fj) : J ⊂ I

non-empty and finite, uj ∈ Bj for each j ∈ J} is a base of the initial fuzzy (quasi) uniformity on
X with respect to the given data.
In case I = ∅,
B = {l : l ∈ L} is a base of the initial fuzzy (quasi) uniformity on X with respect to the given data,
i.e. a base of the indiscrete fuzzy (quasi) uniformity on X.
(Note: The unique fuzzy uniformity on the empty set is initial.)
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