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Abstract. A model is given for the evolution of a heterogeneous population of iden-
tical living particles, divided into different classes. The model is dynamic, since the
partition of the population changes as the time goes on. The aim of this paper is to
determine the law of the lifetime of each particle given the number of dead particles up
to time t. This program is achieved by introducing the occupancy numbers, which are
defined as the cardinality of each class. Assuming that the partition is non-observable,
a filtering problem arises and the observation coincides with the cardinality of the class
of dead particles. A discussion is performed about discrete time approximations of the
filter.

1. Introduction.

For H positive integer, let H identical living particles be simultaneously in the same
environment and subjected to the same source of stress. At every time t ∈ IR+, the type
Zi(t) of any given particle, for 1 ≤ i ≤ H , is identified by an integer number between 0
and d, d ∈ IN . This means that the population is divided in d + 1 classes depending on the
different types.

The partition of the population is supposed to be dynamic, since the type of each particle,
which can be seen as the level of ”health” of any single particle, can change, while the time
goes on, depending on some kind of treatment used. Let the partition of the population be
non-observable. The observations is just the number of particles dead up to time t, namely
the number of particles having type equal to 0. The type 0 is absorbing, in the sense that
if a particle has level 0, it stays that way indefinitely.

This model is a generalization of that presented in [7] and [8]. The main difference relies
on the fact that there, the partition of the population does not change during the time and
the particles could only die. In [8], a family of exchangeable random variables Z1, . . . , ZH

were introduced in order to define the partition, setting Zi = k if and only if the particle
labeled by i belongs to the class characterized by the level k. The law of the lifetimes
given the variables Z1, . . . , ZH was given as a data and the lifetimes were assumed to be
independent, given the partition of the population. Then, an exchangeability property for
the lifetimes was proven, although they were supposed to be conditionally independent but
not conditionally identically distributed.

In [9], in order to preserve the property of the particles to be identical and to let the
partition to be dynamic, a suitable exchangeable assumption is made. This is a generaliza-
tion of the exchangeability property, for fixed t, assumed in [8]. Therefore, in [9], the family
of the lifetimes was proven to be an exchangeable sequence of random variables, when the
dynamics depend on the types of the particles belonging to the whole population.
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In this paper, the occupancy numbers, defined as the cardinalities of each class and
already introduced in [7] and [8], are considered. Assuming that the dynamics depend only
on the crowding of the classes, namely depends on the cardinality of the classes, a one-to-one
relation is stated between the law of the process Z and the law of the occupancy numbers
process. Another important consequence of the previous assumption, takes us to prove that
the occupancy numbers are a Markov process if and only if Z is a Markov process. The aim
is to provide the conditional law of the lifetimes given the observations. To this end, a first
step consists in finding the conditional law of the lifetimes given the occupancy numbers
process, then, a second step bring us to deal with a filtering problem to get the conditional
law of the occupancy numbers given the observations.

In order to solve a filtering problem, we recall that the filter satisfies a stochastic dif-
ferential equation known as the Kushner-Stratonovich equation. Therefore, to deduce the
properties of the filter from this equation, we need to find some kind of uniqueness. Weak
uniqueness could be obtained, as in [12] and [13], by using the filtering martingale prob-
lem approach. But, taking into account the peculiarity of this model, a stronger kind of
uniqueness can be reached, namely, path-wise uniqueness, [1].

Moreover, a hand-able representation for the filter is given by a linearized equation and
a Feynmann Kac’s formula. Then, a discrete time approximation is presented and the
convergence in the Skorohod topology is proven, following a method which is a modification
of that suggested in [11] and [4].

As a final remark, let us observe that this model applies to a population of living particles
as well as to study the failure times of a set of items under maintenance.

2. General setting.

For H positive integer, let PH be a finite sub-population of P , where P = {Uj}j≥1

is a finite or countable population and Uj are given identical particles. Each elements Uj

can be of d different types, labeled by the natural numbers 1, . . . , d, consequently, PH is
an heterogeneous population. The subset of all particles of type k, k = 1, . . . , d, at time
t ∈ IR+, is denoted by Ck(t). Since particles of any type can die, let C0(t) be the class of
the particles dead up to time t, thus, PH =

⋃
k=0,1,...,d Ck(t).

Let Z(t) = {Zi(t)}1≤i≤H , for t ∈ IR+, be defined assuming that Zi(t) = k if and only
if Ui ∈ Ck(t), for k = 0, 1, ..., d and for i = 1, . . . , H. Let Z be a stochastic process, then,
for t ∈ IR+, Zi(t) is a random variable taking value in {0, 1, . . . , d} and Z(t) takes value in
H = {0, 1, . . . , d}H . In [7] and [8], the partition of the population does not change with the
time. Instead of this, in order to have a dynamic model, as in [9], two conditions appear
very natural in this context.

Assumption 2.1 For i = 1, . . .H and for all time t ≥ s, Zi(s) = 0 =⇒ Zi(t) = 0 a.s..

Assumption 2.2 Choosing ti ∈ IR+, i = 1, . . . , n, with t1 ≤ . . . ≤ tn, for all β permutation
on {1, . . . , H} and for all k(1), . . . , k(n) ∈ H ,

P
(
Z(t1) = k(1), . . . , Z(tn) = k(n)

)
= P

(
Z(t1) = βk(1), . . . , Z(tn) = βk(n)

)
where k(i) = {k(i)

1 , . . . , k
(i)
H }, βk(i) = {k(i)

β1
, . . . , k

(i)
βH

}.
Assumption 2.1 describes the particular property of the class C0(t), particles can enter

in C0(t) but cannot go out of it. Assumption 2.2 is a generalization of the exchangeability
property given in [7] and [8] and it is, in some sense, an exchangeability property of the
trajectories. In particular, it implies that Z(t) = (Z1(t), . . . ZH(t)) is an exchangeable
sequence, for any fixed t ≥ 0.



CONDITIONAL LAW OF LIFETIMES ..... VIA FILTERING 917

Definition 2.3 Let Ti := inf{t ∈ IR+ : Zi(t) = 0} be the lifetime of Ui, for i = 1, . . .H.

We are going to prove, as in [7] and [8], that the lifetimes are a sequence of exchangeable
random variables. In our dynamic model the assumption of exchangeability of Z(t), for a
fixed t, is not enough. But a stronger kind of property is necessary and Assumption 2.2 is
the required tool together with Assumption 2.1. The proof of Theorem 2.4 below can be
found in [9], we just recall a sketch of it, for sake of completeness.

Theorem 2.4 Under Assumption 2.1 and Assumption 2.2, the sequence {Ti}i≥1 is a family
of exchangeable random variables.

Proof. In order to compute P (T1 ≤ t1, . . . , TH ≤ tH), ∀t1, . . . , tH ∈ IR+, without loss
of generality, let t1 ≤ . . . ≤ tH . If this is not the case, we can consider a permutation of
index such that: t1′ ≤ . . . ≤ tH′ and let us note that {T1 ≤ t1, . . . , TH ≤ tH} = {T1′ ≤
t1′ , . . . , TH′ ≤ tH′}. Therefore, recalling Assumption 2.1, ∀n = 1, . . . , H,

P (T1 ≤ t1, . . . , Tn ≤ tn) = P
(
Z1(t1) = 0, Z2(t2) = 0, . . . , Zn(tn) = 0

)
=

= P
(
Z1(t1) = 0, Z1(t2) = 0, . . . , Z1(tn) = 0

Z2(t2) = 0, . . . , Z2(tn) = 0
. . .

. . . , Zn(tn) = 0
)

=

=
∑

xi,j,2≤i≤H,1≤j≤i−1

P
(
Z(t1) = (0, x2,1, . . . , xn,1), Z(t2) = (0, 0, x3,2, . . . , xn,2), . . .

)
=

=
∑

xi,j,2≤i≤H,1≤j≤i−1

P
(
Z(t1) = π(0, x2,1, . . . , xn,1), Z(t2) = π(0, 0, x3,2, . . . , xn,2), . . .

)
=

= P
(
Zπ−1(1)(t1) = 0, Zπ−1(2)(t2) = 0, . . . , Zπ−1(n)(tn) = 0

)
=

= P (Tπ−1(1) ≤ t1, . . . , Tπ−1(n) ≤ tn)

The existence of a process Z, verifying Assumption 2.1 and Assumption 2.2, is obtained
in discrete time, t ∈ IN , by the Markov property. In fact, let µ(a, b), for a, b ∈ H , be a
transition probability family and let ν0 be a probability measure on H .

Assumption 2.5 Let us assume that both the following conditions hold
i) If there exists an index i such that ai = 0 and bi=/ 0 then µ(a, b) = 0.
ii) For a, b ∈ H and for each β, permutation of index, then µ(a, b) = µ(βa, βb).

Let Z(t), t ∈ IN , be the Markov chain with initial law ν0 and with transition probabilities
defined as P (Z(t) = b|Z(t − 1) = a) := µ(a, b), for t > 0 where a = (a1, . . . aH) and
b = (b1, . . . bH) ∈ H . Then, the existence of a process Z, in discrete time, follows from
Proposition 2.6 below, which can be proven by direct computations.

Proposition 2.6 If Assumption 2.5 holds and if Z(0) = Z1(0), . . . , ZH(0) is an exchange-
able sequence of random variables, then the process Z satisfies Assumption 2.1 and Assump-
tion 2.2.
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Proof. The thesis is achieved recalling that any subsequence of an exchangeable sequence
of random variables still is an exchangeable sequence of random variables and noting that,
for all β permutation on {1, . . . , H} and ∀n ≥ 1,

P (Z(0) = a0, Z(1) = a1, Z(2) = a2, . . . , Z(n) = an) =
= µ(a0, a1) · . . . · µ(an−1, an) · P (Z(0) = a0) =
= µ(β(a0), β(a1)) · . . . · µ(β(an−1), β(an)) · P (Z(0) = β(a0)) =
= P (Z(0) = β(a0), Z(1) = β(a1), Z(2) = β(a2), . . . , Z(n) = β(an)).

Remark 2.7 Let µ(m)(a, b) = P (Z(t + m) = b|Z(t) = a), ∀t, m ∈ IN . If the second
condition of Assumption 2.5 holds, then µ(m)(a, b) = µ(m)(β(a), β(b)).

In continuous time, t ∈ IR+, Z can be constructed as a continuous time Markov process
with generator given by

Lzf(z) = l(z)
∑

z′∈H
[f(z′) − f(z)] p(z, z′)(2.1)

where l(z) is a positive function and {p(z, z′)} is a family of transition probabilities.

Assumption 2.8 For any β, permutation of index on {1, . . . , H}, let l(z) = l(βz) and let
{p(z, z′)} be a family of transition probabilities verifying Assumption 2.5.

Since H is finite, there exist l, l ∈ IR+ such that 0 < l ≤ l(z) ≤ l, ∀z ∈ H. By
construction, the generator Lz, (2.1), is bounded. Then, [6], for all ν0, probability measure
on H, there exists a unique Markov process Z, with sample paths in DH [0, +∞) (the space
of right continuous H -valued functions on [0,∞) having left limits), initial condition ν0

and generator Lz. Furthermore, such a process verifies Assumption 2.2, whenever Z(0) is
an exchangeable sequence of random variables.

In order to clarify the previous claim, let us recall a particular realization of the process
Z, suggested in [6]. On a probability space (Ω,F , P ), let {Zn}n≥0 be a Markov chain
defined by ν0 and p(z, z′). Let {Vi}i≥1 be a sequence of random variables independent and
exponentially distributed with parameter 1 and independent of {Zn}n≥0 and let

τ0 = 0, τn =
n∑

i=1

Vi

l(Zi−1)
, for n > 0, Z(t) =

∑
n≥0

Zn1{τn≤t<τn+1}(2.2)

and Ft = σ{Z(s), s ≤ t}. Hence, on (Ω,F , {Ft}t≥0, P ), Z is a continuous time pure jump
Markov process with generator Lz verifying Assumption 2.1 and {τi}i≥1 is the sequence of
its jump times. Noting that Assumption 2.2 just involves the law of the process Z, this
particular realization allows us to prove Theorem 2.9 below.

Theorem 2.9 Under Assumption 2.8 and if Z(0) = Z1(0), . . . , ZH(0) is an exchangeable
sequence of random variables

i) ∀t, fixed, Z(t) = {Zi(t)}1≤i≤H is an exchangeable sequence of random variables,
ii) for s ≤ t, P

(
Z(t) = k|Z(s) = h) = P (Z(t) = β(k)|Z(s) = β(h)

)
and

iii) for t0 ≤ t1 ≤ . . . ≤ tn, and a0, a1 . . . an ∈ H,

P
(
Z(t0) = a0, . . . , Z(tn) = an

)
= P (Z(t0) = β(a0), . . . , Z(tn) = β(an)),

that is Assumption 2.2 holds.
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Proof. For the first step, setting k = (k(1), . . . , k(H)), recalling (2.2) and recalling that
the random variables {Vi}i≥1 and the Markov chain {Zn}i≥0 are independent, we get that

P (Z(t) = k) =
∑
n≥0

P
(
Z(t) = k, τn ≤ t < τn+1

)
=

= P
(
Z0 = k, 0 ≤ t < τ1

)
+

∑
n>0

P
(
Zn = k, τn ≤ t < τn +

Vn+1

l(Zn)

)
=

= P (Z0 = k) · e−l(k)t +
∑
n>0

∑
h0,...,hn−1∈H

P
(
Z0 = h0, . . . , Zn−1 = hn−1, Zn = k

) ·
·P

( n∑
i=1

Vi

l(hi−1)
≤ t <

n∑
i=1

Vi

l(hi−1)
+

Vn+1

l(k)
,
)

and the thesis is achieved by Assumption 2.8 and by the exchangeability of the sequence
Z(0). For the second step, setting

P
(
Z(t) = k, Z(s) = h

)
=

∑
n≥0

P
(
Z(t) = k, Z(s) = h, τn ≤ s ≤ t < τn+1

)
+

+
∑
n≥0

P
(
Z(t) = k, Z(s) = h, τn ≤ s ≤ τn+1 ≤ t < τn+2

)
+(2.3)

+
∑

n≥0,p>1

P
(
Z(t) = k, Z(s) = h, τn ≤ s ≤ τn+1 ≤ τn+p ≤ t < τn+p+1

)

and recalling, again, Proposition 2.6, we have that the first term in the right hand side of
(2.3) is equal to∑

n≥0

P (Z(t) = k, Z(s) = h, τn ≤ s ≤ t < τn+1) =

=
∑
n≥0

P
(
Zn = k, Zn = h, τn ≤ s ≤ t < τn+1

)
=

= δh,k

{
P

(
Z0 = k, 0 ≤ s ≤ t <

V1

l(Z0)
)

+

+
∑

n ≥ 1,
h0, . . . , hn−1 ∈ H

P
(
Z0 = h0, . . . , Zn = k,

n∑
i=1

Vi

l(Zi−1)
≤ s ≤ t <

n+1∑
i=1

Vi

l(Zi−1)

)}
=

= δh,k

{
P (Z0 = k) P

(
0 ≤ s ≤ t <

V1

l(k)

)
+

∑
n ≥ 1,

h0, . . . , hn−1 ∈ H

P
(
Z0 = h0, . . . , Zn = k

) ·

·P
( n∑

i=1

Vi

l(hi−1)
≤ s ≤ t <

n∑
i=1

Vi

l(hi−1)
+

Vn+1

l(k)

)}
=

=
∑
n≥0

P
(
Z(t) = β(k), Z(s) = β(h), τn ≤ s ≤ t < τn+1

)
.

In an analogous way, the second and third term in (2.3) can be computed and the thesis is
achieved by the first step. The third step immediately follows by the Markov property and
the previous results.
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3. The occupancy numbers

One area where the occupancy number process can be useful is not only in modeling the
behavior of biological populations but also in queueing models.

Definition 3.1 Let Φ = (Φ1, . . . , Φd, Φ0), Φi(z) =
∑

j=1,...,H 1zj=i, for each i = 1, . . . , d
be a deterministic function.

The pair (X, Y ) is the occupancy number process, where X := (X1, . . . , Xd) and, for
t ∈ IR+, X i(t) = #Ci(t) = Φi(Z(t)) and where Y (t) = #C0(t) = Φ0(Z(t)).

As a consequence of Definition 3.1 above, the process (X, Y ) takes values in

K := {(x1, . . . , xd, y) : xi, y ∈ IN ∪ {0}, ∀i; x1 + · · · + xd + y = H}

while the components X and Y are such that X takes values in

X := {(x1, . . . , xd) : xi ∈ IN ∪ {0}, ∀i, x1 + . . . + xd ≤ H}

and Y is, almost surely, non-decreasing with respect to t, Assumption 2.1.
The aim of this paper is to find the conditional law of the lifetimes given the past history

of the process Y . To this end, in [9], the authors follow a two step procedure. First, they
evaluated the law of the lifetimes given Z(t), and, then, they studied a filtering problem
to obtain the distribution of Z(t), given the observations. In our model, again a two step
procedure will be followed, but, previously, some kind of relation between the law of Z,
L(Z), and the law of the occupancy numbers X and Y , L(X,Y ) have to be established in
order to deduce the joint law of (X, Y ) and its Markov property.

For any fixed time t, as already observed in [7], since (X(t), Y (t)) = Φ(Z(t)) and Φ is a
deterministic function not necessarily one-to-one, there exists a one-to-one correspondence
between the law of (X(t), Y (t)), L(X(t), Y (t)), and the law of Z(t), L(Z(t)).

Proposition 3.2 For k ∈ {0, 1, . . . , d}H and ∀t ∈ IR+, if Z(t), for fixed t, is an exchange-
able sequence of random variables, then

P (Z(t) = k) =
Φ0(k)! · Φ1(k)! · . . . · Φd(k)!

H !
· P ((X(t), Y (t)) = Φ(k))(3.1)

and for each s ∈ K
P

(
(X(t), Y (t)) = s

)
= P

(
Z(t) ∈ Φ−1(s)

)
.(3.2)

As a first remark, observe that since Φ(k) = Φ(βk), for all β permutation on {1, . . . , H}
and for all k ∈ {0, 1, . . . , d}H , this last result agrees with Assumption 2.2. Furthermore,
immediately, the result given in (3.2) can be easily generalized and we get that for each
n > 0 and for each s(1), . . . , s(n) ∈ K, then

P
(
(X(t1), Y (t1)) = s(1), . . . , (X(tn), Y (tn)) = s(n)

)
=

= P
(
Z(t1) ∈ Φ−1(s(1)), . . . , Z(tn) ∈ Φ−1(s(n))

)
.

On the other hand, the result given in (3.1) cannot be generalized in a dynamic context,
recalling that the function Φ is not necessarily one-to-one. To this end, a further assumption
is needed and, in particular, we choose to assume that the dynamics of the process Z(t)
just depend on the number of particles belonging to each class.
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Assumption 3.3 Let γ(h, h̃) :=
∏H

i=1(1hi=/0 + 1
hi=0,̃hi=0

), for h, h̃ ∈ {0, 1, . . . , d}H. Re-
calling that Φ = (Φ1, . . . , Φd, Φ0) and that Φi(z) =

∑
j=1,...,H 1zj=i, i = 0, 1, . . . , d, for each

n > 0, for all t1 ≤ . . . ≤ tn, ∀(h(1), . . . , h(n)), ∀(h′(1), . . . , h′(n)), h(i), h′(i) ∈ {0, 1, . . . , d}H

such that
i. Φ(h(i)) = Φ(h′(i)) i = 1, . . . , n
ii. γ(h(i), h(i+1)) = γ(h′(i), h′(i+1)) i = 1, . . . , n − 1

we assume that

P (Z(t1) = h(1), . . . , Z(tn) = h(n)) = P (Z(t1) = h′(1), . . . , Z(tn) = h′(n)).(3.3)

This technical assumption becomes more ”friendly” just observing that if the vectors
h(i) and h′(i), for i = 1, . . . , n, produce the same vector of occupancy numbers, then the
finite dimensional distributions of Z coincide. Moreover, let us observe that Assumption
3.3 implies both Assumption 2.1 and Assumption 2.2 while vice-versa is not true.

Proposition 3.4 Under Assumption 3.3, we get that, for n ≥ 1, for t1 ≤ . . . ≤ tn and
for h(1), . . . , h(n) ∈ {0, 1, . . . , d}H ,

P (Z(t1) = h(1), . . . , Z(tn) = h(n)) =

= A(h(1), . . . , h(n)) · P
(
(X(t1), Y (t1)) = Φ(h(1)), . . . , (X(tn), Y (tn)) = Φ(h(n))

)

where A(h(1), . . . , h(n)) are deterministic quantities given by

A(h(1), . . . , h(n)) =
Φ0(h(1))!Φ1(h(1))! . . . Φd(h(1))!

H !
·

·
n−1∏
j=1

(Φ0(h(j+1)) − Φ0(h(j)))!Φ1(h(j+1))! . . . Φd(h(j+1))!
(H − Φ0(h(j)))!

· γ(h(j), h(j+1)).

Proposition 3.4 above, readily obtained by combinatorial techniques, shows us that,
under Assumption 3.3, the dynamics of the process Z just depend on the number of particles
belonging to each class. But this assumption has another important consequence about the
Markov property. In general, if Z is a Markov process this does not implies that such is
the occupancy numbers process (X, Y ), but, in our case, Proposition 3.5 below, let us to
deduce a necessary and sufficient condition.

Proposition 3.5 Under Assumption 3.3, (X, Y ) is a Markov process if and only if Z is a
Markov process.

Proof. If Z is a Markov process, setting FZ
t = σ{Z(s), s ≤ t}, then, for h(1), . . . , h(n), h ∈

{0, 1, . . . , d}N , for t1 ≤ . . . ≤ tn ≤ s ≤ t,

P
(
(X(t), Y (t)) = m

∣∣Z(t1) = h(1), . . . , Z(tn) = h(n), Z(s) = h
)

=

=
∑

k:γ(h,k)=1,Φ(k)=m

P
(
Z(t) = k|Z(s) = h

)
=

= P
(
(X(t), Y (t)) = m

∣∣(X(s), Y (s)) = Φ(h)
)
.
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Vice-versa, since F (X,Y )
s ⊂ FZ

s , by (3.3) and Proposition 3.4, ∀h(1), . . . , h(n) ∈ {0, 1, . . . , d}N ,

P
(
Z(t) = k|Z(t1) = h(1), . . . , Z(tn) = h(n), Z(s) = h

)
=

= A(h(1), . . . , h(n)) · P
(
(X(t), Y (t)) = Φ(k)|(X(s), Y (s)) = Φ(h)

)
=

= P (Z(t) = k|Z(s) = h).

The Markov property is the key for the existence of a process Z satisfying Assumption
3.3, since, in such a case, (X, Y ) can be constructed as the solution of a suitable Martingale
problem associated with the generator

Lx,yf(x, y) = Λ(x, y)
∑

(x′,y′)∈K
[f(x′, y′) − f(x, y)]M((x, y); (x′, y′)),(3.4)

where Λ and M are function such that

Λ(Φ(z)) = l(z) and M(Φ(z),Φ(z′)) = p(z, z′)(3.5)

and their existence is assured by Assumption 3.3. The Martingale problem associated with
the generator Lx,y is well posed since by construction, the generator given in (3.4) is a
bounded operator and its solution (X, Y ) is a Markov process. Therefore, (3.5) provides
the law of the process Z which, by construction, verifies Assumption 3.3.

4. The filtering problem

Recalling that the partition of the population is assumed to be non-observable, the
observation is the cardinality Y (t) of the class C0(t). Then, setting FY

t = σ{Y (s), s ≤ t},
our aim is to find L(T1, . . . , TH |FY

t ), the conditional law of the lifetimes given the history
of the process Y (t).

To achieved this program, the first step consists in computing the conditional law of
the lifetimes given the process (X(t), Y (t)), L(T1, . . . , TH |X(t), Y (t)). This law can be
deduced by the conditional law of the lifetimes given the process Z(t), L(T1, . . . , TH |Z(t)),
and the relation between the law of Z, L(Z), and the law of (X(t), Y (t)), L(X,Y ), is given
previously. Then, we need to find L(T1, . . . , TH |Z(t)) and, to this end, we recall the results
reached in [9]. Assuming that t1 ≤ . . . ≤ tH , if t is a time such that t1 ≤ t2 ≤ . . . ≤ tm ≤
t ≤ tm+1 ≤ . . . ≤ tH , for P (Z(t) = k)=/ 0, k ∈ H ,

P (T1 ≤ t1, T2 ≤ t2, . . . , TH ≤ tH |Z(t) = k) =
1

P (Z(t) = k)
· 1k1=...=km=0 ·(4.1)

·P (Z1(t1) = 0, . . . , Zm(tm) = 0, Z(t) = k, Zm+1(tm+1) = 0, . . . , ZH(tH) = 0).

Remark 4.1 Summing up, once π̃t(z) = P (Z(t) = z|FY
t ) is computed,

P (T1 ≤ t1, T2 ≤ t2, . . . , TH ≤ tH |FY
t ) =

=
∑

z∈H
P (T1 ≤ t1, T2 ≤ t2, . . . , TH ≤ tH |Z(t) = z) · π̃t(z)

and the problem of determining a filter π̃t(z) is discussed, exhaustively, in [9].

4.1. Conditional law of lifetimes
Setting, |x| = x1+. . .+xd, for each x ∈ X , note that, since Y = H−|X |, L(T1, . . . , TH |X(t))

coincides with L(T1, . . . , TH |X(t), Y (t)).
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Proposition 4.2 Under Assumption 3.3, assuming that t1 ≤ . . . ≤ tH , if t is a time such
that t1 ≤ t2 ≤ . . . ≤ tm ≤ t ≤ tm+1 ≤ . . . ≤ tH , for P (X(t) = x)=/ 0, x ∈ X ,

P (T1 ≤ t1, T2 ≤ t2, . . . , TH ≤ tH |X(t) = x) =(4.2)

=

∑
k∈Φ−1(x,H−|x|) P (T1 ≤ t1, T2 ≤ t2, . . . , TH ≤ tH |Z(t) = k)∑

h∈Φ−1(x,H−|x|) P (Z(t) = h)

and then L(T1, . . . , TH |X(t)) can be computed by (4.1).

Proof. Since Y (t) = H − |X(t)|, then the thesis is achieved noting that

P
(
T1 ≤ t1, . . . , TH ≤ tH |X(t) = x

)
= P

(
T1 ≤ t1, . . . , TH ≤ tH

∣∣∣Z(t) ∈ Φ−1(x,H − |x|)
)

.

4.2. Filtering equation

The process Y is not, in general, a counting process, since the component of the process
Z are not independent. To overcome this difficulty, as in [5], let us introduce the multivariate
point process U = (U1, . . . , UH) be defined as

U j(t) :=
∑
i≥1

1{τi≤t} 1{Y (τi)=j} j = 1, . . . , H,(4.3)

where {τi}i≥1 is the sequence of the jump times of Y and it is a subset of T(1), . . . , T(H), an
order statistic of the lifetimes. Since

Y (t) = Y (0) +
∫ t

0

H∑
j=1

[j − Y (s−)]dU j(s)

then FY
t = FU

t , where FU
t = σ{U1(s), . . . , UH(s), s ≤ t} and our problem reduces to find

the conditional law of X(t) given FU
t , πt(f) = IE[f(X(t))|FU

t ], ∀f real valued function. In
our frame, X is a X−valued Markov process and its generator is given by

Lf (x) = L0f(x) +
∑

j=1,...,H

Lj
1f(x),(4.4)

L0f(x) = λ(x)
∑

x′∈X
[f(x′) − f(x)]µ0(x, x′),

Lj
1f(x) = λ(x)

∑
x′∈X

[f(x′) − f(x)] 1|x′|=H−j · µ1(x, x′),

where λ(x) = Λ(x,H − |x|) and

µ0(x, x′) = M((x,H − |x|); (x′, H − |x′|))1|x′|=|x|>0,

µ1(x, x′) = M((x,H − |x|); (x′, H − |x′|))10≤|x′|<|x|.

This implies that there are only two kind of jumps, for X(t) = x, X(t) jumps following a
transition function µ0(x, x′) and Y (t) does not jump. Otherwise, X(t) jumps following a
transition function µ1(x, x′) and in this case, Y (t) := H − |X(t)| increases. But, only the
second kind of jumps are registered as observations.

With this setting, the filtering problem reduces to find the conditional law of X(t) given
the observations Y (t), counting all the jumps of |X(t)|. Recalling that the filter is one of the
solutions of the Kushner-Stratonovich equation, we are going to write it down in Theorem
4.3 below.
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Theorem 4.3 For any real function f(x), x ∈ X , the Kushner-Stratonovich equation is

πt(f) = ν0(f) +
∫ t

0

[πs(L0f) + πs−(f)πs−(λ1) − πs−(λ1f)] · ds +(4.5)

+
∑

j=1,...,H

∫ t

0

(πs−(λj))+ · [πs−(Lj
1f) − πs−(f)πs−(λj) + πs−(λjf)] · dU j(s),

where the (P,Ft)-intensity function of the process U j(t), is given by

λj(x) := λ(x)
∑

x′∈X
1|x′|=H−j · µ1(x, x′), ∀j = 1, . . . , H,(4.6)

and λ1(x) =
∑

j=1,...,H λj(x) = λ(x)
∑

x′∈X µ1(x, x′).

Proof. Equation (4.5) is obtained by applying the classical innovation method, for instance
looking at [2], and a sketch of the proof is given for sake of self-consistency.

To achieve this program, noting that the process (X, Y, U) is still Markov, for x ∈ X ,
u ∈ {0, 1}H, y ∈ {0, 1, . . . , H}, the joint generator of (X, Y, U) is given by

Lx,y,uf(x, y, u) = Lx,y,u
0 f(x, y, u) +

H∑
j=1

Lx,y,u
j,1 f(x, y, u),

where

Lx,y,u
0 f(x, y, u) = λ(x)

∑
x′∈X

[f(x′, y, u)− f(x, y, u)] · µ0(x, x′),

Lx,y,u
j,1 f(x, y, u) = λ(x)

∑
x′∈X

[f(x′, y − |x′| + |x|, u + ej) − f(x, y, u)] · 1|x′|=H−j · µ1(x, x′)

and ej is the vector such that ej
i = δj

i , i = 1, . . . , H. The generator Lx,y,u, restricted to
a function just depending on the first variable x, coincides with the operator L given in
equation (4.4). Furthermore, for j = 1, . . . , H, the (P,Ft)-intensity of U j is given by the
process λj(x) where

λj(x) = λ(x)
∑

x′∈X
[uj + ej

j − uj] · 1|x′|=H−j · µ1(x, x′) = λ(x)
∑

x′∈X
1|x′|=H−j · µ1(x, x′)

and the (P,FU
t )-intensity of U j is given by πt(λj) = IE[λj(x)|FY

t ]. Let Mt be the 0-mean
(P,Ft)-martingale defined as

M(t) := f(X(t))− f(X(0)) −
∫ t

0

Lf (X(s))ds.(4.7)

First of all, Theorem IV, T1 of [2] applies and, setting M̂t a 0-mean (P,FY
t )-martingale,

then

πt(f) = ν0(f) +
∫ t

0

πs(Lf) ds + M̂t.

By the representation theorem (III, T17) of [2], M̂t can be written as

M̂t =
H∑

j=1

∫ t

0

Ks−(j) · (dU j
s − πs−(λj) ds).
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Finally, (IV, T2 of [2]) the equation for the filter, for any function f(x), x ∈ X , is

πt(f) = ν0(f) +
∫ t

0

πs(Lf) ds +(4.8)

+
H∑

j=1

∫ t

0

πs−(λj)+{πs−(Lj
1f) − πs−(λj)πs−(f) + πs−(λjf)}(dU j

s − πs−(λj) ds).

In order to compute Lj
1f , let M j(t) := U j(t) − ∫ t

0 λj(X(s))ds, recall that M(t) and M j(t)

are (P,Ft)-martingales and that < M, M j >t=
∫ t

0

Lj
1f(X(s)) ds. By a standard stochastic

calculus, we get that

Lj
1f(x) = λ(x)

∑
x′∈X

[f(x′) − f(x)] 1|x′|=H−j · µ1(x, x′).

As far as uniqueness for the solution to (4.5) is concerned, we give the following result.

Theorem 4.4 Equation (4.5) has a unique path-wise solution, necessarily, FY
t -adapted.

Proof. At any jump time τn, the filter is uniquely determined by the knowledge of πτn−.
In fact, there exists a unique value j, j = 1, . . . , H, such that πt(λj) > 0 a.s., i.e.

πτn(f) =
πτn−(Lj

1f) + πτn−(λjf)
πτn−(λj)

∣∣∣
j=Yτn

.(4.9)

For t ∈ [τn, τn+1),

πt(f) = πτn(f) +
∫ t

τn

[πs(L0f) + πs(f)πs(λ1) − πs(λ1f)]ds.(4.10)

Moreover, any two solutions π and π′ of (4.10), with πτn(f) = π′
τn

(f), are such that

‖πt − π′
t‖ ≤ C

∫ t

τn

‖πs − π′
s‖ds,

for a constant C explicitly computable. Then, Equation (4.10) is Lipschitz with respect
to the bounded variation norm, which means that the solution is unique and necessarily
FY

t -adapted.
The Kushner-Stratonovich equation has a natural recursive structure, following the jump

times {τn}n≥0 and this can be easily seen if we write it in the form (4.5). The structure of
this equation shows that πt(f) has a deterministic behavior between two consecutive jumps
times of Y . At any jump time of Y , say τn, πt(f) jumps and its jump-size is given by (4.9).
We want to stress that Equation (4.9) shows that at a jump time τn, πτn(f) is completely
determined by the knowledge of πt(f) in the interval [τn−1, τn). In fact, for any function f ,

πτ−
n

(f) = lim
t→τ−

n

πt(f).

To obtain an useful representation for the filter, for t ∈ [τn, τn+1), in the next section, we are
going to introduce a linearization procedure and to this end, recalling that, by construction,
0 < l ≤ λ(x) ≤ l, ∀x ∈ X , from now on, we need the further condition.
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Assumption 4.5

∀x, x′ ∈ X : |x| > |x′| ≥ 0 then µ1(x, x′) > 0.(4.11)

Roughly speaking, if the number of dead particles increases, every transition must be
possible, i.e. any of such transition probability is strictly positive. Then, this assumptions
allows us to define the positive quantity µ := min

x,x′∈X
{µ1(x, x′) : |x| > |x′| ≥ 0}.

Remark 4.6 As a consequence of the last assumption, recalling (4.6), then

λj(x) ≥ l
∑

x′∈X
1|x′|=H−j · µ1(x, x′) ≥ l · µ.

4.3. A representation for the filter.

The behavior of the filter πt for t ∈ [τn, τn+1), where the Kushner-Stratonovich equation
(4.5) reduces to Equation (4.10), is a nonlinear one. Thus, an explicit expression for the
solutions of the equation (4.10) is, in general, not available, but it is possible to provide
a hand-able representation for it. This representation, described with a method which is
a modification of that proposed in [11], is an essential tool to achieve the approximating
discrete time model which we are going to give later on. Let us introduce the linearized
equation

ρt(f) = ν0(f) +
∫ t

0

{ρs(L0f) − ρs(λ1f)}ds +(4.12)

+
H∑

j=1

∫ t

0

{ρs−(λjf) − ρs−(f) + ρs−(Lj
1f)}dU j

s ,

which is obtained by (4.5) dropping out the nonlinear terms. Equation (4.12) not only
admits a unique solution in the weak sense, but, by Lipschitz arguments, it admits a unique
path-wise solution which is necessarily FU

t -adapted. This last claim can be proven with a
procedure similar to that used in Theorem 4.4.

Proposition 4.7 Equation (4.12) admits at least one solution FU
t -adapted. In addition

such solution ρt(f), ∀t, is a finite positive measure, e−t·l(1 ∧ l · µ) < ρt(1) ≤ l ∨ 1, and

πt(f) =
ρt(f)
ρt(1)

.

Proof. First we claim that, for ρt any solution of (4.12),
ρt(f)
ρt(1)

provides a solution of (4.5)

and then coincides with the filter up to time t0 = inf{t ≥ 0 : ρt(1) = 0}. In fact, assuming
that ρt(1) > 0, it is easy to verify that πt(f) = ρt(f)

ρt(1)
solves equation (4.5). In particular,

for t ∈ [τn, τn+1), the thesis is achieved by computing d
dt

ρt(f)
ρt(1)

, taking into account Equation
(4.12) and observing that such derivative coincides with d

dtπt(f).
Then, let us to construct a solution of (4.12) which has the required properties and such

that ρt(1) > 0 for any t. Let Xs,x(t) be a process, with initial condition (s, x), s ≥ 0, x ∈ X ,
and generator L, given by (4.4). Let Ps,x its law on DX [s, T ]. Then, by the Feynman Kac’s
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formula,

∀t ∈ [
τi, τi+1

)
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ρt(f) =
∑

x∈X IEPs,x

[
f(Xs,x(t)) exp

{
− ∫ t

s λ1(Xs,x(u)) du
}]∣∣∣

s=τi

ρτi({x})
ρτi(1)

ρt(1) =
∑

x∈X IEPs,x

[
exp

{
− ∫ t

s λ1(Xs,x(u)) du
}]∣∣∣

s=τi

ρτi({x})
ρτi(1)

≥ e−(t−τi)·l > 0

t = τi+1

⎧⎪⎪⎨
⎪⎪⎩

ρτi+1(f) = ρτi+1−(λjf) + ρτi+1−(Lj
1f)

∣∣∣
j=Yτi+1

ρτi+1(1) = ρτi+1−(λj)
∣∣
j=Yτi+1

≥ l · µ · ρτi+1−(1),

where the last inequality is a consequence of Remark 4.6 and by induction the thesis is
reached. Finally observe that ρt(1) ≤ 1 for t ∈ [

τi, τi+1

)
and for t = τi+1

ρτi+1(1) = ρτi+1−(λj)
∣∣
j=Yτi+1

≤ l · ρτi+1−(1) ≤ l.

5. An approximating discrete time model.

This construction provides a discrete time approximating model strongly convergent to
the original one, [4].

On a probability space (Ω,F , P ), let {Xn}n≥0 be the Markov chain defined by initial law
ν0 and transition function µ(x, x′) = µ0(x, x′)+µ1(x, x′). Let {Vi}i≥1 be a sequence of ran-
dom variables independent and exponentially distributed with parameter 1 and independent
on {Xn}n≥0. Let h > 0 be fixed and set, successively,

θh
0 := 0 and θh

n = h

n∑
i=1

[
Vi

h λ(Xi−1)

]
+ nh for n > 0,

where [a] denotes the integer part of a. Then, on a finite time horizon [0, T ], with T > 0,
for t = kh, with k = 0, 1, . . ., such that kh ≤ T , the approximating process is defined as

Xh(t) =
∑
n≥0

Xn 1{θh
n≤t<θh

n+1}.

Hence, on the space (Ω,F , {Ft}t≥0, P ), Xh is a discrete time Markov chain, {θh
n}n≥1 is the

sequence of its jump times. The family of the transition probabilities of the process Xh can
be obtained by Proposition 5.1 below, just proved in [4].

Proposition 5.1 The process Xh is a discrete time Markov chain with transition proba-
bilities given by

µh(x, x′) = P
(
Xh((n + 1)h) = x′∣∣Xh(nh) = x

)
=

= δ{x,x′}e−hλ(x) + (µ0(x, x′) + µ1(x, x′))(1 − e−hλ(x)).(5.1)

We introduce now the discrete time observations process setting

Y h(t) = H − |Xh(t)|, U jh
t =

∑
k≥1

1{τh
k
≤t} 1Y h(τh

k
)=j and Nh

t =
H∑

j=0

U jh
t =

∑
k≥1

1{τh
k
≤t},



928 PAOLA TARDELLI

where {τh
k }k≥0 is the sequence of the jump times of the process Y h and it is a subsequence

of {θh
k}k≥0, the sequence of the jump times of the process Xh.

Again, as in the continuous time case, FY h

t = FUh

t , with Uh = {U jh}j=0,1,...,H . Then,
in order to find the conditional law of Xh(t) given FUh

t , a discrete time filtering problem
has to be considered and πh

t = L(Xh(t)|FUh

t ) satisfies the equation

πh
nh(f) = ν0(f) +

n∑
k=1

[
πh

(k−1)h(Lh
0f) + πh

(k−1)h(λh)πh
(k−1)h(f) − πh

(k−1)h(λhf)
]
·(5.2)

·(1 − πh
(k−1)h(λh))+ · (1 − ∆Nh

kh) +

+
H∑

j=0

n∑
k=1

[
πh

(k−1)h(λh
j f) − πh

(k−1)h(λh
j ) πh

(k−1)h(f) + πh
(k−1)h(Ljh

1 f)
]
·

·πh
(k−1)h(λh

j )+ · ∆U jh
kh ,

where

Lh
0f(x) =

∑
x′∈X

[f(x′) − f(x)] 1|x|=|x′|>0 µh(x, x′),

Lh
1f(x) =

H∑
j=1

Ljh
1 f(x) =

H∑
j=1

∑
x′∈X

[f(x′) − f(x)] · 1|x′|=/|x| · 1|x′|=H−j · µh(x, x′),

λh
j (x) =

∑
x′∈X

1|x′|=/|x| · 1|x′|=H−j · µh(x, x′) and

λh(x) =
H∑

j=1

λh
j (x) =

∑
x′∈X

1|x′|=/|x| · µh(x, x′).

The equation (5.2) has a unique solution as a consequence of its recursive structure, taking
into account (5.1) and the inequality

λh
j (x) ≤ λh(x) ≤ 1 − e−h·l < 1, ∀j = 1, . . . , H.(5.3)

Such solution can be explicitly written down. In place of this, we are going to provide a
linearized version of (5.2) as a useful tool to prove the convergence of the approximating
discrete time model to the continuous time one.

Proposition 5.2 The equation

ρh
nh(f) = ν0(f) +

n∑
k=1

{ρh
(k−1)h(Lh

0f) − ρh
(k−1)h(λhf)}(1 − ∆Nh

kh) +(5.4)

+
H∑

j=1

n∑
k=1

(1 − e−h)+
{
ρh
(k−1)h(λh

j f) − (1 − e−h)ρh
(k−1)h(f) + ρh

(k−1)h(Ljh
1 f)

}
∆U jh

kh

admits a unique solution FU
t -adapted. Such solution ρh

t (f), for any t = nh, is a finite

positive measure, 0 < ρh
t (1) ≤ (2 · l)Nh

t ∨ 1, ∀ h · (l ∨ 1) < log 2 and πh
t (f) =

ρh
t (f)

ρh
t (1)

.
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Proof. Let us use, here, the same argument as in Proposition 4.7. Then we have just
to prove that ρh

t (1) cannot vanish for t ∈ [τh
i , τh

i+1). For t = nh, with τh
i ≤ nh < τh

i+1,
recalling the inequality (5.3),

ρh
nh(1) = ρh

(n−1)h(1) − ρh
(n−1)h(λh) = ρh

(n−1)h(1 − λh) ≥ e−h·l ρh
(n−1)h(1),

which by induction implies
ρh

t (1) ≥ e−T ·l.(5.5)

At a jump time τh
i = kh, ∆Nh

kh = 1 and, since λh
j (x) = λj(x) · (1 − e−hλ(x)),

ρh
kh(1) = (1 − e−h)+ρh

(k−1)h(λh
j )

∣∣
j=Y h

nh

≥ l · µ · 1 − e−hl

1 − e−h
· ρh

(k−1)h(1) ≥
(

1
2

l2 · µ
)Nh

kh

.

Moreover, for ∆Nh
kh = 0, ρh

kh(1) ≤ ρh
(k−1)h(1) and for ∆Nh

kh = 1,

ρh
kh(1) ≤

ρh
(k−1)h(λh)

1 − e−h
≤ 1 − e−l·h

1 − e−h
ρh
(k−1)h(1).

Let Sh := (Xh, Y h, Uh, Nh, πh) denote the piecewise constant cadlag continuous time
interpolation of the processes above introduced. Moreover, let S := (X, Y, U, N, π), and
S = X × {0, 1, . . . , H} × {0, 1}H × IN × Π(X ), where Π(X ) is the space of probability
measure on X .

Theorem 5.3 The process Sh converges to the process S a.s., as h → 0, with respect to
the Skorohod topology on the space DS [0, T ].

The proof of Theorem 5.3 follows, in some sense, the same line of Theorem 6.1 in [9]
and we recall it for sake of self-completeness.

Let us focus that overall this Section the results are true for almost all fixed ω. More
precisely, let N(t) :=

∑
i≥1 1{τi≤t} be the process counting the jump of Y , then τNT is

a continuous random variable and P (τNT = T ) = 0. Note that the convergence of Sh to
S claimed in Theorem 5.3 holds for any ω ∈ {τNT < T }. The proof of this theorem is a
consequence of the next results and the proof follows the same lines as in [3] Section 4.

Proposition 5.4 For h <
T − τNT

NT
, then τh

NT
≤ T , which in turn implies NT = Nh

T a.s..

Proof. For any ω ∈ {τNT < T }, we can choose h such that 0 < h ≤ T − τNT

NT
. By

definition τh
k ≤ τk + kh,∀k, then τh

NT
≤ τNT + NT h ≤ T . Moreover, since τk ≤ τh

k , ∀k, then
NT ≥ Nh

T which means that τh
Nh

T

≤ τh
NT

. But observing that τh
Nh

T

is the last jump time

before T , τh
Nh

T

≤ T ≤ τh
NT

. This last inequality joint with T ≥ τh
NT

, give us that τh
Nh

T

= τh
NT

,

i.e. NT = Nh
T , (recalling that {τh

k }k≥0 is a strictly monotone sequence).

On the event
(
NT = Nh

T

)
, a function αh(·) of [0, T ] into itself can be defined such that:

(i) αh(·) is a piecewise linear map and transforms the intervals [τh
k , τh

k+1) into [τk, τk+1),
∀k < NT , and [τh

NT
, T ) into [τNT , T ).

(ii) sup
t∈[0,T ]

|αh(t) − t| = max
k≤NT

|τk − τh
k | ≤ max

k≤NT

kh = NT h.
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(iii) |X(αh(t)) − Xh(t)| = |Y (αh(t)) − Y h(t)| = | U(αh(t)) − U jh(t)| = |Nαh(t) − Nh
t | = 0.

Then, in order to reach the result claimed in Theorem 5.3, the convergence of the filters
is just enough. Therefore, by definition of the Skorohod topology, such Theorem is a
consequence of Theorem 5.5 below.

Theorem 5.5 Under the assumptions prevailing in this paper, (in particular (4.11)),

i) ‖παh(t) − πh
t ‖ ≤ 2 · eT ·l

1 ∨ l · µ · ∥∥ραh(t) − ρh
t

∥∥ and

ii)
∥∥ραh(t) − ρh

t

∥∥ ≤ (1+2 l)Nt e2t·l Ch, for a suitable quantity C = C(T, NT , l) > 0,

namely ‖παh(t) − πh
t ‖ ≤ C · h.

Proof. First of all, noting that πt(f) =
ρt(f)
ρt(1)

and πh
t (f) =

ρh
t (f)

ρh
t (1)

, by Proposition 4.7

and by Proposition 5.2, respectively, then

‖παh(t) − πh
t ‖ =

1
ραh(t)(1)

∥∥ραh(t) − ρh
t

∥∥ +
∥∥∥∥ ρh

t

ραh(t)(1)ρh
t (1)

(ραh(t)(1) − ρh
t (1))

∥∥∥∥ ≤

≤ 2
ραh(t)(1)

∥∥ραh(t) − ρh
t

∥∥
and since, by Proposition 4.7, e−t·l(1∧ l ·µ) < ρt(1) ≤ l∨ 1, the first result is achieved. For
the second claim, since the first derivative of αh(t), say α′

h(t), exists for any t ∈ [0, T ] but
a finite number of points and αh(τi) = τi, ∀i, (4.12) implies that

ραh(t)(f) = ν0(f) +
∫ t

0

{ραh(s)(L0f) − ραh(s)(λ1f)}α′
h(s)ds

+
∑

j=1,...,H

∫ t

0

{ραh(s)−(λjf) − ραh(s)−(f) + ραh(s)−(Lj
1f)}dU jh

s

and, (5.4) implies that

ρh
t (f) = ν0(f) +

∫ t

0

1
h
{ρh

s (Lh
0f) − ρh

s (λhf)}ds +
∫ t

0

{ρh
s−(λhf) − ρh

s−(Lh
0f)}dNh

s

+
∑

j=1,...,H

∫ t

0

(1 − e−h)+{ρh
s−(λh

j f) − (1 − e−h)ρh
s−(f) + ρh

s−(Ljh
1 f)}dU jh

s .

Thus, since by tedious but straightforward computations, successively we get

|L0f(x) − λ1(x)f(x)| ≤ 3 l ‖f‖,∣∣∣∣
∫ t

0

(α′
h(s) − 1) ds

∣∣∣∣ ≤ 3NT h and
∣∣∣∣Lh

0f(x) − λh(x)f(x)
h

∣∣∣∣ ≤ 2 l ‖f‖,

then ∫ t

0

∣∣∣∣{ραh(s)(L0f) − ραh(s)(λ1f)}α′
h(s) − 1

h
{ρh

s (Lh
0f) − ρh

s (λhf)}
∣∣∣∣ ds ≤

≤ 6 NT l ‖f‖ · h sup
s∈[0,T ]

ρs(1) + 3 l
2 ‖f‖ T · h sup

s∈[0,T ]

ρs(1) + 2 l ‖f‖
∫ t

0

∥∥ραh(s) − ρh
s

∥∥ ds.
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Moreover

∑
j=1,...,H

∫ t

0

∣∣∣ραh(s)−(λjf) − ραh(s)−(f) + ραh(s)−(Lj
1f) − ρh

s−(λhf) + ρh
s−(Lh

0f)

−(1 − e−h)+{ρh
s−(λh

j f) − (1 − e−h)ρh
s−(f) + ρh

s−(Ljh
1 f)}

∣∣∣ dU jh
s ≤

≤ ‖f‖ (2 + l) l · h · sup
s∈[0,T ]

ρh
s (1) · Nh

T + (1 + l) ‖f‖
∫ t

0

∥∥ραh(s) − ρh
s

∥∥ dNh
s .

Then, a suitable quantity A = A(T, NT , l) can be found such that

‖ραh(t) − ρh
t ‖ ≤ A h + 2l

∫ t

0

‖ραh(s) − ρh
s‖ ds + 2l

∫ t

0

‖ραh(s)− − ρh
s−‖ dNs.

By using Gronwall Lemma for t ∈ [τi, τi+1),∀i, and taking into account the update at the
jump times, finally, the thesis is reached.
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La Sapienza, (2001).

[6] S. N. Ethier and T. G. Kurtz, Markov processes: characterization and convergence
J. Wiley (1986).

[7] A. Gerardi, F. Spizzichino and B. Torti. Exchangeable mixture models for lifetimes: the role
of ”occupation number”, Statist. Probab. Lett. 49, (2000), p. 365 – 375.

[8] A. Gerardi, F. Spizzichino and B. Torti. Filtering equations for the conditional law of residual
lifetimes from a heterogeneous population, J. Appl. Probab. 37, (2000), p. 823 – 834.

[9] A. Gerardi and P. Tardelli. Heterogeneous population dynamical model: a filtering problem.
Journal of Applied Probability, 42, (2005), p. 346 – 361.

[10] F. P. Kelly. Reversibility and stochastic networks Wiley, (1994).

[11] W. Kliemann, G. Koch, F. Marchetti. On the unnormalized solution of the filtering problem
with counting process observations, IEEE Trans. Inf. Theory, 36, 6, (1990), p. 1415 – 1425.

[12] T.G. Kurtz. Martingale problems for conditional distribution of Markov processes, Electronic
J. Probab. 3, 9, (1998), p. 1 – 29.



932 PAOLA TARDELLI

[13] T.G. Kurtz and D. Ocone. Unique characterization of conditional distributions in nonlinear
filtering, Ann. Probab. 16, (1988), p. 80 – 107.

Paola Tardelli
Dipartimento di Ingegneria Elettrica, Università dell’Aquila
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