BCK/BCI-BIALGEBRAS

Young Bae Jun, Mehmet Ali Öztürk and Eun Hwan Roh*

Received March 6, 2006

Abstract

The notion of BCK/BCI-bialgebras and sub-bialgebras is introduced, and related properties are investigated. A characterization of $X=p I\left(X_{1}\right) \uplus p I\left(X_{2}\right)$ is provided.

1 Introduction. A BCK/BCI-algebra is an important calss of logical algebras introduced by K. Iséki and was extensively investigated by several researchers. Bialgebraic structures, for example, bisemigroups, bigroups, bigroupoids, biloops, birings, bisemirings, binear-rings, etc., are discussed in [6]. In this paper, we consider bialgebraic structures in BCK/BCI-algebras. We introduced the notion of BCK/BCI-bialgebras and sub-bialgebras, and investigate several properties. Using the notion of a commutative bigroup, we construct the concept of $X=p I\left(X_{1}\right) \uplus p I\left(X_{2}\right)$, and vice versa.

2 Preliminaries. An algebra $(X ; *, 0)$ of type $(2,0)$ is called a $B C I$-algebra if it satisfies the following conditions:
(I) $(\forall x, y, z \in X)(((x * y) *(x * z)) *(z * y)=0)$,
(II) $(\forall x, y \in X)((x *(x * y)) * y=0)$,
(III) $(\forall x \in X)(x * x=0)$,
(IV) $(\forall x, y \in X)(x * y=0, y * x=0 \Rightarrow x=y)$.

If a BCI-algebra X satisfies the following identity:
(V) $(\forall x \in X)(0 * x=0)$,
then X is called a $B C K$-algebra. In a BCK-algebra X, the following identity holds.
(a1) $(\forall x, y, z \in X)((x * y) * z=(x * z) * y)$.
A nonempty subset S of a BCK/BCI-algebra X is called a subalgebra of X if $x * y \in S$ for all $x, y \in S$. A BCK-algebra X is said to be positive implicative if it satisfies the following identity:

$$
(\forall x, y, z \in X)((x * y) * z=(x * y) *(x * z))
$$

A positive implicative BCK-algebra will be written by piBCK-algebra for short. A BCKalgebra X is s said to be commutative if $x *(x * y)=y *(y * x)$ for all $x, y \in X$. A commutative BCK-algebra will be written by cBCK-algebra for short. A BCI-algebra X is said to be p-semisimple if its p-radical is trivial. In a p-semisimple BCI-algebra X, we have the following axioms:

[^0](a2) $(\forall x, y \in X)(x *(0 * y)=y *(0 * x))$,
(a3) $(\forall x \in X)(0 *(0 * x)=x)$.
We refer the reader to the book [5] for further information regarding BCK/BCI-algebras.

3 BCK/BCI-bialgebras

Definition 3.1. Let $X=(X, *, \oplus, 0)$ be an algebra of type $(2,2,0)$. Then $X=(X, *, \oplus, 0)$ is called a BCK-bialgebra (resp. BCI-bialgebra) if there exists two distinct proper subsets X_{1} and X_{2} of X such that
(i) $X=X_{1} \cup X_{2}$.
(ii) $\left(X_{1}, *, 0\right)$ is a BCK-algebra (resp. BCI-algebra).
(iii) $\left(X_{2}, \oplus, 0\right)$ is a BCK-algebra (resp. BCI-algebra).

Denote by $X=K\left(X_{1}\right) \uplus K\left(X_{2}\right)$ (resp. $\left.X=I\left(X_{1}\right) \uplus I\left(X_{2}\right)\right)$ the BCK-bialgebra (resp. BCI-bialgebra). If $\left(X_{1}, *, 0\right)$ is a BCK-algebra (resp. BCI-algebra) and ($X_{2}, \oplus, 0$) is a BCIalgebra (resp. BCK-algebra), then we say that $X=(X, *, \oplus, 0)$ is a BCKI-bialgebra (resp. BCIK-bialgebra), and denoted by $X=K\left(X_{1}\right) \uplus I\left(X_{2}\right)$ (resp. $X=I\left(X_{1}\right) \uplus K\left(X_{2}\right)$).
Example 3.2. (1) Let $X=\{0, a, b, c, d\}$ and consider two proper subsets $X_{1}=\{0, a, b\}$ and $X_{2}=\{0, a, c, d\}$ of X together with Cayley tables respectively as follows:

$*$	0	a	b
0	0	0	0
a	a	0	0
b	b	a	0

\oplus	0	a	c	d
0	0	0	0	0
a	a	0	a	0
c	c	c	0	0
d	d	c	a	0

Then $\left(X_{1}, *, 0\right)$ and $\left(X_{2}, \oplus, 0\right)$ are BCK-algebras. Hence $(X, *, \oplus, 0)$ is a BCK-bialgebra, i.e., $X=K\left(X_{1}\right) \uplus K\left(X_{2}\right)$.
(2) Let $X=\mathbb{R}^{+} \cup\{0, a, b, c\}$ where \mathbb{R}^{+}is the set of all positive real numbers. Define two binary operations ' $*$ ' and ' \oplus ' as follows:

$$
\left(\forall x, y \in \mathbb{R}^{+} \cup\{0\}\right)(x * y=\max \{x-y, 0\})
$$

and

\oplus	0	a	b	c
0	0	0	0	0
a	a	0	a	0
b	b	b	0	0
c	c	b	a	0

Then $\left(X_{1}:=\mathbb{R}^{+} \cup\{0\}, *, 0\right)$ and $\left(X_{2}:=\{0, a, b, c\}, \oplus, 0\right)$ are BCK-algebras. Hence $(X, *, \oplus, 0)$ is a BCK-bialgebra, i.e., $X=K\left(X_{1}\right) \uplus K\left(X_{2}\right)$.
(3) Let $X=\{0, a, b, c, d\}$ and consider two proper subsets $X_{1}=\{0, a, b\}$ and $X_{2}=$ $\{0, a, c, d\}$ of X together with Cayley tables respectively as follows:

$$
\begin{array}{c|ccc}
* & 0 & a & b \\
\hline 0 & 0 & 0 & 0 \\
a & a & 0 & 0 \\
b & b & a & 0
\end{array}
$$

\oplus	0	a	c	d
0	0	0	c	c
a	a	0	c	c
c	c	c	0	0
d	d	c	a	0

Then $\left(X_{1}, *, 0\right)$ is a BCK-algebra and $\left(X_{2}, \oplus, 0\right)$ is a BCI-algebra. Hence $(X, *, \oplus, 0)$ is a BCKI-bialgebra, i.e., $X=K\left(X_{1}\right) \uplus I\left(X_{2}\right)$.
(4) Let $X=\{0, a, b, c, d, e, x, y, z\}$ and consider two proper subsets $X_{1}=\{0, a, b, c, d, e\}$ and $X_{2}=\{0, x, y, z\}$ of X together with Cayley tables respectively as follows:

$*$	0	a	b	c	d	e
0	0	0	0	0	d	d
a	a	0	a	0	e	d
b	b	b	0	0	d	d
c	c	b	a	0	e	d
d	d	d	d	d	0	0
e	e	d	e	d	a	0

\oplus	0	x	y	z
0	0	z	y	x
x	x	0	z	y
y	y	x	0	z
z	z	y	x	0

Then $\left(X_{1}, *, 0\right)$ and $\left(X_{2}, \oplus, 0\right)$ are BCI-algebras. Hence $(X, *, \oplus, 0)$ is a BCI-bialgebra, i.e., $X=I\left(X_{1}\right) \uplus I\left(X_{2}\right)$.

Proposition 3.3. We have

Proof. Since every BCK-algebra is a BCI-algebra, it is straightforward.
Note that any BCI-algebra need not be a BCK-algebra. Hence the converse of Proposition 3.3 is not true in general.

Definition 3.4. Let $X=K\left(X_{1}\right) \uplus K\left(X_{2}\right)$ (resp. $X=K\left(X_{1}\right) \uplus I\left(X_{2}\right), X=I\left(X_{1}\right) \uplus K\left(X_{2}\right)$, $\left.X=I\left(X_{1}\right) \uplus I\left(X_{2}\right)\right)$. A subset $H(\neq \emptyset)$ of X is called a sub-bialgebra of X if there exist subsets H_{1} and H_{2} of X_{1} and X_{2}, respectively, such that
(i) $H_{1} \neq H_{2}$ and $H=H_{1} \cup H_{2}$,
(ii) $\left(H_{1}, *, 0\right)$ is a subalgebra of $\left(X_{1}, *, 0\right)$,
(iii) $\left(H_{2}, \oplus, 0\right)$ is a subalgebra of $\left(X_{2}, \oplus, 0\right)$.

Example 3.5. Let X be a BCK-bialgebra in Example 3.2(1) and let $H_{1}=\{0, a\}$ and $H_{2}=\{0, c\}$. Then $H_{1} \neq H_{2}$ and H_{1} (resp. H_{2}) is a subalgebra of X_{1} (resp. X_{2}). Hence $H=\{0, a, c\}$ is a sub-bialgebra of X. We can easily check that $(H=\{0, a, c\}, \oplus, 0)$ is a BCK-algebra. Note also that $H_{3}=\{0, d\}$ is a subalgebra of X_{2} and $H_{1} \neq H_{3}$. Thus $G=\{0, a, d\}$ is a sub-bialgebra of X. We can easily check that $(G=\{0, a, d\}, \oplus, 0)$ is not a BCK-algebra.

Remark 3.6. Let L be a sub-bialgebra of a BCK-bialgebra $(X, *, \oplus, 0)$. Then L may not be a BCK-algebra under $*$ or \oplus as seen in Example 3.5.

We provide a characterization of a sub-bialgebra.

Theorem 3.7. Let $X=K\left(X_{1}\right) \uplus K\left(X_{2}\right)$ (resp. $X=K\left(X_{1}\right) \uplus I\left(X_{2}\right), X=I\left(X_{1}\right) \uplus K\left(X_{2}\right)$, $\left.X=I\left(X_{1}\right) \uplus I\left(X_{2}\right)\right)$ and let H be a nonempty subset of X. Then H is a sub-bialgebra of X if and only if there exist two proper subsets X_{1} and X_{2} of X such that
(i) $X=X_{1} \cup X_{2}$, where $\left(X_{1}, *, 0\right)$ and $\left(X_{2}, \oplus, 0\right)$ are BCK-algebras (resp. $\left(X_{1}, *, 0\right)$ is a BCK-algebra and $\left(X_{2}, \oplus, 0\right)$ is a BCI-algebra, $\left(X_{1}, *, 0\right)$ is a BCI-algebra and $\left(X_{2}, \oplus, 0\right)$ is a BCK-algebra, $\left(X_{1}, *, 0\right)$ and $\left(X_{2}, \oplus, 0\right)$ are BCI-algebras),
(ii) $\left(H \cap X_{1}, *, 0\right)$ is a subalgebra of $\left(X_{1}, *, 0\right)$,
(iii) $\left(H \cap X_{1}, \oplus, 0\right)$ is a subalgebra of $\left(X_{1}, \oplus, 0\right)$.

Proof. We prove it for the case $X=K\left(X_{1}\right) \uplus K\left(X_{2}\right)$. For other cases, we can have desired results by the similar method. Assume that H is a sub-bialgebra of X. Then $(H, *, \oplus, 0)$ is a BCK-bialgebra. Hence there exist two distinct proper subsets H_{1} and H_{2} of H such that

- $H=H_{1} \cup H_{2}$,
- $\left(H_{1}, *, 0\right)$ and $\left(H_{2}, \oplus, 0\right)$ are BCK-algebras.

Taking $H_{1}=H \cap X_{1}$ and $H_{2}=H \cap X_{2}$ imply that $\left(H_{1}=H \cap X_{1}, *, 0\right)$ and $\left(H_{2}=\right.$ $\left.H \cap X_{2}, \oplus, 0\right)$ are subalgebras of $\left(X_{1}, *, 0\right)$ and $\left(X_{2}, \oplus, 0\right)$, respectively. Conversely, Let H be a nonempty subset of a BCK-bialgebra $(X, *, \oplus, 0)$ satisfying conditions (i), (ii) and (iii). It is sufficient to show that $\left(H \cap X_{1}\right) \cup\left(H \cap X_{2}\right)=H$. Now,

$$
\begin{aligned}
\left(H \cap X_{1}\right) \cup\left(H \cap X_{2}\right) & =\left(\left(H \cap X_{1}\right) \cup H\right) \cap\left(\left(H \cap X_{1}\right) \cup X_{2}\right) \\
& =\left((H \cup H) \cap\left(X_{1} \cup H\right)\right) \cap\left(\left(H \cup X_{2}\right) \cap\left(X_{1} \cup X_{2}\right)\right) \\
& =\left(H \cap\left(X_{1} \cup H\right)\right) \cap\left(\left(H \cup X_{2}\right) \cap X\right) \\
& =H \cap\left(H \cup X_{2}\right) \\
& =H
\end{aligned}
$$

This completes the proof.
Denote by $X=p i K\left(X_{1}\right) \uplus c K\left(X_{2}\right)$ the $X=K\left(X_{1}\right) \uplus K\left(X_{2}\right)$ in which $\left(X_{1}, *, 0\right)$ is a positive implicative BCK-algebra and $\left(X_{2}, \oplus, 0\right)$ is a commutative BCK-algebra. Denote by $X=i K\left(X_{1}\right) \uplus c K\left(X_{2}\right)$ the $X=K\left(X_{1}\right) \uplus K\left(X_{2}\right)$ in which $\left(X_{1}, *, 0\right)$ is an implicative BCK-algebra and $\left(X_{2}, \oplus, 0\right)$ is a commutative BCK-algebra. Note that

$$
X=i K\left(X_{1}\right) \uplus c K\left(X_{2}\right) \Rightarrow X=p i K\left(X_{1}\right) \uplus c K\left(X_{2}\right) \Rightarrow X=K\left(X_{1}\right) \uplus K\left(X_{2}\right)
$$

but the converse is not true in general. In fact, in Example 3.2(1), we can see that the implication

$$
X=K\left(X_{1}\right) \uplus K\left(X_{2}\right) \Rightarrow X=p i K\left(X_{1}\right) \uplus c K\left(X_{2}\right)
$$

does not hold.
Example 3.8. Let $X=\{0, x, y, a, b, c\}$ and consider two subsets $X_{1}=\{0, a, b, c\}$ and $X_{2}=\{0, x, y\}$ of X with Cayley tables as follows:

$*$	0	a	b	c
0	0	0	0	0
a	a	0	0	a
b	b	b	0	b
c	c	c	c	0

\oplus	0	x	y
0	0	0	0
x	x	0	0
y	y	x	0

It is easy to check that $X=p i K\left(X_{1}\right) \uplus c K\left(X_{2}\right)$, but $X \neq i K\left(X_{1}\right) \uplus c K\left(X_{2}\right)$.

Lemma 3.9. [3] A BCK-algebra X is positive implicative if and only if it satisfies the following identity:

$$
(\forall x, y \in X)(x * y=(x * y) * y)
$$

Lemma 3.10. [3] A BCK-algebra X is commutative if and only if it is a semilattice with respect to \wedge.

Using Lemmas 3.9 and 3.10, we provide a condition for $X=K\left(X_{1}\right) \uplus K\left(X_{2}\right)$ to be $X=p i K\left(X_{1}\right) \uplus c K\left(X_{2}\right)$.

Theorem 3.11. Let $X=K\left(X_{1}\right) \uplus K\left(X_{2}\right)$. Then $X=p i K\left(X_{1}\right) \uplus c K\left(X_{2}\right)$ if and only if the following conditions are true.
(i) $(\forall x, y \in X)(x * y=(x * y) * y)$,
(ii) X_{2} is a semilattice with respect to \wedge_{\oplus} which is given by

$$
\left(\forall a, b \in X_{2}\right)\left(a \wedge_{\oplus} b=b \oplus(b \oplus a)\right)
$$

Lemma 3.12. [3] A BCK-algebra X is commutative if and only if it satisfies the following identity:

$$
(\forall x, y \in X)(A(x) \cap A(y)=A(\wedge y))
$$

where $A(x)$ is the initial section of x.
Applying Lemmas 3.9 and 3.12, we have a characterization of $X=p i K\left(X_{1}\right) \uplus c K\left(X_{2}\right)$.
Theorem 3.13. Let $X=K\left(X_{1}\right) \uplus K\left(X_{2}\right)$. Then $X=p i K\left(X_{1}\right) \uplus c K\left(X_{2}\right)$ if and only if the following conditions are true.
(i) $(\forall x, y \in X)(x * y=(x * y) * y)$,
(ii) $\left(\forall a, b \in X_{2}\right)\left(A(a) \cap A(b)=A\left(a \wedge_{\oplus} b\right)\right)$.

Definition 3.14. [4] A set $(G,+, \bullet)$ with two binary operations + and \bullet is called a bigroup if there exists two proper subsets G_{1} and G_{2} of G such that $G=G_{1} \cup G_{2},\left(G_{1},+\right)$ is a group, and $\left(G_{2}, \bullet\right)$ is a group. If both $\left(G_{1},+\right)$ and $\left(G_{2}, \bullet\right)$ are commutative, then we say that $(G,+, \bullet)$ is a commutative bigroup.

Denote by $X=p I\left(X_{1}\right) \uplus p I\left(X_{2}\right)$ the $X=I\left(X_{1}\right) \uplus I\left(X_{2}\right)$ in which $\left(X_{1}, *, 0\right)$ and $\left(X_{2}, \oplus, 0\right)$ are p-semisimple BCI-algebras.

Lemma 3.15. [1] A BCI-algebra X satisfies the identity

$$
(\forall x, y \in X)(x *(x * y)=y)
$$

if and only if it has a sum + and $(X,+)$ is a commutative group.
Lemma 3.16. [2] In a BCI-algebra X, the following are equivalent.
(i) $(\forall x, y \in X)(x *(x * y)=y)$.
(ii) X is p-semisimple.

Theorem 3.17. If $X=p I\left(X_{1}\right) \uplus p I\left(X_{2}\right)$, then X has operations + and \bullet so that $(X,+, \bullet)$ is commutative bigroup.

Proof. If $X=p I\left(X_{1}\right) \uplus p I\left(X_{2}\right)$, then $X=X_{1} \cup X_{2}$, and $\left(X_{1}, *, 0\right)$ and $\left(X_{2}, \oplus, 0\right)$ are p semisimple BCI-algebras. By means of Lemmas 3.15 and $3.16, X$ has two operations + and \bullet so that $(X,+)$ and (X, \bullet) are commutative groups, in which + and \bullet are given by $x+y=x *(0 * y)$ and $x \bullet y=x \oplus(0 \oplus y)$ for all $x, y \in X$. Hence $(X,+, \bullet)$ is a commutative bigroup.

Theorem 3.18. Let $(G,+, \bullet)$ be a commutative bigroup. If we define operations $*$ and \oplus on G as follows:

$$
(\forall x, y \in G)(x * y=x-y) \text { and }(\forall a, b \in G)\left(a \oplus b=a \bullet b^{-1}\right)
$$

then $G=p I\left(G_{1}\right) \uplus p I\left(G_{2}\right)$ for some $G_{1}, G_{2} \subseteq G$.
Proof. If $(G,+, \bullet)$ is a commutative bigroup, then $G=G_{1} \cup G_{2}$ for some $G_{1}, G_{2} \subseteq G$, and $\left(G_{1},+\right)$ and $\left(G_{2}, \bullet\right)$ are (commutative) groups. It is easy to prove that $\left(G_{1}, *, 0\right)$ and $\left(G_{2}, \oplus, 0\right)$ are p-semisimple BCI-algebras. Hence $G=p I\left(G_{1}\right) \uplus p I\left(G_{2}\right)$.

References

[1] W. A. Dudek, On some BCI-algebras with the condition (S), Math. Japonica 31 (1986), no. 1, 25-29.
[2] C. S. Hoo, BCI-algebras with condition (S), Math. Japonica 32 (1986), no. 5, 749-756.
[3] K. Iséki and S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japonica 23 (1978), no. 1, 1-26.
[4] P. L. Maggu, On introduction of bigroup concept with its applications in industry, Pure Appl. Math. Sci. 39 (1994), 171-173.
[5] J. Meng and Y. B. Jun, BCK-algebras, Kyungmoon Sa Co. Korea, 1994.
[6] W. B. Vasantha Kandasamy, Bialgebraic structures and Smarandache bialgebraic structures, http://www.gallup.unm.edu/~smarandache/eBooks-otherformats.htm

Young Bae Jun, Department of Mathematics Education (and RINS), Gyeongsang National University, Chinju 660-701, Korea
e-mail: ybjun@gnu.ac.kr jamjana@korea.com
Mehmet Ali Öztürk, Department of Mathematics, Faculty of Arts and Sciences, Cumhuriyet University, 58140 Sivas, Turkey
e-mail: maozturk@cumhuriyet.edu.tr
Eun Hwan Roh, Department of Mathematics Education, Chinju National University of Education, Chinju 660-756, Korea.
e-mail: ehroh@cue.ac.kr

[^0]: 2000 Mathematics Subject Classification. 06F35, 03G25.
 Key words and phrases. BCK/BCI-bialgebra, sub-bialgebra, (commutative) bigroup.

 * Corresponding author.

