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Abstract. Let D be the unit disk {z : |z| < 1}. f : D → � , f(z) = z + a2z2 + . . . be
analytic in D. For −π/2 < α < π/2 and 0 ≤ λ < 1, we define SP (α,λ) to be the class
of f as above such that �[e−iαzf ′(z)/f(z)] > λ for all z ∈ D. Furthermore, let Pn be
the class of polynomials p(z) = z +a2z2 + · · ·+ anzn = z(1− z/z1) · · · (1− z/zn−1), for
ak ∈ � , k = 2, . . . , n and zk ∈ C, k = 1, . . . , n−1. For a, b > 0 we define S(a, b) to be the
class of f analytic in D for which |[zf ′(z)/f(z)]−a| < b. Given an n ≥ 2 and R > 1, we
find a and b in terms of R and n such that if p ∈ Pn has |zk| > R for k = 1, . . . , n then
p ∈ S(a, b). The result is sharp. The result implies membership in SP (α, λ)∩SP (−α,λ)
where α and λ also depend on R and n. The results improve theorems of T. Başgöze.
A physical criterion is given on the set {zk} which implies membership of p in SP (α, 0),
and the criterion is used to given an example of a p ∈ [P3 ∩ SP (α)] \ SP (−α), where
α = 0.4 Connections are made with other classes of univalent functions.

1. Introduction & Preliminaries

Let D be the unit disk {z : |z| < 1} in the complex plane C, and let f : D → C, f(z) =
z + a2z

2 + . . . be analytic in D. For −π/2 < α < π/2 and 0 ≤ λ < 1, we define SP (α, λ) to
be the class of f as above such that �[e−iαzf ′(z)/f(z)] > λ for all z ∈ D. When λ = 0 we
write SP (α, 0) = SP (α); this is the so-called α spiral-like class [6, p. 52]. When α = 0 we
have the class SP (0, λ) = St(λ), the class of functions starlike of order λ; these are in turn
subclasses of the class St = {f : �[zf ′(z)/f(z)] > 0} of starlike functions. For all λ and α
it may be shown that SP (α, λ) consist of univalent mappings of D. Clearly, for any fixed
α as above, if 0 ≤ λ1 < λ2 < 1, then SP (α, λ2)

⋂
SP (−α, λ2) ⊂ SP (α, λ1)

⋂
SP (−α, λ1),

and for any fixed λ as above, if −π/2 < α1 < α2 < π/2, then SP (α2, λ)
⋂

SP (−α2, λ) ⊂
SP (α1, λ)

⋂
SP (α1, λ). In addition, for a, b > 0 we define S(a, b) to be the class of f

analytic in D for which |[zf ′(z)/f(z)] − a| < b. Finally, for n an integer, n > 1, we let Pn

be the class of polynomials p(z) = z + a2z
2 + · · ·+ anzn = z(1− z/z1) · · · (1− z/zn−1), for

ak ∈ C, k = 2, . . . , n and zk ∈ C, k = 1, . . . , n − 1.
In a series of papers [2], [3], [4], [5] T. Başgöze considered problems involving conditions

on the zeroes of a polynomial p ∈ Pn which insure that it is a univalent mapping. In
particular, the last dealt with the problem of finding a value R = R(α, λ) > 0 having
the following property: if |zk| > R for k = 1 . . . n − 1, then p ∈ Pn has p ∈ SP (α, λ).
The SP (α, λ) classes obtained were shown to be best possible. (Başgöze stated his results
differently, but the correspondence between his treatment and ours can be made by a trivial
transformation.) These problems originated with the work of Alexander [1].

This note has two purposes. The first is to point out that Başgöze’s results in [5] can be
refined. Suppose that R = R(α, λ) is as above, and let p have |zk| > R. It is easy to see
that p ∈ SP (−α, λ) as well: letting p∗(z) = z(1− z/z1) · · · (1− z/zn−1), we have that p∗ ∈
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SP (α, λ). But it follows that �[
e−iαz(p∗)′(z)

(p∗)(z)
] > λ for all z ∈ D, hence �[

eiαzp(z)
p(z)

] > λ for

all z ∈ D. But this is clearly equivalent to p ∈ SP (−α, λ). Thus for R as above we actually
have p ∈ SP (α, λ)

⋂
SP (−α, λ). (For λ = 0 the class SP (α, 0)

⋂
SP (−α, 0) is known as

the set of functions strongly starlike of order α, see [7, p. 138], where its properties are
discussed.) We shall improve on this observation by proving that for any R > 1, if p ∈ Pn

with |zk| > R, then p ∈ S(a, b), where a and b will be given in terms of R and n. This
membership will in turn imply membership in SP (α, λ)

⋂
SP (−α, λ) for appropriate values

of α and λ. These results will be shown best possible, and are equvalent to Başgöze’s for
the cases considered.

Our main tool for this part is a corollary of the Walsh Coincidence Theorem. Since the
theorem may not be familiar, it will be stated as originally given by Walsh. Our main
theorem (Theorem 2) will follow from the corollary. It would also be possible to obtain
Theorem 2 from more general results of Kasten [9], which involve the convolution theory of
Ruscheweyh, but we prefer to derive it from this less abstract source.

The second purpose of this note is to introduce an equivalent physical interpretation
for membership in SP (α) which allows the construction of examples of p ∈ Pn

⋂
SP (α)

which are not strongly starlike of order α. As far as the authors are aware this is the first
discussion of this kind of polynomial. Some connections are made with classes of univalent
functions S(a, b), T (a, b), and R(a, b) introduced in [8].

2. Walsh Coincidence Theorem

In this section we state a version of the Walsh Coincidence Theorem and derive the
corollary which we need for our work. We state the result in full generality as it appears in
[12, p. 164], though we will not need this much generality.

Theorem 1. (Walsh Coincidence Theorem) Let f be a polynomial in z whose coefficients
are linear in and symmetric in each of the sets {a1, a2, · · · , ak}, {b1, b2, · · · , bl},
· · · , {q1, q2, · · · , qs} ⊂ C. Each coefficient must be a linear combination of the elemen-
tary symmetric functions of each of these sets with coefficients linear combinations of the
elementary symmetric functions of the other sets. These linear combinations may contain
constant terms. Let these points {ai}, {bi}, · · · , {qi} lie in circular regions Ca, Cb, · · · , Cq.
Then for any fixed values of these variables and of z we can always make all the ai coincide
in Ca, all the bi coincide in Cb, etc., without altering the value of f(z).

Note: The Ci may be the interior or exterior of a bounded circle, or any half plane. The
Ci always include the boundary of the set. It is shown in [10, p. 63] that Theorem 1 is
equivalent to Grace’s theorem on the zeroes of apolar polynomials. These theorems in turn
are related to those used in [9], see the reference to Szegö’s Theorem on page 92.

The following corollary is stated but not proved in Marden, p. 69.

Corollary 1. Let f(z) = a0 + a1z + · · · + anzn = an(z − ζ1)(z − ζ2) · · · (z − ζn), and
β �= n. Then if all the ζk lie in a circular region C, every zero Z of the polynomial
f1(z) = −zf ′(z) + βf(z) may be written in the form Z = w or Z = [β/(β − n)]w, where w
is a point of C.

Proof: We note that f1(z) = (β−n)anzn +(β− (n−1))a1z
n−1 + · · ·+(β−1)an−1z +βan.

Thus we can apply Theorem 1 to f1, where there is a single set of variables {ζ1, ζ2, · · · ζn}
and a single circular region C. The result is that if f1(Z) = 0 then there is a w in C such
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that Qβ(w,Z) = (β − n)Zn + (−1)(β − (n− 1))
(

n

1

)
wZn−1 + (β − (n − 2))

(
n

2

)
w2Zn−2 +

· · · + (β − 1)(−1)n−1

(
n

n − 1

)
wn−1Z + β(−1)nwn = 0.

But we have Qβ(w,Z) = [β(Zn−
(

n

1

)
wZn−1+

(
n

2

)
w2Zn−2+· · ·+(−1)n−1

(
n

n − 1

)
wn−1Z+

(−1)nwn))] + [(−n)Zn + (n − 1)
(

n

1

)
zn−1 + · · · + (−1)(−1)n−1

(
n

n − 1

)
wn−1Z] = β(Z −

w)n − nZ(Z − w)n−1. .

3. Main Results

Theorem 2. Let R > 1, n > 1, and p ∈ Pn, where |zk| ≥ R, k = 1 · · ·n − 1. Then

p ∈ S(
R2 − n

R2 − 1
,
R(n − 1)
R2 − 1

). This result cannot be improved.

Proof: Let DR,n = {z : |z − R2 − n

R2 − 1
| <

R(n − 1)
(R2 − 1)

}, and B(x) be the boundary of DR,n

parametrized by x ∈ C with |x| = 1. Note that 1 ∈ DR,n for all R and n. Then since
zp′(z)
p(z)

= 1 for z = 0, we have that
zp′(z)
p(z)

∈ DR,n for |z| < 1 if and only if
zp′(z)
p(z)

�= B(x)

for all |x| = 1, |z| < 1. But it is easily seen that this occurs if and only if Fx(z) =

−z
[p(z)

z

]′
+ (−1 + B(x))

[p(z)
z

]
has no zeroes in D for each |x| = 1. But by Corollary

1 applied to the circular region {z : |z| ≥ R} the zeroes of Fx(z) are either of the form

wk for |wk| ≥ R > 1 or
[B(x) − 1
B(x) − n

]
wk again for |wk| ≥ R. Clearly we need only consider

the second case. But the boundary of DR,n is produced by B(x) =
R − nx

R − x
, and one has

B(x) − 1
B(x) − n

=
x

R
. Since |wk| ≥ R, the second case gives no zero of Fx in D. Finally, an easy

calculation shows that if q(z) = z(1 − z/R)n−1, then
zq′(z)
q(z)

=
R − nz

R − z
, which shows q is

best possible.

Note: (1) The classes S(
R2 − n

R2 − 1
,
R(n − 1)
(R2 − 1)

) consist of starlike univalent functions if R ≥
n, but since q′(R/n) = 0, q is clearly not univalent on D if R < n.

(2) It might seem that the above theorem could be generalized to allow {zk}, k =

1, . . . , n − 1 to be in any disc Dz not intersecting D and
zp′(z)
p(z)

to lie inside any disc

DN containing z = 1. But the nature of the proof does not allow this:
zp′(z)
p(z)

∈ DN would

be true if and only if the corresponding Fx(z) had no zeroes in D, with the zeroes again

taking the form wk ∈ Dz or
[B∗(x) − 1
B∗(x) − n

]
wk, where B∗(x) traces out the boundary of DN .

The first case causes no problem, but since
[B∗(x) − 1
B∗(x) − n

]
loops around the origin as x traces

the boundary of D,
[B∗(x) − 1
B∗(x) − n

]
w missing D depends only on the magnitude of w. Thus

the hypothesis must be relaxed to the form |zk| ≥ R for some R.
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It is now easy to relate Theorem 2 to various classes to which the polynomials may
belong.

Corollary 2. Let n > 1 be an integer, R ≥ n, 0 ≤ λ ≤ R − n

R − 1
. Let p ∈ Pn with

|zk| > R, k = 1, . . . , n− 1. Then p ∈ SP (α, λ)
⋂

SP (−α, λ), where λ = (
R2 − n

R2 − 1
) cos(α)−

R(n − 1)
R2 − 1

. In particular, p ∈ St(
R − n

R − 1
), and p ∈ SP (α)

⋂
SP (−α) for α = cos−1(

R(n − 1)
R2 − n

).

The result is best possible in the following sense: for any fixed value of α, no larger value
of λ will suffice, and for any fixed value of λ, no larger value of α will suffice.

Proof: This follows by an elementary geometric consideration of how DR,n is rotated
rigidly around the origin while still remaining in {z : �(z) > λ}. The examples p(z) =
z(1− z/Reiθ)(n−1) show that the inclusions are best possible.

Note: It follows from a renormalization and some calculation that these results imply
the “if” portion of Theorem 2 in [5]. Our method could be adapted to achieve “if” portion
the case β = n of Theorem 1 of that paper, but we have chosen to omit consideration of
this extra parameter. Our method gives a stronger result in the “if” directions, however.

We close this section by relating the above to other function classes.

Corollary 3. If n is an integer, n > 1, then pn(z) = z(1− z/n)n−1 ∈ S(
n

n + 1
,

n

n + 1
).

Proof: Take R = n in Theorem 2.
The class S(a, b), where |1 − a| < b, was introduced in [8]. In that paper the authors

also defined R(a, b) as the set of f analytic in D for which |f ′(z) − a| < b for all z ∈ D
and T (a, b) for a ≥ b > 0 as the set of f(z) = z +

∑∞
n=2 anzn analytic in D for which∑∞

n=2(n − a + b)|an| ≤ b − |1 − a|. Inclusions among the three classes are discussed. As a
result of Corollary 2 we can add to their results the following.

Theorem 3. Let pn(z) = z(1 − z/n)n−1 for n integer, n > 1. Then pn ∈ S(
n

n + 1
,

n

n + 1
)

but pn /∈ R(
n

n + 1
,

n

n + 1
) and pn /∈ T (n/(n+1), n/(n+1)). Furthermore, pn ∈ S(1, 1), but

pn /∈ T (1, 1) and pn /∈ R(1, 1).

Proof: The first statement is Corollary 3. The second statement follows from the fact
that |p′n(z) − n

n + 1
| <

n

n + 1
fails for z ∈ D close to z = −1. The third statement follows

immediately from the definition and the value of the first term of the defining sum. The
fourth statement follows since S(

n

n + 1
,

n

n + 1
) ⊂ S(1, 1). The fifth statement follows as the

third, and the last as the fourth.
Note: In [8] the authors show that P3

⋂
R(1, 1) = P3

⋂
T (1, 1) �= P3

⋂
S(1, 1). Our

p3 provides another example of a polynomial p of any degree greater than one with p ∈
S(1, 1)\R(1, 1) and p ∈ S(1, 1)\T (1, 1). The authors also state that, as a result of examining
the maximum of the second coefficient for functions in R(a, b), S(a, b), and T (a, b) that the
inclusions S(a, b) ⊂ R(a, b) and S(a, b) ⊂ T (a, b) fail for all a and b. Our pn shows this failure
for the polynomial case if a = b = n/(n + 1), as well as addressing the first result for cases
a = b �= 1, and any n > 1. Similar examples can be constructed using q(z) = z(1− z/R)n−1

for R > n.

4. A Physical Interpretation of SP (α)

All of the work done so far has produced polynomials in SP (α) which are strongly
starlike of order α. It is not clear that there exist polynomials in SP (α) which fail this
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extra condition. We shall construct such an example. Our example is heuristically based
on an interpretation of spiral-like polynomials which we now give.

Let pn(z) = z

n−1∏
k=1

(1− z/zk), then z
p′n(z)
pn(z)

= 1+
n∑

k=1

z

z − zk
. Let z = reiθ, and |α| < π/2.

Then the condition pn ∈ SP (α) holds if and only if �
[
e−iα

(
r

r
+

n−1∑
k=1

reiθ

reiθ − zk

)]
> 0

for all reiθ ∈ D. But this holds if and only if �
⎡
⎣eiα

⎛
⎝r

r
+

n−1∑
k=1

reiθ

reiθ − zk

⎞
⎠
⎤
⎦ > 0 for all

reiθ ∈ D, which in turn occurs if and only if −π/2 < arg

[
eiα

(
1
r

+
n−1∑
k=1

1

reiθ − zk

e−iθ

)]
<

π/2. Thus we have: If pn(z) = z
∏n−1

k=1 (1 − z/zk), then pn(z) ∈ SP (α) if and only if

(θ − α) − π/2 < arg

[
1

reiθ − 0
+

n−1∑
k=1

1

reıθ − zk

]
< (θ − α) + π/2 for |z| < 1.

The quantity
1

reiθ − 0
+

n−1∑
k=1

1

reiθ − zk

has a physical interpretation credited to Gauss:

the vector
1

reiθ − zk

represents the force at reiθ due to a particle of unit mass at zk which

repels with a force whose magnitude is equal to its mass divided by the distance. Thus if
unit masses are placed at each |zk| > 1 and at zero itself with a repulsive force as above,
then starlikeness of pn is equivalent to the condition that the sum of the repulsive forces
directed at any point eiθ ∈ ∂D points in a direction outward from the boundary. Spiral-
likeness tilts this outward orientation at eiθ by an angle α, |α| < π/2. We may add that
this interpretation is valid for R(z) = z + a2z

2 + · · · rational in D, where the forces may be
regarded as repulsive or attractive depending on whether they are zeroes or poles of R.

The field −→
F (z) = 1/z +

∑n−1
k=1 1/(z − zk) is sourceless (aside from the obvious poles at

zk) and irrotational, according to Pólya’s interpretation of the Cauchy-Riemann equations
for the rational function 1/z +

∑n−1
k=1 1/(z − zk) (see [11]), and ∇(1

2 ln |pn(z)|2) = −→
F (z).

Thus the streamlines of −→F , the lines following the direction of −→F in the domain of pn, get
mapped by pn to the lines of constant argument. Then pn ∈ St if and only if D is contained
in the set of streamlines emanating from the origin, exiting ∂D (to provide the exit angle
for −→

F in the outward direction), and not returning to D (this disallows an −→
F (eiθ) pointing

inward to ∂D). If pn ∈ SP (α), then the streamlines emanating from the origin exit D at
eiθ with an angle between −α − π/2 and −α + π/2 off the normal, and a streamline may
exit and re-enter. In this case some streamlines in D may also originate from a zero other
than the origin.

We note finally that for any pn ∈ St a streamline emanating from the origin does so with
increasing magnitude, a fact which can easily be proved for arbitrary f ∈ St as well:

Theorem 4. For any f ∈ St, θ ∈ R fixed, we have |f−1(reiθ)| is an increasing function of
r.

Proof: Let f : D → D be univalent starlike, and fix 0 ≤ θ < 2π and let R = the ray from the
origin in D with angle θ from the axis of positive reals. Then if L = f−1(R) emanates from

the origin we have
∂

∂r
log |f−1(reiθ)| =

∂

∂r
Re
[
log f−1(reiθ)

]
= Re

[
∂

∂r
log(f−1(reiθ))

]
=
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Re
[

d

dw
log f−1(reiθ)

∂w

∂r

]
(where w = reiθ) = Re

[
1

f−1(reiθ)

(
d

dw
f−1(reiθ)

)
eiθ

]

= Re
[

1
f−1(reiθ)

1
f ′(z)

eiθ

]
(where w = f(z)) = Re

[
1
z

(f(z)/|f(z)|)
f ′(z)

]
> 0. Thus log |f−1(reiθ)|

is an increasing function of r, for fixed θ, and the result follows upon exponentiation.
We may also note for completeness that a version of the “exiting vectorfield” condition

holds for arbitary f ∈ St. Assume for simplicity that f ∈ A is starlike univalent in a neigh-

borhood of D, then Re
[
zf ′(z)
f(z)

]
> 0 on ∂D is equivalent to −π/2 < arg{zf ′(z)/f(z)} <

π/2, which in turn is equivalent to −π/2 < arg{zf ′(z)} − arg{f (z)} < π/2 for z ∈ ∂D.
Thus the angle between the outward normal to f(∂D) at z and the ray R from the origin
through f(z) is between −π/2 and π/2. But by conformality of f at z this means that the
angle between the outward normal at z and the arc f−1(R) from 0 to z also lies between
−π/2 and π/2. In dealing with polynomials one can control the field and streamlines by
adjusting the zeroes; this observation is the basis for our example.

5. An Example

The above interpretation can be used as a tool to construct many examples of starlike
and spiral-like polynomials. We note, for example, that it follows immediately from this
interpretation that setting |zk| ≥ n, k = 1 · · ·n − 1 for p ∈ Pn implies that the resulting
polynomial is starlike univalent in D. This follows since locating sources outside or on
{z : |z| = n} assures the net force contributed inward to D at a point eiθ ∈ ∂D does not
exceed 1, the force emanating from the origin; thus −→

F always points outward on ∂D. This
result was obtained in [1] by a different method.

Less trivial examples can be produced. We will conclude by indicating how one can
use the interpretation heuristically to suggest how to proceed, then construct our example.
Placing a zero at the origin and z1 = c, 1 < c < 2 will give a polynomial with a critical
point c1, 0 < c1 < 1. By the Gauss-Lucas Theorem placing z3 = di for d > 1 will lift c1

to the interior of the triangle formed by the origin, z1, and z2. It also introduces a second
critical point c2 in the same triangle. One needs to adjust c and d so that |c1|, |c2| > 1 and
c1 is close enough to the boundary of D that certain behavior occurs. Specifically, we want
a streamline from the origin which exits D near c1, is deflected back into the interior of D
below the exit point by the force stream from z1, then exits D once more below the re-entry
point. We also want a streamline which exits D above the first one at an angle almost π
greater than the re-entry angle of the first streamline.

By choosing z1 = 1.85553 and z2 = 2.7i, we obtain a cubic q3(z) = z(1− z/z1)(1− z/z2).
Using the computer algebra system MAPLE IX one can verify that:

1. q3 ∈ SP (0.4) (Since zq′3(z)/q3(z) is harmonic on D, we need only test on the boundary
of D.

2. If g(θ) = argument[1 +
e−iθ

e−iθ − 1.85553
+

e−iθ

e−iθ − (−2.7i)
], then g(.146) = −1.969 <

−π/2 and g(.152) = 1.155 . . . .
3. c1 = .988911 · · ·+ (0.14857 . . . )i, and |c1| = 1.000009722 . . . .

It follows from (2) that q3 /∈ St. Furthermore, with α = 0.4 we have −α − π/2 =
−1.9707 · · · < g(0.146) and g(0.152) < −α + π/2 = 1.17079 . . . , so the angle spread for
the exiting vectorfield is nearly π. Thus zq′3(z)/q3(z) lies nearly tangentially in the upper
half plane formed by rotating the imaginary axis by 0.4 radians counterclockwise. One can
compare this with Corollary 2, which requires |zk| > R = (1 +

√
(1 + cos2(0.4)/ cos(0.4) =

3.1299045 . . . for membership in the strongly starlike class of order α = 0.4.
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