COMPARISON OF WHITTLE TYPE PORTMANTEAU TESTS

TOMOYUKI AMANO

Received March 31, 2008; revised April 28, 2008

ABSTRACT. For an ARMA adequacy test, Box and Pierce (1970) proposed a portman-
teau test T_{BP}. However, because the accuracy of T_{BP} by χ^2-approximation is not good,
various modifications of T_{BP} have been introduced by many authors. Taniguchi and
Amano (2008) proposed an important portmanteau test T_{WLR} of natural Whittle type
which is always asymptotically χ^2 distributed under the null hypothesis that ARMA
model is adequate. This paper compares T_{WLR} with another famous portmanteau tests
Ljung-Box’s T_{LB}, Li-McLeod’s T_{LM} and Monti’s T_{MN} and proves its accuracy by sim-
ulation. Empirical powers of those portmanteau tests are also compared numerically.

1. Introduction

One of the most important stages of building a model in time series
is to verify the adequacy of a fitted model. In particular, sample residual autocorrelations
are usually used. For ARMA adequacy test, Box and Pierce (1970) proposed a test statistic
T_{BP} which is the squared sum of m sample autocorrelations of the estimated residual pro-
cess of ARMA(p,q). Under the null hypothesis that the ARMA(p,q) model is adequate, it is
suggested that T_{BP} is approximately distributed as χ^2_{m-p-q}. However, Davies et al. (1977)
claimed that the χ^2_{m-p-q}-approximation is not adequate and Ljung and Box (1978) and
Li-McLeod (1981) proposed test statistics T_{LB} and T_{LM} as a modification of T_{BP}. Recently
Monti (1994) proposed a portmanteau test T_{MN} using the residual partial autocorrelations.
Various modified versions of T_{BP} (see Li (2004)) have been proposed. Under the null hy-
pothesis that ARMA(p,q) is adequate, these test statistics are much closer to chi-square
distribution than T_{BP}.

The test statistic T_{BP} and modifications of T_{BP} are called the portmanteau test and have
been widely used. Taniguchi and Amano (2008) proved that T_{BP} does not converge to
χ^2_{m-p-q} distribution for fixed m and for ARMA adequacy test, proposed a portmanteau test
of natural Whittle type T_{WLR} and showed that T_{WLR} is always asymptotically chi-square
distributed. This paper compares T_{WLR} with another famous portmanteau test statistics
T_{BP}, T_{LB} and T_{MN} and we observe that T_{WLR} behaves well numerically.

This paper is organized as follows. Section 2 describes the construction of T_{WLR} and
its asymptotics. In Section 3, we compare the means and variances of T_{WLR} with those of
other portmanteau tests T_{BP}, T_{LB} and T_{MN} by simulation. Then the empirical significance
levels and the empirical powers under contiguous alternatives are compared numerically.
2. Asymptotics of T_{WLR}

A stationary process $\{X_i\}$ is assumed to satisfy

$$
\sum_{j=0}^p \alpha_j X_{t-j} = \sum_{j=0}^q \beta_j u_{t-j}, \quad (\alpha_0 = \beta_0 = 1, \ \alpha_p \neq 0, \ \beta_q \neq 0),
$$

(2.1)

where $\{u_t\}$ is an m-dimensional sequence with autocovariance $\{\theta_{2,j}\}$ ($\theta_{2,0} = 1, \ \theta_{2,-j} = \theta_{2,j}$) and the innovation process of $\{u_t\}$ is identically distributed with mean 0, variance σ_u^2 and fourth-order cumulant κ_4. Let $\alpha(z) = \sum_{j=0}^p \alpha_j z^j$ and $\beta(z) = \sum_{j=0}^q \beta_j z^j$, and they are assumed to satisfy $\alpha(z) \neq 0$ and $\beta(z) \neq 0$ on $D = \{z \in \mathbb{C} : |z| \leq 1\}$ and the equations $\alpha(z) = 0$ and $\beta(z) = 0$ have no common roots. We define $\theta_1 = (\theta_{1,1}, \ldots, \theta_{1,p+q})' \equiv (\alpha_1, \ldots, \alpha_p, \beta_1, \ldots, \beta_q)'$, $\theta_2 = (\theta_{2,1}, \ldots, \theta_{2,m})'$ and $\theta = (\theta_1', \theta_2')'$, then the spectral density of $\{X_t\}$ is

$$
f_0(\lambda) \equiv f(\theta_1, \theta_2)(\lambda) = \frac{|\sum_{j=0}^q \beta_j e^{ij\lambda}|^2}{|\sum_{j=0}^p \alpha_j e^{ij\lambda}|^2} \cdot \frac{\sigma_u^2}{2\pi} \left\{ \sum_{j=-m}^m \theta_{2,j} e^{-ij\lambda} \right\}
$$

For the construction of a portmanteau test, let $\hat{X}_n = (X_1, \ldots, X_n)'$ be an observed stretch from (1), and write the periodogram as

$$
I_n(\lambda) = \frac{1}{2\pi n} \left| \sum_{t=1}^n X_t e^{it\lambda} \right|^2, \quad \lambda \in [-\pi, \pi].
$$

(2.2)

By use of Whittle likelihood

$$
D(f_0, I_n) = -\frac{1}{4\pi} \int_{-\pi}^\pi \log f_0(\lambda) + \frac{I_n(\lambda)}{f_0(\lambda)} d\lambda
$$

(2.3)

estimators for (θ_1', θ_2') are given by

$$
\hat{\theta}_1 = \arg \max_{\theta_1} D(f(\theta_1, 0), I_n), \quad (\hat{\theta}_1, \hat{\theta}_2) = \arg \max_{(\theta_1, \theta_2)} D(f(\theta_1, \theta_2), I_n),
$$

(2.4)

where 0 in (4) is the m-dimensional zero vector. As an adequacy test for ARMA(p,q) model, a portmanteau test of natural Whittle likelihood type

$$
T_{WLR} \equiv 2n[D(f(\hat{\theta}_1, \hat{\theta}_2), I_n) - D(f(\theta_1, 0), I_n)]
$$

(2.5)

was proposed in Taniguchi and Amano (2008).

The following lemmas are due to Taniguchi and Amano (2008).

Lemma 2.1. Write $F \equiv \frac{1}{4\pi} \int_{-\pi}^\pi \frac{\partial}{\partial \sigma^2} \log f_0(\lambda) \frac{\partial}{\partial \sigma^2} \log f_0(\lambda) d\lambda = \begin{pmatrix} F_{11} & F_{12} \\ F_{21} & F_{22} \end{pmatrix}$. Suppose that F is positive definite. If ARMA(p,q) model is adequate, then for any fixed $m = \dim \theta_2$, it holds that

$$
T_{WLR} \to \chi_m^2, \quad \text{in distribution as } n \to \infty.
$$

(2.6)

Lemma 2.2. Under $A_G^{(m)} : \theta_2 = \frac{1}{\sqrt{n}} h$, where h is a fixed m-dimensional vector, the following holds

$$
T_{WLR} \to \chi_m^2(h'F_{22,1}h) \quad \text{in distribution as } n \to \infty
$$

(2.7)

where $F_{22,1} = F_{22} - F_{21}F_{11}^{-1}F_{12}$, and $\chi_m^2(h'F_{22,1}h)$ is a noncentral chi-square random variable with m degrees of freedom and noncentrality parameter $h'F_{22,1}h$. 382
3. **Numerical study**

In this section, we give a comparison of the test statistic T_{WLR} with another portmanteau tests

$$T_{LB} = n(n + 2) \sum_{k=1}^{m} \frac{\hat{r}_k^2}{n-k},$$

(3.1)

$$T_{LM} = \frac{m(m+1)}{2n} + n \sum_{k=1}^{m} \hat{r}_k^2$$

(3.2)

and

$$T_{MN} = n(n + 2) \sum_{k=1}^{m} \frac{\hat{\pi}_k^2}{n-k},$$

(3.3)

by simulation. Here, \hat{r}_k and $\hat{\pi}_k$ are the kth sample autocorrelations and sample partial autocorrelations of the estimated residual process of ARMA(p,q) model, respectively. Under the null hypothesis that ARMA(p,q) is adequate, these portmanteau tests T_{LB}, T_{LM} and T_{MN} are supposed to be approximated by χ^2_{m-p-q}-distribution.

In Example 3.1, the empirical means and variances of T_{WLR} for $m = 1$ are compared with those of T_{LB}, T_{LM} and T_{MN} for $m = 2$ under null hypothesis. In Example 3.2, we compare the significance levels of T_{WLR} for $m = 1$ with those of T_{LB}, T_{LM} and T_{MN} for $m = 2$, 20 under null hypothesis. Then we can observe that the test statistic T_{WLR} is more accurate than T_{LB}, T_{LM} and T_{MN}. In Example 3.3, local powers of the test T_{WLR} for $m = 1$ are compared with those of T_{LB}, T_{LM} and T_{MN} for $m = 10$, 20 under local alternative and we can see that our test T_{WLR} is more powerful than T_{LB}, T_{LM} and T_{MN}.

Example 3.1. Let $\{X_t\}$ be the AR(1) process

$$X_t + \alpha X_{t-1} = u_t,$$

(3.4)

where u_t’s are independent and identically distributed as $N(0,1)$. For (4), we compare the empirical means and variances of T_{WLR} for $m = 1$ with those of T_{LB}, T_{LM} and T_{MN} for $m = 2$, respectively. The parameter values are chosen as $0.85 \leq \alpha \leq 0.99$. The empirical means and variances are calculated based on length of observations $n = 200$ and 1000 times simulation.

In Figure 1, the empirical means of T_{WLR} for $m = 1$ and T_{LB}, T_{LM} and T_{MN} for $m = 2$ ($0.85 \leq \alpha \leq 0.99$) are plotted.

In Figure 2, the empirical variances of T_{WLR} for $m = 1$ and T_{LB}, T_{LM} and T_{MN} for $m = 2$ ($0.85 \leq \alpha \leq 0.99$) are plotted.

From Figure 1, the empirical means of T_{WLR} for $m = 1$ are closer to 1 than those of T_{LB}, T_{LM} and T_{MN} for $m = 2$. From Figure 2, the empirical variances of T_{WLR} for $m = 1$ are closer to 2 than those of T_{LB}, T_{LM} and T_{MN} for $m = 2$. Due to Lemma 2.1, T_{WLR} for $m = 1$ is approximated by χ^2_1-distribution and T_{LB}, T_{LM} and T_{MN} for $m = 2$ is supposed to be approximated by χ^2_1-distribution. Hence Figures 1 and 2 imply T_{WLR} is more accurate than another portmanteau tests T_{LB}, T_{LM} and T_{MN}.
Figure 1: The means of T_{WLR}, T_{LB}, T_{LM} and T_{MN} in Example 3.1 ($0.85 \leq \alpha \leq 0.99$)

Figure 2: The variances of T_{WLR}, T_{LB}, T_{LM} and T_{MN} in Example 3.1 ($0.85 \leq \alpha \leq 0.99$)
Example 3.2. For (4), we compare the empirical significance levels of \(T_{WLR} \) for \(m = 1 \) with those of \(T_{LB}, T_{LM} \) and \(T_{MN} \) for \(m = 2, 20 \), respectively. The parameter values are chosen as \(0.85 \leq \alpha \leq 0.99 \). The empirical significance levels are calculated based on length of observations \(n = 200 \) and 1000 times simulations.

In Figure 3, the fractions of times that \(T_{WLR} \) for \(m = 1 \) and \(T_{LB}, T_{LM} \) and \(T_{MN} \) for \(m = 2 \) \((0.85 \leq \alpha \leq 0.99)\) exceed the critical values of \(\chi^2_2 \)-distribution for nominal level 5% are plotted.

In Figure 4, the fractions of times that \(T_{WLR} \) for \(m = 1 \) and \(T_{LB}, T_{LM} \) and \(T_{MN} \) for \(m = 20 \) \((0.85 \leq \alpha \leq 0.99)\) exceed the critical values of \(\chi^2_1 \) and \(\chi^2_{19} \)-distribution for nominal level 5% are plotted.

Figure 3: The significance levels with nominal size 5% of \(T_{WLR}, T_{LB} \) \((m = 2)\), \(T_{LM} \) \((m = 2)\) and \(T_{MN} \) \((m = 2)\) in Example 3.2 \((0.85 \leq \alpha \leq 0.99)\)

Due to Lemma 2.1, \(T_{WLR} \) for \(m = 1 \) is approximated by \(\chi^2_1 \)-distribution and \(T_{LB}, T_{LM} \) and \(T_{MN} \) for \(m \) are supposed to be approximated by \(\chi^2_{m-1} \)-distribution. From Figures 3 and 4, it is seen that \(T_{WLR} \) is closer to its asymptotic distribution than \(T_{LB}, T_{ML} \) and \(T_{MN} \).

Example 3.3. Let \(\{X_t\} \) be the AR(1) process

\[
X_t + \alpha X_{t-1} = u_t
\]
(3.5)

where \(\{u_t\} \) is the MR(1) with the mean 0, the variance 1 and the autocovariance function \(\{\frac{H}{\sqrt{n}}\} \) where \(H = \frac{3}{\sqrt{p^2 + 1}} = \frac{3}{\alpha} \). If \(T_{WLR} \) for \(m = 1 \) exceeds the 95% point of \(\chi^2_1 \), we reject the null hypothesis. \(T_{WLR} \) for \(m = 1 \) is calculated with length of observations \(n = 200 \). By use of 1000 times simulation, we give the frequency that the test rejects the hypothesis. If the \(T_{LB} \) for \(m \) exceeds the 95% point of \(\chi^2_{m-1} \), we reject the null hypothesis. \(T_{LB} \) for \(m \) is calculated with length of observations \(n = 200 \). By use of 1000 times simulations, we give
Figure 4: The significance levels with nominal size 5% of T_{WLR}, T_{LB} ($m = 20$), T_{LM} ($m = 20$), T_{MN} ($m = 20$) in Example 3.2 ($0.85 \leq \alpha \leq 0.99$)

the frequency that the test rejects the hypothesis. Also, we give empirical powers of T_{LM} and T_{MN} for m similar.

In Figure 5, the empirical powers for a 5%-level test of T_{WLR} for $m = 1$ and those of T_{LB}, T_{LM} and T_{MN} for $m = 10$ ($0.45 \leq \alpha \leq 0.99$) are plotted.

In Figure 6, the empirical powers for a 5%-level test of T_{WLR} for $m = 1$ and those of T_{LB}, T_{LM} and T_{MN} for $m = 20$ ($0.45 \leq \alpha \leq 0.99$) are plotted.

From Figures 5 and 6, our test statistic T_{WLR} is more powerful than T_{LB}, T_{LM} and T_{MN}. Simulation results imply that T_{WLR} is closer to theoretic χ^2-distribution than another famous portmanteau tests T_{LB}, T_{LM} and T_{MN} under null hypothesis that ARMA(p,q) model is adequate. It is implied that under contiguous alternative hypothesis, the ability of T_{WLR} to detect model misspecification is higher than that of another famous portmanteau tests T_{LB}, T_{LM} and T_{MN} by simulation.
Figure 5: The empirical powers with level test 5% of T_{WLR}, T_{LB} ($m = 10$), T_{LM} ($m = 10$), T_{MN} ($m = 10$) in Example 3.3 ($0.45 \leq \alpha \leq 0.99$)

Figure 6: The empirical powers with level test 5% of T_{WLR}, T_{LB} ($m = 20$), T_{LM} ($m = 20$), T_{MN} ($m = 20$) in Example 3.3 ($0.45 \leq \alpha \leq 0.99$)
Acknowledgments

The author would like to express his deepest gratitude to Professor Masanobu Taniguchi of Waseda University for his instructive guidance and advice. The author would like to express sincere thanks to the referee for his instructive comments.

REFERENCES

Tomoyuki AMANO
Department of Applied Mathematics
School of Fundamental Science and Engineering
Waseda University
3-4-1 Okubo Shinjuku-ku
Tokyo 169-8555
Japan
E-mail: tomtochami@aoni.waseda.jp