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Abstract. The first-passage time problem through two time-dependent boundaries
for one-dimensional Gauss-Markov processes is considered, both for fixed and for ran-
dom initial states. The first passage time probability density functions are proved to
satisfy a system of continuous-kernel integral equations that can be numerically solved
by an accurate and computationally simple algorithm. A condition on the boundaries
of the process is given such that this system reduces to a single non-singular inte-
gral equation. Closed-form results are also obtained for classes of double boundaries
that are intimately related to certain symmetry properties of the considered processes.
Finally, the double-sided problem is considered.

1 Introduction and Mathematical Background
The first passage time (FPT) problem through generally time-dependent boundaries has
been the object of numerous investigations over the past three decades, partly motivated by
the role that it plays in biology, engineering, physics, psychology and in many other applied
fields (cf., for instance, [1], [2], [3], [4], [7], [9], [14]). As is well-known, exact solutions for
FPT problems are only available in very few special cases, and results based on numerical
computations or simulations are in general scarce and fragmentary.

It should be emphasized that particularly relevant to theoretical neurobiology and pop-
ulation biology fields are FPT problems. Indeed, as discussed for instance in [12], and
successively pinpointed in [13], the FPT pdf can be taken as the theoretical counterpart
of the neuronal firing density function in the area of stochastic models of single neurons
activity. Moreover, within in the context of population dynamics, extinction can be viewed
to occur when for the first time the population size attains some small critical mass. Hence,
again a first passage time problem may be suitable to model population growth with an eye
at the very crucial expects of population extinction. The present paper aims to provide a
contribution towards the solution of theoretical and computational aspects of first passage
time problems for the wide class of Gauss-Markov processes with special attention to those
situation in which sample paths are restricted within a strip characterized by a pair of as-
signed time functions, under the more general assumption that their starting point can be
a random variable with preassigned probability distribution.

We recall that in [7] a new second-kind Volterra integral equation was obtained to deter-
mine the FPT pdf through a time-dependent boundary for Gauss-Markov (G-M) processes,
both for fixed and for random initial states, and a new computationally simple, speedy and
accurate method was proposed to construct the FPT probability density function (pdf).
However, there are instances in which it would be desirable to possess similar simple and
efficient procedures to evaluate FPT pdf’s in the presence of double time-dependent bound-
aries for the class of G-M processes.
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As mentioned above, in this paper we consider the two-boundary FPT problem for
the class of G-M processes, and prove that the FPT pdf’s through the lower and through
the upper boundaries respectively, are the solutions of continuous-kernel Volterra integral
equations. Our arguments have been suggested by those originally proposed for time-
homogeneous diffusion processes (cf. [4]) for the case of two boundaries and by those
proposed for G-M processes (cf. [7]) in the case of a single boundary. Furthermore, a
condition on the boundaries such that the system of integral equations for the G-M process
reduces to a single non-singular integral equation for the FPT pdf is determined. Use of
the symmetry properties of the transition pdf of G-M processes is then made to determine
closed form expressions for the FPT pdf’s and for the transition pdf in the presence of the
two absorbing boundaries.

The FPT problem through either boundary, in which the initial state of the process
is a random variable, is then considered, and an appropriate system of integral equations
is determined. Such FPT problems appear to be particularly relevant in contexts such as
population dynamics and neuronal modeling in which the initial population size or the reset
value of the membrane potential are usually unknown.

The proposed integral equations will be seen to be particularly suited to provide accurate
and speedy numerical evaluations of FPT densities. As for the one-boundary FPT problem,
our direct numerical method bypasses some serious difficulties that generally originate if one
numerically evaluates FPT densities for the Wiener process and then make use of a space-
time transformation to obtain FPT densities of G-M processes.

Hereafter, the necessary preliminary background and notation is provided.
Let {X(t), t ∈ T }, where T is a continuous parameter set, be a real, continuous G-M

process with the following properties:

(i) m(t) := E[X(t)] is continuous in T ;

(ii) the covariance c(s, t) := E{[X(s) −m(s)] [X(t) −m(t)]} is continuous in T × T ;

(iii) {X(t)} is non-singular except possibly at the end points of T , i.e. if T = [a, b], {X(t)}
has a non-singular normal distribution except possibly at t = a or t = b, where X(t)
could be equal to m(t) with probability one.

We shall make a systematic use of certain well-known properties of G-M processes as outlined
in [11]. In particular,

(a) a Gaussian process is Markov if and only if its covariance is of the form

c(s, t) = h1(s)h2(t), s ≤ t,(1.1)

where

r(t) =
h1(t)
h2(t)

(1.2)

is a monotonically increasing function by virtue of the Cauchy-Schwarz inequality, and
h1(t)h2(t) > 0 because of the assumed non-singularity of the process in the interior
of T .

(b) The transition pdf f(x, t | y, τ) of a G-M process is a normal density characterized



TWO-BOUNDARY FIRST-PASSAGE TIME 935

respectively by mean and variance:

E[X(t) | X(τ) = y] = m(t) +
h2(t)
h2(τ)

[
y −m(τ)

]
(t, τ ∈ T, τ < t)(1.3)

Var[X(t) | X(τ) = y] = h2(t)
[
h1(t) −

h2(t)
h2(τ)

h1(τ)
]
.

Let S1(t) and S2(t) denote arbitrary C1(T )-class functions such that (i) S1(t) < S2(t),
∀t ∈ T and (ii) S1(t0) < X(t0) ≡ x0 < S2(t0), t0 ∈ T . For all t ≥ t0, t, t0 ∈ T , we shall
focus our attention on the random variables:

T (1)
x0

= inf
t≥t0

{
t : X(t) < S1(t); X(ϑ) < S2(ϑ),∀ϑ ∈ (t0, t)

}
, X(t0) = x0

(FPT through the lower boundary)
T (2)

x0
= inf

t≥t0

{
t : X(t) > S2(t); X(ϑ) > S1(ϑ),∀ϑ ∈ (t0, t)

}
, X(t0) = x0(1.4)

(FPT through the upper boundary)
Tx0 = inf

t≥t0

{
t : X(t) �∈

(
S1(t), S2(t)

)}
, X(t0) = x0

(first-exit time)

and denote by g1(t | x0, t0), g2(t | x0, t0) and g(t | x0, t0), respectively, their pdf’s:

g1(t | x0, t0) =
∂

∂t
P

(
T (1)

x0
< t

)
,

g2(t | x0, t0) =
∂

∂t
P

(
T (2)

x0
< t

)
,(1.5)

g(t | x0, t0) =
∂

∂t
P

(
Tx0 < t

)
≡ g1(t | x0, t0) + g2(t | x0, t0).

Hence, P (T (1)
x0 < t) [P (T (2)

x0 < t)] is the probability that X(t) crosses for the first time
S1(t) [S2(t)] at some time preceding t before crossing S2(t) [S1(t)], whereas P (Tx0 < t)
is the probability that X(t) crosses for the first time either S1(t) or S2(t) before time t.
Since X(t) is Markov, for any x �∈

(
S1(t), S2(t)

)
and S1(t0) < x0 < S2(t0) the following

compatibility relation holds:

f(x, t | x0, t0) =
∫ t

t0

{
g1(τ | x0, t0) f [x, t | S1(τ), τ ]

+g2(τ | x0, t0) f [x, t | S2(τ), τ ]
}
dτ.(1.6)

Setting x = S1(t) and x = S2(t), respectively, in (1.6) one obtains a system of two integral
equations in the unknowns g1 and g2. Its solution is made complicated by the circumstance
that f [Sj(t), t|Si(τ), τ ] (i, j = 1, 2) exhibits a singularity as τ ↑ t. Hence, the problem
of determining g1 and g2 from (1.6) via numerical methods is not at all trivial: efficient
numerical algorithms are desirable, especially if one wishes to deal with the case of a time-
varying threshold.

For all t, t0 ∈ T and t > t0, let

β(x, t|x0, t0) :=
∂

∂x
P

{
X(t) < x;S1(ϑ) < X(ϑ) < S2(ϑ), ∀ϑ < t | X(t0) = x0

}
,

S1(t) < x < S2(t), S1(t0) < x0 < S2(t0),(1.7)
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be the transition pdf in the presence of absorbing boundaries at S1(t) and S2(t). Then,∫ S2(t)

S1(t)

β(x, t|x0, t0) dx = 1 −
∫ t

t0

g(ϑ | x0, t0) dϑ, S1(t0) < x0 < S2(t0).(1.8)

Any Gaussian process with covariance as in (1.1) can be represented in terms of the
standard Wiener process {W (t), t ≥ 0} as

X(t) = m(t) + h2(t) W
[
r(t)

]
,(1.9)

and is therefore Markov [8]. Hence, the possibility of constructing the FPT pdf of a G-M
process X(t) in terms of preassigned FPT pdf’s of the standard Wiener process W (t) is
based on the following relations stemming out of (1.9):

g1(t | x0, t0) =
dr(t)
dt

γ1

[
r(t) | x∗0, r(t0)

]
,

g2(t | x0, t0) =
dr(t)
dt

γ2

[
r(t) | x∗0, r(t0)

]
,(1.10)

g(t | x0, t0) =
dr(t)
dt

γ
[
r(t) | x∗0, r(t0)

]
,

where r(t) is defined in (1.2), γ1(ϑ | x∗0, ϑ0) [γ2(ϑ | x∗0, ϑ0)] is the FPT pdf of W (ϑ) through
the lower [upper] boundary S∗

1 (ϑ) [S∗
2 (ϑ)] at time ϑ starting from x∗0 at time ϑ0, whereas

γ(ϑ | x∗0, ϑ0) is the first-exit time of W (ϑ) from (S∗
1 (ϑ), S∗

2 (ϑ)), with

x∗0 =
x0 −m[r−1(ϑ0)]
h2[r−1(ϑ0)]

, S∗
j (ϑ) =

Sj [r−1(ϑ)] −m[r−1(ϑ)]
h2[r−1(ϑ)]

(j = 1, 2).(1.11)

Results on the FPT pdf’s for the standard Wiener process can thus be used via (1.10) to
yield the FPT pdf of any continuous G-M process. However, such a procedure often exhibits
the serious drawback of implying inconvenient time dilations (cf., for instance, Example 2.1
in [7]).

In Section 2 we prove that the FPT densities (1.5) can be obtained by solving a simple
system of continuous-kernel integral equations, thus overcoming the time-dilation difficulty
implied by the transformation method. In Section 3 a condition is determined on the
boundaries such that the system of integral equations reduces to a single non-singular
integral equation. In Section 4, making use of symmetry properties of the G-M process, we
obtain a family of suitable boundaries and initial states for which the transition densities in
the presence of two boundaries and the first-exit time pdf are obtained in closed-form. In
Section 5 the FPT problem through either boundary, in which the initial state of the process
is a random variable, is then considered, and an appropriate system of integral equations is
obtained. Finally, in Section 6 a computationally simple algorithm, based on the repeated
Simpson rule, is proposed to determine the FPT pdf’s.

2 FPT densities
We start proving the following

Theorem 2.1 Let S1(t), S2(t), m(t), h1(t), h2(t) be C1(T ) functions, with S1(t) < S2(t),
∀t ∈ T and S1(t0) < x0 < S2(t0). Then, g1(t | x0, t0) and g2(t | x0, t0) satisfy the following
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non-singular integral equations:

g1(t | x0, t0) = 2 Ψ1(t | x0, t0)

−2
∫ t

t0

{
g1(τ | x0, t0)Ψ1[t | S1(τ), τ ] + g2(τ | x0, t0)Ψ1[t | S2(τ), τ ]

}
dτ,

(2.1)
g2(t | x0, t0) = −2 Ψ2(t | x0, t0)

+2
∫ t

t0

{
g1(τ | x0, t0)Ψ2[t | S1(τ), τ ] + g2(τ | x0, t0)Ψ2[t | S2(τ), τ ]

}
dτ,

where

Ψj(t | y, τ) =
{
S′

j(t) −m′(t)
2

− Sj(t) −m(t)
2

h′1(t)h2(τ) − h′2(t)h1(τ)
h1(t)h2(τ) − h2(t)h1(τ)

−y −m(τ)
2

h′2(t)h1(t) − h2(t)h′1(t)
h1(t)h2(τ) − h2(t)h1(τ)

}
f [Sj(t), t | y, τ ] (j = 1, 2).(2.2)

Proof. Let γ1(ϑ | x∗0, ϑ0

) [
γ2

(
ϑ | x∗0, ϑ0

)]
denote the FPT pdf of the standard Wiener

process through the lower [upper] boundary S∗
1 (ϑ) [S∗

2 (ϑ)] at the time ϑ starting from initial
state x∗0 at time ϑ0, where S∗

j (ϑ) (j = 1, 2) and x∗0 are defined in (1.11). As proved in [4],
if S∗

1 (ϑ0) < x∗0 < S∗
2(ϑ0) the FPT pdf’s γ1 and γ2 are solutions of the following integral

equations:

γ1(ϑ | x∗0, ϑ0) = −2 Φ1(ϑ | x∗0, ϑ0)

+2
∫ ϑ

ϑ0

{
γ1(ξ | x∗0, ϑ0)Φ1[ϑ | S∗

1 (ξ), ξ] + γ2(ξ | x∗0, ϑ0)Φ1[ϑ | S∗
2 (ξ), ξ]

}
dξ

(2.3)
γ2(ϑ | x∗0, ϑ0) = 2 Φ2(ϑ | x∗0, ϑ0)

−2
∫ ϑ

ϑ0

{
γ1(ξ | x∗0, ϑ0)Φ2[ϑ | S∗

1 (ξ), ξ] + γ2(ξ | x∗0, ϑ0)Φ2[ϑ | S∗
2 (ξ), ξ]

}
dξ

where

Φj [ϑ | y, ξ] =
1
2

[dS∗
j (ϑ)
dϑ

−
S∗

j (ϑ) − y

ϑ− ξ

]
fW [S∗

j (ϑ), ϑ | y, ξ] (j = 1, 2)(2.4)

and where fW (x, ϑ | y, ξ) denotes the transition pdf for the standard Wiener process.

Multiplying equation (2.3) by
dr(t)
dt

, setting ϑ = r(t) and ϑ0 = r(t0) and recalling (1.10)
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there follows:

g1(t | x0, t0) = −2
dr(t)
dt

Φ1

[
r(t) | x∗0, r(t0)

]
+2

dr(t)
dt

∫ t

t0

[
g1(τ | x0, t0)Φ1

{
r(t) | S∗

1 [r(τ)], r(τ)
}

+g2(τ | x0, t0)Φ1

{
r(t) | S∗

2 [r(τ)], r(τ)
}]

dτ,

(2.5)

g2(t | x0, t0) = 2
dr(t)
dt

Φ2

[
r(t) | x∗0, r(t0)

]
−2

dr(t)
dt

∫ t

t0

[
g1(τ | x0, t0)Φ2

{
r(t) | S∗

1 [r(τ)], r(τ)
}

+g2(τ | x0, t0)Φ2

{
r(t) | S∗

2 [r(τ)], r(τ)
}]

dτ.

Setting ϑ = r(t), y = x∗0, ξ = r(t0) in (2.4) and making use of (1.2) and (1.11), one has:

Φj

[
r(t) | x∗0, r(t0)

]
=

[dr(t)
dt

]−1

Ψj

[
t | x0, t0

]
, (j = 1, 2)(2.6)

where Ψj (j = 1, 2) are defined in (2.2). Similarly, setting ϑ = r(t), y = S∗
j [r(τ)] (j = 1, 2),

ξ = r(τ) in (2.4) and making use (1.2) and (1.11), one obtains:

Φj

[
r(t) | S∗

i [r(τ)], r(τ)
]

=
[dr(t)
dt

]−1

Ψj

[
t | Si(τ), τ

]
(i, j = 1, 2).(2.7)

Substituting (2.6) and (2.7) in (2.5), Equations (2.1) immediately follow. Finally, since r(t)
is a monotonically increasing function in the parameter set T ,

lim
τ↑t

Ψj

[
t | Si(τ), τ

]
=
dr(t)
dt

lim
τ↑t

Φj

{
r(t) | S∗

i [r(τ)], r(τ)
}

=
dr(t)
dt

lim
ξ↑ϑ

Φj

[
ϑ | S∗

i (ξ), ξ
]

= 0, (i, j = 1, 2),(2.8)

which proves the non-singularity of (2.1). This completes the proof.

Theorem 2.2 Let T = [a, b]. Under the assumptions of Theorem 2.1, if

lim
t↑b

r(t) = +∞,

(2.9)
P

{
S1(t) ≤ X(t) < S2(t) | X(t0) = x0

}
�= 1 ∀t ∈ T,

there holds: ∫ b

t0

g(t | x0, t0) dt = 1.(2.10)

Proof. After setting

kj(t) =
m′(t) − S′

j(t)
2

+
Sj(t) −m(t)

2
h′2(t)
h2(t)

(j = 1, 2),(2.11)
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(2.2) can be written as:

Ψj(t | y, τ) =
d

dt
F [Sj(t), t | y, τ ] + kj(t) f [Sj(t), t | y, τ ] (j = 1, 2),(2.12)

where F (x, t | y, τ) := P (X(t) < x | X(τ) = y) denotes the probability distribution function
of the G-M process X(t). Expressing g as the sum of g1 and g2, from (2.1) one obtains:

g(t | x0, t0) = 2
[
Ψ1(t | x0, t0) − Ψ2(t | x0, t0)

]
−2

∫ t

t0

[
g1(τ | x0, t0)

{
Ψ1[t | S1(τ), τ ] − Ψ2[t | S1(τ), τ ]

}
+g2(τ | x0, t0)

{
Ψ1[t | S2(τ), τ ] − Ψ2[t | S2(τ), τ ]

}]
dτ.(2.13)

Integrating both sides of (2.13) with respect to t in (t0, b), making use of (1.6) and (2.12)
and recalling that

lim
t→t0

F [S1(t), t|x0, t0] = 0, lim
t→t0

F [S2(t), t|x0, t0] = 1,

lim
t→τ

F [S1(t), t|S1(τ), τ ] =
1
2
, lim

t→τ
F [S2(t), t|S1(τ), τ ] = 1,

lim
t→τ

F [S1(t), t|S2(τ), τ ] = 0, lim
t→τ

F [S2(t), t|S2(τ), τ ] =
1
2
,

one has:∫ b

t0

g(t | x0, t0)dt = 1 − lim
t→b

(
F [S2(t), t | x0, t0] − F [S1(t), t | x0, t0]

)
−

∫ b

t0

dτg1(τ | x0, t0)
{

lim
t→b

(
F [S1(t), t | S1(τ), τ ] − F [S2(t), t | S1(τ), τ ]

)}
−

∫ b

t0

dτg2(τ | x0, t0)
{

lim
t→b

(
F [S1(t), t | S2(τ), τ ] − F [S2(t), t | S2(τ), τ ]

)}
.(2.14)

Since X(t) is G-M, recalling the first of (2.9) one obtains:

lim
t→b

F [S1(t), t | x0, t0] = lim
t→b

F [S1(t), t | S1(τ), τ ] = lim
t→b

F [S1(t), t | S2(τ), τ ] = A

lim
t→b

F [S2(t), t | x0, t0] = lim
t→b

F [S2(t), t | S1(τ), τ ] = lim
t→b

F [S2(t), t | S2(τ), τ ] = B.

Hence, (2.14) leads to

(1 −B +A)
∫ b

t0

g(t | x0, t0) dt = (1 −B +A).

Making use of the second of (2.9) one has B −A �= 1, so that (2.10) follows.

3 Reduction to a single integral equation
Under suitable assumptions on the boundaries of the G-M process, the determination of the
first-exit time g(t | x0, t0) can be reduced to the solution of a single non-singular Volterra
integral equation in place of the system (2.1).
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Theorem 3.1 Under the assumptions of Theorem 2.1, if S1(t) and S2(t) are such that

S1(t) + S2(t) = 2m(t) + 2 c h2(t), (c ∈ R),(3.1)

for all t ∈ T , then

g(t | x0, t0) = 2
[
Ψ1(t | x0, t0) − Ψ2(t | x0, t0)

]
(3.2)

−2
∫ t

t0

g(τ | x0, t0)
{
Ψ1[t | S1(τ), τ ] − Ψ2[t | S1(τ), τ ]

}
dτ.

Proof. Due to the G-M nature of X(t), if (3.1) holds for all t ∈ T , one obtains:

f
[
S1(t), t | S1(τ), τ

]
= f

[
S2(t), t | S2(τ), τ

]
(t, τ ∈ T ; τ < t)(3.3)

f
[
S1(t), t | S2(τ), τ

]
= f

[
S2(t), t | S1(τ), τ

]
.

Furthermore, making use of (3.1) and (3.3), from (2.2) it follows that:

Ψ1

[
t | S1(τ), τ

]
= −Ψ2

[
t | S2(τ), τ

]
,

(t, τ ∈ T ; τ < t)(3.4)
Ψ1

[
t | S2(τ), τ

]
= −Ψ2

[
t | S1(τ), τ

]
,

so that the following identity holds:

Ψ1[t | S1(τ), τ ] − Ψ2[t | S1(τ), τ ] = Ψ1[t | S2(τ), τ ] − Ψ2[t | S2(τ), τ ].(3.5)

Eq. (3.2) then follows from (2.13) by virtue of (2.8) and (3.5).

If (3.1) holds, under suitable assumption on the initial state the determination of g1(t |
x0, t0) and g2(t | x0, t0) can be obtained via the solution of a single non-singular Volterra
integral equation.

Theorem 3.2 Under the assumptions of Theorem 2.1, if S1(t) and S2(t) are such that
(3.1) holds for all t ∈ T , and if the pair (x0, t0) is such that

x0 = m(t0) + c h2(t0), (c ∈ R),(3.6)

then

g1(t | x0, t0) = g2(t | x0, t0).(3.7)

Proof. ¿From (2.1) one has:

g1(t | x0, t0) − g2(t | x0, t0) = 2
[
Ψ1(t | x0, t0) + Ψ2(t | x0, t0)

]
−2

∫ t

t0

[
g1(τ | x0, t0)

{
Ψ1[t | S1(τ), τ ] + Ψ2[t | S1(τ), τ ]

}
+g2(τ | x0, t0)

{
Ψ1[t | S2(τ), τ ] + Ψ2[t | S2(τ), τ ]

}]
dτ.(3.8)
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Making use of (3.1) and (3.6), for S1(t0) < x0 < S2(t0) one obtains f
[
S1(t), t | x0, t0

]
=

f
[
S2(t), t | x0, t0

]
, so that

Ψ1

(
t | x0, t0

)
= −Ψ2

(
t | x0, t0

)
.(3.9)

Recalling (3.1) and making use of (3.9), Eq. (3.8) can be written as follows:

g1(t | x0, t0) − g2(t | x0, t0) = −2
∫ t

t0

[
g1(τ | x0, t0) − g2(τ | x0, t0)

]
×

[
Ψ1[t | S1(τ), τ ] + Ψ2[t | S1(τ), τ ]

]
dτ,

that admits only of the trivial solution (cf., for instance, Tricomi [15]). Hence (3.7) holds.

An immediate consequence of Theorem 3.2 is that

g(t | x0, t0) ≡ 2 g1(t | x0, t0) ≡ 2 g2(t | x0, t0)

satisfies the single integral equation (3.2).
We stress that in general the determination of the FPT pdf’s for the case of two bound-

aries requires the solution of the system of integral equations (2.1). However, under the
assumptions of the Theorems 3.1 and 3.2 the problem is greatly simplified since the system
of integral equations reduces to a single non-singular Volterra integral equation. This is
also a noteworthy simplification for computation purposes since in this case the numerical
method of [7] can be implemented.

4 Closed-form results
In this section we shall make use of symmetry properties of the G-M process X(t) to obtain
a family of suitable boundaries and initial state for which the transition densities in the
presence of two boundaries and the first-exit time pdf are obtained in closed-form.

We start remarking that the transition pdf of a G-M process characterized by conditional
mean and variance (1.3) possesses the following symmetry properties:

f(x, t | x0, t0) =
φ(x, t)
φ(x0, t0)

f [ψ(x, t), t | ψ(x0, t0), t0](4.1)

and

φ(x, t) f [ψ(x, t), t | x0, t0] = f(x, t | x0, t0) exp
{
− 2 [x− z(t)] [x0 − z(t0)]
h1(t)h2(t0) − h1(t0)h2(t)

}
,(4.2)

where

ψ(x, t) = 2 z(t)− x

φ(x, t) = exp
{
− 2 d1 [x− z(t)]

h2(t)

}
(4.3)

z(t) = m(t) + d1 h1(t) + d2 h2(t),

with d1, d2 ∈ R. Using the terminology of [6], z(t) will be called a “symmetry curve”, and
ψ(x, t) and φ(x, t) the corresponding “symmetry functions”.

The following theorem shows the existence of a closed form relation of the transition
density in the presence of two suitable boundaries in terms of the free transition pdf.
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Theorem 4.1 Under the assumptions of Theorem 2.1, let S1(t) and S2(t) be such that

S1(t) = m(t) + b h1(t) + c1 h2(t), S2(t) = m(t) + b h1(t) + c2 h2(t),(4.4)

with S1(t) < S2(t) for all t ∈ T , and let the pair (x0, t0) satisfy

x0 = m(t0) + b h1(t0) + c h2(t0),(4.5)

with b, c, c1, c2 ∈ R and S1(t0) < x0 < S2(t0). The transition pdf β(x, t | x0, t0), in the
presence of the absorbing boundaries (4.4) with the initial state x0 such that (4.5) holds, is
then:

β(x, t | x0, t0) = f(x, t | x0, t0)
+∞∑

n=−∞

[
exp

{
− 2 [x− un(t)] [x0 − un(t0)]
h1(t)h2(t0) − h1(t0)h2(t)

}
− exp

{
− 2 [x− vn(t)] [x0 − vn(t0)]
h1(t)h2(t0) − h1(t0)h2(t)

}]
,(4.6)

where for all t ∈ T and n = 0,±1,±2, . . . we have set:

un(t) = m(t) + b h1(t) + [c+ n (c2 − c1)]h2(t),
(4.7)

vn(t) = m(t) + b h1(t) + [c2 − n (c2 − c1)]h2(t).

Proof. Note that (4.7) are symmetry curves. Denote by ψ1,n(x, t) and φ1,n(x, t) the
symmetry functions associated to un(t) (n = 0,±1,±2, . . . ) and by ψ2,n(x, t) and φ2,n(x, t)
the symmetry functions associated to vn(t) (n = 0,±1,±2, . . . ). From (4.3) one obtains:

ψ1,n(x, t) = 2 un(t) − x, φ1,n(x, t) = exp
{
− 2 b [x− un(t)]

h2(t)

}
,

(4.8)

ψ2,n(x, t) = 2 vn(t) − x, φ2,n(x, t) = exp
{
− 2 b [x− vn(t)]

h2(t)

}
,

so that, by virtue of (4.2), Eq. (4.6) can be also written as:

β(x, t | x0, t0) =
+∞∑

n=−∞

{
φ1,n(x, t) f [ψ1,n(x, t), t | x0, t0]

−φ2,n(x, t) f [ψ2,n(x, t), t | x0, t0]
}
.(4.9)

We now remark that the series in (4.6) and (4.9) are absolutely convergent and term by term
differentiable. Because of (4.1), from (4.9) β(x, t | x0, t0) is seen to satisfy the Fokker-Planck
equation

∂β(x, t|x0, t0)
∂t

= − ∂

∂x

[
A1(x, t)β(x, t|x0, t0)

]
+

1
2
∂2

∂x2

[
A2(t)β(x, t|x0, t0)

]
,(4.10)

with A1(x, t) and A2(t) given by

A1(x, t) = m′(t) + [x−m(t)]
h′2(t)
h2(t)

, A2(t) = h2
2(t) r

′(t).(4.11)
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Furthermore, by virtue of (4.1) and (4.5), it follows that

lim
t↓t0

φ1,n(x, t) f [ψ1,n(x, t), t | x0, t0] =

⎧⎨⎩
δ(x− x0), n = 0

0, n = ±1,±2, . . .
(4.12)

lim
t↓t0

φ2,n(x, t) f [ψ2,n(x, t), t | x0, t0] = 0, n = ±1,±2, . . . ,

so that the right-hand side of (4.9) is immediately seen to satisfy the initial delta-condition:

lim
t↓t0

β(x, t|x0, t0) = δ(x− x0).(4.13)

Finally, use of (4.6) shows that the absorbing conditions on the boundaries are satisfied, i.e.

β[S1(t), t | x0, t0] = β[S2(t), t | x0, t0] = 0.(4.14)

In the following theorem we obtain in closed form the first-exit time pdf g(t | x0, t0)
through the boundaries (4.4) with the initial state x0 such that (4.5) holds.

Theorem 4.2 Under the assumptions of Theorem 4.1, there holds:

g(t | x0, t0) =
h2(t)

r(t) − r(t0)
dr(t)
dt

+∞∑
n=−∞

exp
{
−2n2 (c2 − c1)2

r(t) − r(t0)

}
×

{[
c− c1 + 2n (c2 − c1)

]
exp

{
−2n (c2 − c1) (c− c1)

r(t) − r(t0)

}
f [S1(t), t | x0, t0]

+
[
c2 − c− 2n (c2 − c1)

]
exp

{
2n (c2 − c1) (c2 − c)

r(t) − r(t0)

}
f [S2(t), t | x0, t0]

}
,

(4.15)

where r(t) is defined in (1.2).

Proof. Recalling (1.8) and making use of (4.10) and (4.14), one has:

g(t | x0, t0) = − ∂

∂t

∫ S2(t)

S1(t)

β(x, t | x0, t0) dx

=
A2(t)

2

{
∂

∂x
β(x, t | x0, t0)

∣∣∣
x=S1(t)

− ∂

∂x
β(x, t | x0, t0)

∣∣∣
x=S2(t)

}
.(4.16)

Making use of (4.6) and recalling (4.4), (4.5) and (4.7), from (4.16) one easily obtains (4.15).

Setting b = 0 and c1 + c2 = 2 c in (4.4) and (4.5), we note that assumptions (3.1) and
(3.6) of Theorem 3.2 are satisfied, so that (4.15) is solution of the single integral equation
(3.2) and g1(t | x0, t0) = g2(t | x0, t0) = g(t | x0, t0)/2.

Theorems 4.1 and 4.2 require an infinite superposition of symmetry curves. In the
remaining part of this Section, by making use of two symmetry curves, we obtain simple
closed form solutions for the transition densities in the presence of suitable boundaries and
for the corresponding first-exit time pdf.
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Theorem 4.3 For all t ≥ t0 and t, t0 ∈ T , we set

u(t) = m(t) + b1 h1(t) + c1 h2(t),
(4.17)

v(t) = m(t) + (2 b− b1)h1(t) + (2 c− c1)h2(t),

with b, c, b1, c1 ∈ R and u(t) < v(t), and denote

∆(t; t0) = 1 − 4α1 α2 exp
{
− [v(t) − u(t)] [v(t0) − u(t0)]
h1(t)h2(t0) − h1(t0)h2(t)

}
,(4.18)

with α1 > 0, α2 > 0 and lim
t→sup T

∆(t; t0) > 0. Under the assumptions of Theorem 2.1, the

transition pdf β(x, t | x0, t0) in the presence of the pair of absorbing boundaries

S1(t; t0) = u(t) − h1(t)h2(t0) − h1(t0)h2(t)
v(t0) − u(t0)

ln
[
1 +

√
∆(t; t0)

2α1

]
,

(4.19)

S2(t; t0) = v(t) +
h1(t)h2(t0) − h1(t0)h2(t)

v(t0) − u(t0)
ln

[
1 +

√
∆(t; t0)

2α2

]
,

with the initial state x0 such that (4.5) holds, is

β(x, t | x0, t0) = f(x, t | x0, t0)
[
1 − α1 exp

{
− 2 [x− u(t)] [x0 − u(t0)]
h1(t)h2(t0) − h1(t0)h2(t)

}
−α2 exp

{
− 2 [x− v(t)] [x0 − v(t0)]
h1(t)h2(t0) − h1(t0)h2(t)

}]
.(4.20)

Proof. For the symmetry curves (4.17) we denote by ψ1(x, t) and φ1(x, t) the symme-
try functions corresponding to u(t) and by ψ2(x, t) and φ2(x, t) the symmetry functions
corresponding to v(t). From (4.3) one obtains:

ψ1(x, t) = 2 u(t) − x, φ1(x, t) = exp
{
− 2 b1 [x− u(t)]

h2(t)

}
,

(4.21)

ψ2(x, t) = 2 v(t) − x, φ2(x, t) = exp
{
− 2 (2 b− b1) [x− v(t)]

h2(t)

}
,

so that, by virtue of (4.2), Eq. (4.20) can be written as:

β(x, t | x0, t0) = f(x, t | x0, t0) − α1 φ1(x, t) f [ψ1(x, t), t | x0, t0]
−α2 φ2(x, t) f [ψ2(x, t), t | x0, t0].(4.22)

Recalling (4.1), we note that the right-hand-side of (4.22) satisfies the Fokker-Planck equa-
tion (4.10). Furthermore, by virtue of (4.1) and (4.5), from (4.22) one sees that the initial
delta-condition (4.13) is satisfied. Finally, from (4.20) one obtains:

β(x, t | x0, t0) = −α1 f(x, t | x0, t0) exp
{

2 [x− u(t)] [x0 − u(t0)]
h1(t)h2(t0) − h1(t0)h2(t)

}
×

[
exp

{
− 2 [x− u(t)] [x0 − u(t0)]
h1(t)h2(t0) − h1(t0)h2(t)

}
− 1 −

√
∆(t; t0)

2α1

]
×

[
exp

{
− 2 [x− u(t)] [x0 − u(t0)]
h1(t)h2(t0) − h1(t0)h2(t)

}
− 1 +

√
∆(t; t0)

2α1

]
,(4.23)
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with ∆(t; t0) defined in (4.18). Hence, the right-hand-side of (4.23) is identically zero at x =
Si(t; t0) (i = 1, 2) and non negative for all x ∈ (S1(t; t0), S2(t; t0)) and x0 ∈

(
u(t0), v(t0)

)
.

This completes the proof.

The following theorem shows the existence of a simple closed-form relation of the first-
exit time pdf g(t | x0, t0) through the boundaries (4.19) and the initial state x0 such that
(4.5) holds, in terms of the free transition pdf.

Theorem 4.4 Under the assumptions of Theorem 4.3, one has:

g(t | x0, t0) =
v(t0) − u(t0)
2 [r(t) − r(t0)]

h2(t)
h2(t0)

dr(t)
dt

√
∆(t; t0)

×
{
f [S1(t; t0), t | x0, t0] + f [S2(t; t0), t | x0, t0]

}
,(4.24)

where u(t), v(t) and ∆(t; t0) are defined in (4.17) and (4.18), respectively.

Proof. The proof goes along the lines indicated in Theorem 4.2

The closed form expression (4.24) provides a tool to test the accuracy of numerical
solutions of the system of integral equations (2.1).

5 Double-sided FPT densities
In this Section we shall focus on the up-down double sided (DS) FPT problem. By this
terminology, we indicate the first-exit time problem from the strip

(
S1(t), S2(t)

)
for the

subset of sample paths of the G-M process X(t) that originates at time t0 ∈ T at a state
X0, that is a random variable bounded from below by limt↓t0 S1(t) and from above by
limt↓t0 S2(t).

If −∞ < S1(t0) = limt↓t0 S1(t) < limt↓t0 S2(t) = S2(t0) < +∞, let

γε1,ε2(x0, t0) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
f(x0, t0)∫ S2(t0)−ε2

S1(t0)+ε1

f(z, t0) dz

, S1(t0) + ε1 < x0 < S2(t0) − ε2

0, elsewhere,

(5.1)

be the pdf ofX0, where ε1 and ε2 are positive real numbers such that S2(t0)−S1(t0) > ε1+ε2
and where f(x0, t0) denotes the pdf of X(t0). Hence,∫ S2(t0)−ε2

S1(t0)+ε1

f(z, t0) dz =
1
2

{
Erf

[
S2(t0) − ε2 −m(t0)√

2 h1(t0)h2(t0)

]
− Erf

[
S1(t0) + ε1 −m(t0)√

2 h1(t0)h2(t0)

]}
.

(5.2)

For all t ≥ t0, t, t0 ∈ T , we are thus led to define the following random variables:

T (1)
X0

= inf
t≥t0

{
t : X(t) < S1(t); X(ϑ) < S2(ϑ),∀ϑ ∈ (t0, t)

}
(down FPT),

T (2)
X0

= inf
t≥t0

{
t : X(t) > S2(t); X(ϑ) > S1(ϑ),∀ϑ ∈ (t0, t)

}
(up FPT),(5.3)

TX0 = inf
t≥t0

{
t : X(t) �∈

(
S1(t), S2(t)

)}
, (up-down first-exit time),
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with

P
(
T (1)

X0
< t

)
=

∫ S2(t0)−ε2

S1(t0)+ε1

P
(
T (1)

x0
< t

)
γε1,ε2(x0, t0) dx0,

P
(
T (2)

X0
< t

)
=

∫ S2(t0)−ε2

S1(t0)+ε1

P
(
T (2)

x0
< t

)
γε1,ε2(x0, t0) dx0,(5.4)

P
(
TX0 < t

)
=

∫ S2(t0)−ε2

S1(t0)+ε1

P
(
Tx0 < t

)
γε1,ε2(x0, t0) dx0.

Hence, from (5.4) one has P
(
TX0 < t

)
= P

(
T (1)

X0
< t

)
+ P

(
T (2)

X0
< t

)
.

The inferior FPT density g(1)
ε1,ε2(t | t0) := ∂P

(
T (1)

X0
< t

)
/∂t is related to the conditioned

FPT density g1(t | x0, t0) as follows:

g(1)
ε1,ε2

(t | t0) =
∫ S2(t0)−ε2

S1(t0)+ε1

g1(t | x0, t0) γε1,ε2(x0, t0) dx0,(5.5)

whereas the superior FPT density g(2)
ε1,ε2(t | t0) := ∂P

(
T (2)

X0
< t

)
/∂t and to the conditioned

FPT density g2(t | x0, t0) are mutually related as follows:

g(2)
ε1,ε2

(t | t0) =
∫ S2(t0)−ε2

S1(t0)+ε1

g2(t | x0, t0) γε1,ε2(x0, t0) dx0.(5.6)

Furthermore, the DS first-exit time density gε1,ε2(t | t0) := ∂P
(
TX0 < t

)
/∂t is related to

the conditioned first-exit time density g(t | x0, t0) as follows:

gε1,ε2(t | t0) =
∫ S2(t0)−ε2

S1(t0)+ε1

g(t | x0, t0) γε1,ε2(x0, t0) dx0 ≡ g(1)
ε1,ε2

(t | t0) + g(2)
ε1,ε2

(t | t0).(5.7)

Theorem 5.1 Let T = [a, b] and t0 ∈ T . Then, there holds P
(
TX0 < b

)
= 1 for all positive

real numbers ε1, ε2 such that S2(t0)− S1(t0) > ε1 + ε2 if and only if P
(
Tx0 < b

)
= 1 for all

x0 ∈
(
S1(t0), S2(t0)

)
.

Proof. By taking the limit as t ↑ b in the last of (5.4), we obtain:

P
(
TX0 < b

)
=

∫ S2(t0)−ε2

S1(t0)+ε1

P
(
Tx0 < b

)
γε1,ε2(x0, t0) dx0.(5.8)

Hence, the necessary part immediately follows from (5.8) and from the hypothesis P
(
Tx0 <

b
)

= 1 for all x0 ∈
(
S1(t0), S2(t0)

)
. To prove the sufficient part, we note that, if P

(
TX0 <

b
)

= 1 for fixed positive ε1, ε2 such that S2(t0) − S1(t0) > ε1 + ε2, then (5.8) is equivalent
to ∫ S2(t0)−ε2

S1(t0)+ε1

[
1 − P

(
Tx0 < b

)]
γε1,ε2(x0, t0) dx0 = 0.(5.9)

Since γε1,ε2(x0, t0) > 0 and 1 − P
(
Tx0 < b

)
≥ 0 for all x0 ∈

(
S1(t0) + ε1, S2(t0) − ε2

)
,

it follows that P
(
Tx0 < b

)
= 1 for all x0 ∈

(
S1(t0) + ε1, S2(t0) − ε2

)
. Hence, due to the

arbitrariness of ε1 and ε2, one has P
(
Tx0 < b

)
= 1 for all x0 ∈

(
S1(t0), S2(t0)

)
.
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The following theorem provides the basis for a numerical method to evaluate the DS
first-exit time density gε1,ε2(t | t0).

Theorem 5.2 Let S1(t), S2(t), m(t), h1(t), h2(t) be C1(T ) functions, with S1(t) < S2(t),
∀t ∈ T . Then, g(1)

ε1,ε2(t | t0) and g
(2)
ε1,ε2(t | t0) satisfy the following non-singular integral

equations:

g(1)
ε1,ε2

(t | t0) = 2 Ψ(1)
ε1,ε2

(t | t0)

−2
∫ t

t0

{
g(1)

ε1,ε2
(τ | t0)Ψ1[t | S1(τ), τ ] + g(2)

ε1,ε2
(τ | t0)Ψ1[t | S2(τ), τ ]

}
dτ,

(5.10)
g(2)

ε1,ε2
(t | t0) = −2 Ψ(2)

ε1,ε2
(t | t0)

+2
∫ t

t0

{
g(1)

ε1,ε2
(τ | t0)Ψ2[t | S1(τ), τ ] + g(2)

ε1,ε2
(τ | t0)Ψ2[t | S2(τ), τ ]

}
dτ,

where Ψ1 and Ψ2 are defined in (2.2) and

Ψ(j)
ε1,ε2

(t | t0) =
{

Erf
[
S2(t0) − ε2 −m(t0)√

2 h1(t0)h2(t0)

]
− Erf

[
S1(t0) + ε1 −m(t0)√

2 h1(t0)h2(t0)

]}−1

×
[
h1(t0)
h1(t)

[
h′2(t)h1(t) − h2(t)h′1(t)

] {
f [Sj(t), t | S2(t0) − ε2, t0] f [S2(t0) − ε2, t0]

−f [Sj(t), t | S1(t0) + ε1, t0] f [S1(t0) + ε1, t0]
}

+
1
2
f [Sj(t), t]

×
{
S′

j(t) −m′(t) − h′1(t)
h1(t)

[Sj(t) −m(t)]
} {

Erf[ϕj,2(t, t0)] − Erf[ϕj,1(t, t0)]
}]
,

(j = 1, 2)(5.11)

with

ϕj,k(t | t0) =

√
h1(t)

2 h1 (t0)
[
h1(t)h2(t0) − h1(t0)h2(t)

]
×

{
Sk(t0) − (−1)kεk −m(t0) − [Sj(t) −m(t)]

h1(t0)
h1(t)

}
(j, k = 1, 2).(5.12)

Proof. We multiply both sides of equations (2.1) by γε1,ε2(x0, t0) and then integrate with
respect to x0 between S1(t0)+ε1 and S2(t0)−ε2. Equations (5.11) then follow after making
use of (5.5) and (5.6) and after setting

Ψ(j)
ε1,ε2

(t | t0) =
∫ S2(t0)−ε2

S1(t0)+ε1

Ψj [t | x0, t0] γε1,ε2(x0, t0) dx0 (j = 1, 2).(5.13)

Finally, (5.11) follows from (5.13) by making use of (2.2) and (5.1) and after proving that∫ S2(t0)−ε2

S1(t0)+ε1

Ψj[t | x0, t0] f(x0, t0) dx0

=
1
2

{
S′

j(t) −m′(t) − [Sj(t) −m(t)]
h′1(t)h2(t0) − h′2(t)h1(t0)
h1(t)h2(t0) − h2(t)h1(t0)

}
Aj(t | t0)

−1
2

h′2(t)h1(t) − h2(t)h′1(t)
h1(t)h2(t0) − h2(t)h1(t0)

Bj(t | t0)
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with

Aj(t | t0) =
∫ S2(t0)−ε2

S1(t0)+ε1

f [Sj(t), t | x0, t0] f(x0, t0) dx0

=
1
2
f [Sj(t), t]

{
Erf[ϕj,2(t, t0)] − Erf[ϕj,1(t, t0)]

}
(j = 1, 2)

Bj(t | t0) =
∫ S2(t0)−ε2

S1(t0)+ε1

[x0 −m(t0)] f [Sj(t), t | x0, t0] f(x0, t0) dx0

=
1
2
f [Sj(t), t]

h1(t0)
h1(t)

[Sj(t) −m(t)]
{

Erf[ϕj,2(t, t0)] − Erf[ϕj,1(t, t0)]
}

−h1(t0) [h1(t)h2(t0) − h2(t)h1(t0)]
h1(t)

{
f [Sj(t), t | S2(t0) − ε2, t0]

×f [S2(t0) − ε2, t0] − f [Sj(t), t | S1(t0) + ε1, t0] f [S1(t0) + ε1, t0]
}

(j = 1, 2).

This completes the proof.

Theorem 5.3 Under the assumption of Theorem 5.1, if S1(t) and S2(t) are such that (3.1)
holds for all t ∈ T , then

gε1,ε2(t | t0) = 2
[
Ψ(1)

ε1,ε2
(t | t0) − Ψ(2)

ε1,ε2
(t | t0)

]
−2

∫ t

t0

gε1,ε2(τ | t0)
{
Ψ1[t | S1(τ), τ ] − Ψ2[t | S2(τ), τ ]

}
dτ.(5.14)

Proof. Since relation (3.1) of Theorem 3.1 holds, one is immediately led to Eq. (5.14)
after multiplying both sides of (3.2) by γε1,ε2(x0, t0) and then integrating with respect to
x0 between S1(t0) + ε1 and S2(t0) − ε2.

6 A Computational Method
In this Section we shall describe a straightforward numerical procedure to evaluate g1, g2
and g and to estimate the related computational errors, by solving the system of integral
equations (2.1) via an algorithm based on the repeated Simpson rule (cf. [5] and [10]).

For the sake of conciseness, in the sequel the following short-hand notation will be
employed:

gi(t) := gi(t | x0, t0) (i = 1, 2), g(t) := g1(t) + g2(t) (t0 < t)
Ψi(t) := Ψi(t | x0, t0) (i = 1, 2) (t0 < t)
Ψij(t | τ) := Ψi[t | Sj(τ), τ ] (i, j = 1, 2) (t0 < τ ≤ t),

so that system (2.1) can be written as:

g1(t) = 2 Ψ1(t) − 2
∫ t

t0

[
g1(τ)Ψ11(t | τ) + g2(τ)Ψ12(t | τ)

]
dτ

(6.1)

g2(t) = −2Ψ2(t) + 2
∫ t

t0

[
g1(τ)Ψ21(t | τ) + g2(τ)Ψ22(t | τ)

]
dτ.
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Denoting by p > 0 the discretization step, setting t = t0 + k p (k = 1, 2, . . . ) and making
use of the repeated Simpson rule, for the system (6.1) we obtain the following approximate
solutions g̃1, g̃2 to g1, g2, respectively:

g̃1(t0 + p) = 2 Ψ1(t0 + p),

g̃1(t0 + kp) = 2Ψ1(t0 + kp) − 2 p
k−1∑
j=1

wk,j

[
g̃1(t0 + jp)Ψ11(t0 + kp | t0 + jp)

+g̃2(t0 + jp)Ψ12(t0 + kp | t0 + jp)
]

(k = 2, 3, . . . )

(6.2)
g̃2(t0 + p) = −2 Ψ2(t0 + p)

g̃2(t0 + kp) = −2Ψ2(t0 + kp) + 2 p
k−1∑
j=1

wk,j

[
g̃1(t0 + jp)Ψ21(t0 + kp | t0 + jp)

+g̃2(t0 + jp)Ψ22(t0 + kp | t0 + jp)
]

(k = 2, 3, . . . )

where the weights wk,j are specified as follows:

w2n,2j−1 =
4
3

(j = 1, 2, . . . , n; n = 1, 2, . . . ),

w2n,2j =
2
3

(j = 1, 2, . . . , n− 1; n = 2, 3, . . . ),

w2n+1,2j−1 =
4
3

(j = 1, 2, . . . , n− 1; n = 2, 3, . . . ),(6.3)

w2n+1,2j =
2
3

(j = 1, 2, . . . , n− 2; n = 3, 4, . . . ),

w2n+1,2(n−1) =
17
24

(n = 2, 3, . . . ),

w2n+1,2n−1 = w2n+1,2n =
9
8

(n = 1, 2, . . . ).

The sum g̃1 + g̃2 then provides an evaluation of g. We emphasize that the above outlined
algorithm is an extension to the case of two boundaries of the algorithm proposed in [7] for
the single boundary case.

The convergence of the above computational method is expressed by the following

Theorem 6.1 Let p be the discretization step, tm = t0 +N p, with N = 0, 1, . . . , and set

∆(1)
kp := g1(t0 + k p) − g̃1(t0 + k p) (k = 1, 2, . . . , N),

(6.4)

∆(2)
kp := g2(t0 + k p) − g̃2(t0 + k p) (k = 1, 2, . . . , N),

and

| ∆kp |:=| ∆(1)
kp | + | ∆(2)

kp | (k = 1, 2, . . . , N)(6.5)

Then,

lim
p→0

| ∆kp |= 0 (k = 1, 2, . . . , N)(6.6)

for all fixed kp.
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Proof. For brevity, we limit ourselves to mentioning that the proof is a suitable variant of
the proof of Theorem 4.1 of Di Nardo et al. [7], where a single Volterra integral equation of
second kind was taken into account. The proof consists of showing that the absolute error
|∆kp| is bounded from above as follows:

|∆kp| ≤ 2Np e8 M k p/3
{
ω
[
(ψ11g1 + ψ12g2)kp , 2 p/3

]
+ ω

[
(ψ21g1 + ψ22g2)kp , 2 p/3

]}
(6.7)

where
M = M1 +M2

with
Mj = max

t0≤τ≤t≤tm

{∣∣Ψj1(t | τ)
∣∣, ∣∣Ψj2(t | τ)

∣∣} (j = 1, 2)

and

ω
[
(ψj1 g1 + ψj2 g2)kp , 2 p/3

]
≡

sup
τ1,τ2∈[t0,t0+kp]
|τ1−τ2|<2 p/3

∣∣∣g1(τ1)Ψj1(t0 + kp | τ1) + g2(τ1)Ψj2(t0 + kp | τ1)

−g1(τ2)Ψj1(t0 + kp | τ2) − g2(τ2)Ψj2(t0 + kp | τ2)
)∣∣∣, (j = 1, 2)

is the continuity modulus of ψj1 g1 + ψj2 g2 (j = 1, 2) in [t0, t0 + kp]. Since the continuity
modulus tends to 0 as p → 0, (6.6) follows. Hence, the convergence of the computational
procedure is insured.

A noteworthy feature of the above algorithm is its being implementable after specifying
the initial data t0, x0, the functions m(t), h1(t), h2(t) that characterize the process, the
boundaries S1(t), S2(t) and the discretization step p. Furthermore, it does not involve any
heavy computation, neither requires use of any library subroutines, Monte Carlo methods
or other special software packages.

Since (5.10) possesses the same kernel as the equations of systems (2.1), the numerical
iterative procedure (6.2) is again applicable. Hence, if limt↓t0 S1(t) and limt↓t0 S2(t) are
finite, the approximations g̃(1)

ε1,ε2 , g̃
(2)
ε1,ε2 of g(1)

ε1,ε2 , g
(2)
ε1,ε2 are obtained via (6.2) changing Ψj

and g̃j (j = 1, 2) with Ψ(j)
ε1,ε2 and g̃(j)

ε1,ε2 (j = 1, 2), respectively.
The following examples show the effectiveness of the proposed numerical procedure.

(a) Let {X(t), t ∈ R} be the G-M process with m(t) = t/2 and covariance c(s, t) = s
(0 ≤ s ≤ t), so that h1(t) = t and h2(t) = 1. We consider the FPT problem through
the constant boundaries S1(t) = −1 and S2(t) = 1 starting from zero at time 0. Figure 1
shows the computed FPT pdf’s g̃1(t|0, 0) (dash-dot line), g̃2(t|0, 0) (dashed line) and g̃(t|0, 0)
(solid line) obtained via (6.2) with the integration step 10−3. We note that in this case, by
choosing b = −1/2, c1 = −1, c2 = 1 and c = 0, the assumptions of Theorem 4.1 are satisfied,
so that the series expansion (4.15) of g(t|0, 0) holds. Table 1 shows the differences between
the computed FPT pdf’s g̃(t/0, 0) and ĝ(t/0, 0) obtained via (6.2) and (4.15), respectively.
In particular, the FPT g̃(t|0, 0) (column 2), the absolute error �a(t) = |g̃(t|0, 0) − ĝ(t|0, 0)|
(column 3), the relative error �r(t) = �a(t)/ĝ(t|0, 0) (column 4) and cumulative distribution
P̃ (t) are listed for various values of t. In the series expansion (4.15) only the terms for
n = 0,±1, · · · ,±10 have been considered.
(b) Let {X(t), t ∈ R} be the G-M process with m(t) = 0 and covariance c(s, t) = s
(0 ≤ s ≤ t), so that h1(t) = t and h2(t) = 1. As in example (a), we again consider the FPT
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t g̃(t) �a(t) �r(t) P̃ (t)

0.5 0.878567122E+00 2.2146829e-010 2.5207896e-010 0.340844516E+00
1.0 0.455136220E+00 3.3499625e-010 7.3603514e-010 0.664975202E+00
2.0 0.116985662E+00 3.1024069e-010 2.6519549e-009 0.913898849E+00
3.0 0.300646734E-01 1.4482082e-011 4.8169764e-010 0.977872477E+00
4.0 0.772645605E-02 1.7433615e-012 2.2563534e-010 0.994313348E+00
5.0 0.198565680E-02 9.3917452e-013 4.7297928e-010 0.998538562E+00
6.0 0.510302899E-03 1.8841363e-013 3.6921920e-010 0.999624418E+00
7.0 0.131145044E-03 3.2149752e-013 2.4514653e-009 0.999903478E+00
8.0 0.337035566E-04 8.1232493e-015 2.4102054e-010 0.999975194E+00
9.0 0.866162907E-05 1.8651411e-015 2.1533376e-010 0.999993625E+00
10.0 0.222599113E-05 1.6283018e-015 7.3149520e-010 0.999998362E+00

Table 1: For the same choices of Figure 1, the computed FPT pdf g̃(t/0, 0), the absolute error
�a(t), the relative error �r(t) and the cumulative distribution P̃ (t) are listed for various values of
t with the integration step 10−3.

t g̃(t) �a(t) �r(t) P̃ (t)

0.5 0.836733751E-01 2.5539210e-011 3.0522504e-010 0.947198042E-02
1.0 0.218211245E+00 1.1038917e-010 5.0588213e-010 0.920285474E-01
2.0 0.208776449E+00 9.7014091e-011 4.6467929e-010 0.317521533E+00
3.0 0.155920336E+00 4.2558593e-010 2.7295088e-009 0.499277339E+00
4.0 0.114334008E+00 4.5387809e-010 3.9697558e-009 0.633373742E+00
5.0 0.837108606E-01 4.8515900e-011 5.7956518e-010 0.731604527E+00
6.0 0.612818313E-01 1.9858941e-011 3.2405919e-010 0.803519040E+00
7.0 0.448618187E-01 4.7526059e-011 1.0593877e-009 0.856164788E+00
8.0 0.328413962E-01 3.3956879e-011 1.0339658e-009 0.894704474E+00
9.0 0.240417631E-01 4.2870027e-011 1.7831482e-009 0.922917708E+00
10.0 0.175999328E-01 4.3515212e-011 2.4724647e-009 0.943571395E+00

Table 2: For the same choices of Figure 3, the computed FPT pdf g̃(t/0, 0), the absolute error
�a(t), the relative error �r(t) and the cumulative distribution P̃ (t) are listed for various values of
t with the integration step 10−3.

problem through the constant boundaries S1(t) = −1 and S2(t) = 1 (cf. Figure 2). In this
case relations (3.1) and (3.6) hold, so that g1(t|0, 0) = g2(t|0, 0).

(c) Let {X(t), t ∈ R} be the G-M process with m(t) = t/3 and covariance c(s, t) = s
(0 ≤ s ≤ t), so that h1(t) = t and h2(t) = 1. We consider the FPT problem through the
linear boundaries S1(t) = t/4−2 and S2(t) = t/4+2 starting from zero initial state at time
0. Figure 3 shows the computed FPT pdf’s g̃1(t|0, 0) (dash-dot line), g̃2(t|0, 0) (dashed line)
and g̃(t|0, 0) (solid line) obtained via (6.2) with the integration step 10−3.

Note that in this case, by choosing b = −1/12, c1 = −2, c2 = 2 and c = 0, the
assumptions of Theorem 4.1 are satisfied, so that the series expansion (4.15) of g(t|0, 0)
holds. Table 2 shows the differences between the computed FPT pdf’s g̃(t/0, 0) and ĝ(t/0, 0)
obtained via (6.2) and (4.15), respectively. In the series expansion (4.15) we have considered
only the terms for n = 0,±1, · · · ,±10.

(d) Let {X(t), t ∈ R} be the G-M process with m(t) = 0 and covariance c(s, t) = s
(0 ≤ s ≤ t), so that h1(t) = t and h2(t) = 1. As in the case (c), we again consider the FPT
problem through the constant boundaries S1(t) = t/4−2 and S2(t) = t/4+2 (cf. Figure 4).
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Figure 1: Plot of g̃1(t|0, 0) (dash-dot line), g̃2(t|0, 0) (dashed line) and g̃(t|0, 0) (solid line) through
the boundaries S1(t) = −1 and S2(t) = 1 for the G-M process with m(t) = t/2 and c(s, t) = s.
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Figure 2: As in Figure 1 for the G-M process with m(t) = 0 and c(s, t) = s. The dashed line refers
to g̃1(t|0, 0) and g̃2(t|0, 0), whereas the solid line indicates g̃(t|0, 0).
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Figure 3: Plot of g̃1(t|0, 0) (dash-dot line), g̃2(t|0, 0) (dashed line) and g̃(t|0, 0) (solid line) through
the boundaries S1(t) = t/4 − 2 and S2(t) = t/4 + 2 for the G-M process with m(t) = t/3 and
c(s, t) = s.
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Figure 4: As in Figure 3 for the G-M process with m(t) = 0 and c(s, t) = s.
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