ON PRE-COXETER ALGEBRAS

Hee Sik Kim and Hyo Jin Kim

Received June 13, 2006

Abstract

In this paper we show that the class of $P C$-algebras and the class of B-algebras with condition (D) are Smarandache disjoint, and show that an algebra $(X ; *, 0)$ is a Coxeter algebra if and only if it is a $P C$-algebra with (N). Moreover, we show that there is no non-trivial quadratic $P C$-algebras on a field with $|X| \geq 3$.

1. Introduction

Y. Imai and K. Iséki introduced two classes of abstract algebras: $B C K$-algebras and $B C I$-algebras ([5, 6]). Y. B. Jun, E. H. Roh and H. S. Kim ([7]) introduced a new notion, called a $B H$-algebra, i.e., (I), (II) and (V) $x * y=0$ and $y * x=0$ imply $x=y$, which is a generalization of $B C H / B C I / B C K$-algebras. J. Neggers and H. S. Kim ([10]) introduced and investigated a class of algebras, called a B-algebra which is related to several classes of algebras of interest such as $B C H / B C I / B C K$-algebras. Furthermore, they demonstrated a rather interesting connection between B-algebras and groups. P. J. Allen et al. ([1]) included several new families of Smarandache-type P-algebras and studied some of their properties in relation to the properties of previously defined Smarandache-types. Recently, Kim et al. ([8]) introduced the notion of a (pre-)Coxeter algebra and showed that a Coxeter algebra is equivalent to an abelian group all of whose elements have order 2, i.e., a Boolean group. Moreover, they proved that the class of Coxeter algebras and the class of B-algebras of odd order are Smarandache disjoint. In this paper we show that the class of $P C$-algebras and the class of B-algebras with condition (D) are Smarandache disjoint, and show that an algebra $(X ; *, 0)$ is a Coxeter algebra if and only if it is a $P C$-algebra with (N). Moreover, we show that there is no non-trivial quadratic $P C$-algebras on a field with $|X| \geq 3$.

2. Preliminaries

In this section we refer notions and theorems discussed in [8]. A Coxeter algebra ([8]) is a non-empty set X with a constant 0 and a binary operation "*" satisfying the following axioms:
(B1) $x * x=0$,
(B2) $x * 0=x$,
(C) $(x * y) * z=x *(y * z)$,

[^0]Key words and phrases. (pre-) Coxeter algebra, Smarandache disjoint, condition (D), condition (N), quadratic.
for any $x, y, z \in X$. An example of a Coxeter algebra is a Klein 4-group.

Theorem 2.1. If $(X ; *, 0)$ is a Coxeter algebra, then it is an abelian group all of whose elements have order 2, i.e., a Boolean group, and conversely.
J. Neggers and H. S. Kim introduced and investigated a class of algebras, called a B algebra, which is related to several classes of algebras such as $B C H / B C I / B C K$-algebras. A B-algebra ($[10]$) is a non-empty set X with a constant 0 and a binary operation "*" satisfying the following axioms: (B1), (B2) and (B) $(x * y) * z=x *(z *(0 * y))$, for any $x, y, z \in X$.

Proposition 2.2. If $(X ; *, 0)$ is a Coxeter algebra, then it is a B-algebra.
An algebra $(X ; *, 0)$ is called a pre-Coxeter algebra (shortly, $P C$-algebra) if it satisfies the axioms (B1), (B2), (PC1) $x * y=y * x,(\mathrm{PC} 2) x * y=0 \Longrightarrow x=y$, for any $x, y \in X$.

Example 2.3. Let $X:=[0, \infty)$. If we define $x * y:=|x-y|, x, y \in X$, then $(X ; *, 0)$ is a pre-Coxeter algebra, but not a Coxeter algebra, since $(1 * 2) * 3=2$, but $1 *(2 * 3)=0$.

Proposition 2.4. Every Coxeter algebra is a pre-Coxeter algebra.
Proposition 2.5. Let $(X ; *, 0)$ be a Coxeter algebra. Then $x *(x * y)=y$, for any $x, y \in Y$.

3. pre-Coxeter algebras and B-algebras in Smarandache settings

Let $(X, *)$ be a binary system/algebra. Then $(X, *)$ is a Smarandache-type P-algebra if it contains a subalgebra $(Y, *)$, where Y is non-trivial, i.e., $|Y| \geq 2$, or Y contains at least two distinct elements, and $(Y, *)$ is itself of type P. Thus, we have Smarandache type semigroups (the type P-algebra is a semigroup), Smarandache-type groups (the type P-algebra is a group), Smarandache-type abelian groups (the type P-algebra is an abelian group). A Smarandache semigroup in the sense of Kandasamy is in fact a Smarandache-type group (see [11]). Smarandache-type groups are of course a larger class than Kandasamy's Smarandache semigroups since they may include non-associative algebras as well.

Given algebra types $(X, *)$ (type- P_{1}) and (X, \circ) (type- P_{2}), we shall consider them to be Smarandache disjoint ([1]) if the following two conditions hold:
(A) If $(X, *)$ is a type- P_{1}-algebra with $|X|>1$ then it cannot be a Smarandache-type-P_{2}-algebra (X, \circ);
(B) If (X, \circ) is a type- P_{2}-algebra with $|X|>1$ then it cannot be a Smarandache-type-P_{1}-algebra $(X, *)$.

Theorem 3.1. ([8]) The class of Coxeter algebras and the class of B-algebras of odd order are Smarandache disjoint.

Lemma 3.2. If $(X ; *, 0)$ is a pre-Coxeter algebra with (B), then $(X ; *, 0)$ is a Coxeter algebra.

Proof. For any $x, y, z \in X$, we have

$$
\begin{aligned}
(x * y) * z & =x *(z *(0 * y) & & {[(B)] } \\
& =x *(z *(y * 0)) & & {[(P C 1)] } \\
& =x *(z * y) & & {[(B 2)] } \\
& =x *(y * z), & & {[(P C 1)] }
\end{aligned}
$$

proving the lemma.

Proposition 3.3. The class of PC-algebras and the class of B-algebras of odd order are Smarandache disjoint.

Proof. Assume that a $P C$-algebra $(X ; *, 0)$ contains a B-algebra $(Y ; *, 0)$ of odd order where $|Y| \geq 2$. By applying Lemma 3.2, we obtain that Y is a Coxeter algebra. It follows from Theorem 2.3 that Y can not be a non-trivial a B-algebra of odd order, a contradiction.

Conversely, Assume that a B-algebra $(X ; *, 0)$ of odd order contains a $P C$-algebra $(Y ; *, 0)$ where $|Y| \geq 2$. Then $(Y ; *, 0)$ satisfies the condition (B). By Lemma 3.2 it is a Coxeter algebra, which leads to a contradiction by Theorem 3.1.

A B-algebra $(X ; *, 0)$ is said to have the condition (D) if $x *(0 * x) \neq 0$ for any $x \neq 0$ in X.

Example 3.4. Let $X:=\{0,1,2\}$ be a set with the following table:

$*$	0	1	2
0	0	2	1
1	1	0	2
2	2	1	0

Then it is a B-algebra ([10]) with condition (D).
Example 3.5. Let X be the set of all real numbers except for a negative integer $-n$. Define a binary operation $*$ on X by

$$
x * y:=\frac{n(x-y)}{n+y} .
$$

Then $(X ; *, 0)$ is a B-algebra $([10])$, but it does not have condition (D), since $(-2 n) *(0 *$ $(-2 n))=0$.

Proposition 3.6. Let $(X ; *, 0)$ be a $P C$-algebra. Then X can not be a Smarandachetype B-algebra with condition (D).

Proof. Assume that $(Y ; *, 0)$ is both a B-algebra with condition (D) and a $P C$-algebra with $Y \subset X,|Y| \geq 2$. Then $0=a * a=a *(a * 0)=a *(0 * a)$ by applying (B1), (B2) and (PC1), which leads to a contradiction.

Proposition 3.7. Let $(X ; *, 0)$ be a B-algebra with condition (D). Then X can not be a Smarandache-type $P C$-algebra.

Proof. Similar to Proposition 3.7.

It follows from Propositions 3.6 and 3.7 that:
Theorem 3.8. The class of $P C$-algebras and the class of B-algebras with condition (D) are Smarandache disjoint.

4. PC-algebras and $B F / B F_{2} /$ Coxeter-algebras

A. Walendiziak ([12]) introduced the notion of $B F$-algebras, and showed a very good diagram to understand the address of various algebras which are related to $B F$-algebras.

Definition 4.1. An algebra $(X ; *, 0)$ is called a $B F$-algebra ([3]) if it satisfies (B1),(B2) and (BF) $0 *(x * y)=y * x$, for any $x, y \in X$.

Proposition 4.2. Every $P C$-algebra is a $B F$-algebra.
Proof. Let $(X ; *, 0)$ be a $P C$-algebra. Then, for any $x, y \in X$, we have

$$
\begin{aligned}
0 *(x * y) & =(x * y) * 0 & & {[(P C 1)] } \\
& =x * y & & {[(B 2)] } \\
& =y * x, & & {[(P C 1)] }
\end{aligned}
$$

proving that X is a $B F$-algebra.

A $B F$-algebra $(X ; *, 0)$ is called a $B F_{2}$-algebra $([12])$ if it satisfies $(\mathrm{V}) x * y=0$ and $y * x=0$ imply $x=y$.

Corollary 4.3. If $(X, *)$ is a $P C$-algebra, then $(X, *)$ is also a $B F_{2}$-algebra.
Proof. It can be easily proved by (PC2).

Proposition 4.4. If a $P C$-algebra $(X ; *, 0)$ satisfies the condition
(N) $(x * z) *(y * z)=x * y$,
then it is a Coxeter algebra.
Proof. Given $x, y, z \in X$, we have

$$
\begin{array}{rlr}
(x * y) * z & =((x * y) * y) *(z * y) & {[(N)]} \\
& =((x * y) *(y * 0)) *(z * y) & {[(B 2)]} \\
& =((x * y) *(0 * y)) *(z * y) & {[(P C 1)]} \\
& =(x * 0) *(z * y) & {[(N)]} \tag{N}\\
& =x *(z * y) & {[(B 2)]} \\
& =x *(y * z) & {[(P C 1)]}
\end{array}
$$

proving the proposition.

Lemma 4.5. If $(X ; *, 0)$ is a Coxeter algebra, then $(x * y) * x=y$ for any $x, y \in X$.
Proof. Given $x, y \in X$, we have $(x * y) * x=(x * y) *(x * 0)=(x * y) *[x *(y * y)]=$ $(x * y) *[(x * y) * y]=[(x * y) *(x * y)] * y=0 * y=y$, proving the lemma.

Proposition 4.6. If $(X ; *, 0)$ is a Coxeter algebra, then it satisfies the condition (N).
Proof. By applying Lemma 4.5, we have $(x * z) *(y * z)=x *(z *(y * z))=x *((z * y) * z)=$ $x * y$, proving the proposition.

Theorem 4.7. An algebra $(X ; *, 0)$ is a Coxeter algebra if and only if it is a $P C$-algebra with (N).

Proof. It is a consequence of Propositions 4.4 and 4.6.

5. Quadratic $P C$-algebras

Let X be a field with $|X| \geq 3$. An algebra $(X, *)$ is said to be quadratic if $x * y$ is defined by

$$
x * y:=a_{1} x^{2}+a_{2} x y+a_{3} y^{2}+a_{4} x+a_{5} y+a_{6}
$$

where $a_{1}, \cdots, a_{6} \in X$, for any $x, y \in X$. A $P C$-algebra $(X, *)$ is said to be a quadratic $P C$-algebra if it is quadratic.

Theorem 5.1. Let X be a field with $|X| \geq 3$. Then there is no non-trivial quadratic $P C$-algebras.

Proof. Let

$$
\begin{equation*}
x * y:=A x^{2}+B y^{2}+C x y+D x+E y+F \tag{1}
\end{equation*}
$$

where $A, B, C, D, E, F \in X$. Consider (B1). Given $x \in X$, we have

$$
\begin{equation*}
e=x * x=(A+B+C) x^{2}+(D+E) x+F \tag{2}
\end{equation*}
$$

Then we have $A+B+C=0, D+E=0, F=0$. If we consider (B2), then $x=x * 0=$ $A x^{2}+D x$, i.e., $A=0, D=1$. Hence $x * y=B y^{2}-B x y+x-y=(x-y)(1-B y)$. Consider $(P C 1)$. Then we have $(x-y)(1-B y)=(y-x)(1-B x)$, i.e., $(x-y)(2-B(x+y))=0$. From this, either $x=y$ or $2=B(x+y)$.

We claim that $B \neq 0$. If we assume that $B=0$, then $x * y=x-y$, and $x * 0=x, 0 * x=$ $-x$. By $(P C 1)$, we obtain $2 x=0$, i.e., $X=\{0\}$, a contradiction.

In case of $x=y$, we have $x * y=0$, a trivial case. Assume $2=B(x+y)$. Then $y=-x+\frac{2}{B}$ and hence $x * y=(x-y)(1-B y)=2 B x^{2}-4 x+\frac{2}{B}$. By applying $(B 2)$, $x=x * 0=2 B x^{2}-4 x+\frac{2}{B}$ for any $x \in X$, a contradiction. This means that there is no nontrivial quadratic polynomials satisfying the condition (PC1) in X, proving the theorem.

Corollary 5.2. There is no non-trivial quadratic Coxeter algebra on the field X with $|X| \geq 3$.

Proof. It can be easily proved by Theorem 5.1 and Theorem 4.7.

References

[1] P. J. Allen, H. S. Kim and J. Neggers, Smarandache disjoint in BCK/d-algebras, Sci. Math. Japo. 61 (2005), 447-449.
[2] Jung R. Cho and H. S. Kim, On B-algebras and quasigroups, Quasigroups and Related systems 8 (2001), 1-6.
[3] Qing Ping Hu and Xin Li, On BCH-algebras, Math. Seminar Notes 11 (1983), 313-320.
[4] Qing Ping Hu and Xin Li, On proper BCH-algebras, Math. Japonica 30 (1985), 659-661.
[5] K. Iséki and S. Tanaka, An introduction to theory of BCK-algebras, Math. Japonica 23 (1978), 1-26.
[6] K.Iséki, On BCI-algebras, Math. Seminar Notes 8 (1980), 125-130.
[7] Y. B. Jun, E. H. Roh and H. S. Kim, On BH-algebras, Sci. Math. Japo. Online 1 (1998), 347-354.
[8] H. S. Kim, Y. H. Kim and J. Neggers, Coxeter algebras and pre-Coxeter algebras in Smarandache setting, Honam Mathematical J. 26 (2004), 471-481.
[9] J. Meng and Y. B. Jun, BCK-algebras, Kyung Moon Sa Co., Seoul, 1994.
[10] J. Neggers and H. S. Kim, On B-algebras, Math. Vesnik 54 (2002), 21-29.
[11] W. B. V. Kandasamy, Smarandache semirings, semifield, and semivector spaces American Research Press, Rehoboth, 2002.
[12] Walendiziak, On BF-algebras, Math. Slovaca (to appear).

Hee Sik Kim Department of Mathematics, Hanyang University, Seoul 133-791, Korea
E-mail address: heekim@hanyang.ac.kr
Hyo Jin Kim Department of Physics, Hanyang University, Seoul 133-791, Korea
E-mail address: rlagywls83@hotmail.com

[^0]: 2000 Mathematics Subject Classification. 06F35.

