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Abstract. A new method for constructing first-passage-time probability density func-
tions in the case of regular one-dimensional time homogeneous diffusion processes
restricted between constant boundaries is proposed. Some diffusion processes of par-
ticular interest in neuronal modeling are considered and thoroughly discusses.

1 Introduction
The determination of the first-passage-time (FPT) probability density function (pdf) for
diffusion processes is known to play a relevant role for various biological systems modeling.
For instance, when modeling neurons firing by means of diffusion processes, the FPT pdf
represents the mathematical counterpart of the neuron recorded firing interspike histograms
(cf., for instance, [11] and references therein). In this paper we propose a new method
for constructing FPT pdf’s in the case of time homogeneous diffusion processes restricted
between constant boundaries S1, S2 (S1 < S2), with (a) S1 absorbing and S2 elastic or (b)
S1 elastic and S2 absorbing. The elastic boundary is assumed to be partially transparent in
the sense that its behavior is intermediate between total absorption and total reflection (cf.
[6]). The degree of elasticity of Si (i = 1, 2) is determined by two nonnegative parameters,
say αi (absorption coefficient) and βi (reflection coefficient), with αi +βi > 0. The extreme
cases of a totally reflecting boundary Si occurs for αi = 0, βi = 0 determining instead total
absorption at Si (i = 1, 2).

Our approach consists of providing a direct construction of FPT pdf’s for a preassigned
diffusion process in terms of predefined FPT pdf’s of a known diffusion process, without
using transition pdfs, thus neglecting the well known space transformations of Kolmogorov
equations (cf., for instance, [1], [2], [3], [10]) and refrain from implementation of symmetry
properties (cf., for instance, [5], [8], [9]).

Let {X(t), t ≥ 0} be a regular one-dimensional time-homogeneous diffusion process with
drift A1(x) and infinitesimal variance A2(x) defined in I = (r1, r2), with P{X(0) = y} = 1
and let

h(x) = exp
{
−2

∫ x A1(z)
A2(z)

dz
}

(x ∈ I)(1.1)

be the scale function of X(t). Furthermore, let S1, S2 denote two arbitrary constant bound-
aries such that S1, S2 ∈ I and S1 < y < S2.

Hereafter, the necessary preliminary background and notation is provided. We consider
first the case of FPT through the lower boundary and then that of FPT through the upper
boundary.

(a) FPT through the lower boundary
Assume that S1 is an absorbing boundary and S2 an elastic boundary. The degree of
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elasticity of the boundary S2 depends on the choice of the two nonnegative parameters,
α2 and β2, with α2 + β2 > 0, representing the absorption and the reflection coefficients,
respectively. We define

T − = inf
t≥0

{
t : X(t) < S1, X(ϑ) ≤ S2, ∀ϑ ∈ (0, t)

}
, X(0) = y(1.2)

and denote by

g−(S1, S2, t | y) =
∂

∂t
P (T − < t)(1.3)

its pdf. Hence, P (T − < t) is the probability that X(t) crosses for the first time S1 at some
time preceding t before crossing S2. Let

g−λ (S1, S2 | y) =
∫ +∞

0

e−λ t g−(S1, S2, t | y) dt(1.4)

be the Laplace transform (LT in the sequel) of g−(S1, S2, t | y). Due to the time homogene-
ity of the diffusion process under consideration and to the temporal independence of the
boundaries, g−λ (S1, S2 | y) is the solution of

A1(y)
dvλ(y)
dy

+
1
2
A2(y)

d2vλ(y)
dy2

= λ vλ(y) (S1 < y < S2)(1.5)

with the conditions:

lim
y↓S1

vλ(y) = 1, lim
y↑S2

{
α2 vλ(y) + β2 h

−1(y)
dvλ(y)
dy

}
= 0.(1.6)

Even though the inverse LT of the function g−λ (S1, S2 | y), obtained via Eq. (1.5) with
conditions (1.6), cannot be explicitly obtained, nevertheless it provides useful information
on the probability of ultimate FPT through the lower boundary. Indeed, by setting λ = 0
in (1.5) and (1.6), one obtains:

P−(S1, S2 | y) :=
∫ +∞

0

g−(S1, S2, t | y) dt =
β2 + α2

∫ S2

y

h(u) du

β2 + α2

∫ S2

S1

h(u) du
·(1.7)

Note that if r2 is an inaccessible boundary, by setting β2 = 0 and taking the limit as
S2 → r2 in (1.3) and in (1.7) one is led to the FPT pdf g(S1, t | y) := ∂P (T1 < t)/∂t and
to the FPT probability P (S1 | y) := P (T1 < +∞), where

T1 = inf
t≥0

{
t : X(t) < S1

}
, X(0) = y > S1.

(b) FPT through the upper boundary
Assume now that S1 is an elastic boundary and S2 an absorbing boundary. The degree of
elasticity of the boundary S2 depends on the choice of the two nonnegative parameters, α1

(absorbing coefficient) and β1 (reflecting coefficient), with α1 + β1 > 0. Denote

T + = inf
t≥0

{
t : X(t) > S2, X(ϑ) ≥ S1, ∀ϑ ∈ (0, t)

}
, X(0) = y(1.8)
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and

g+(S1, S2, t | y) =
∂

∂t
P (T + < t)(1.9)

its pdf. Hence, P (T + < t) is the probability that X(t) crosses for the first time S2 at some
time preceding t before crossing S1. The LT

g+
λ (S1, S2 | y) =

∫ +∞

0

e−λ t g+(S1, S2, t | y) dt(1.10)

of g+(S1, S2, t | y) can obtained as solution of (1.5) with the conditions

lim
y↓S1

{
α1 vλ(y) − β1 h

−1(y)
dvλ(y)
dy

}
= 0, lim

y↑S2
vλ(y) = 1.(1.11)

Setting λ = 0 in (1.5) and (1.11), the probability of ultimate FPT through the upper
boundary is then given by:

P+(S1, S2 | y) :=
∫ +∞

0

g+(S1, S2, t | y) dt =
β1 + α1

∫ y

S1

h(u) du

β1 + α1

∫ S2

S1

h(u) du
·(1.12)

Note that if r1 is inaccessible, setting β1 = 0 and taking the limit as S1 → r1 in
(1.9) and in (1.12), the FPT pdf g(S2, t | y) := ∂P (T2 < t)/∂t and the FPT probability
P (S2 | y) := P (T2 < +∞) can be obtained, where T2 denotes the random variable

T2 = inf
t≥0

{
t : X(t) > S2

}
, X(0) = y < S2.

Example 1.1 Let {X(t), t ≥ 0} be a Wiener diffusion process with drift and infinitesimal
variance:

A1 = ξ, A2 = ω2 (ξ ∈ R, ω > 0)(1.13)

respectively, defined in R, with P{X(0) = y} = 1. The scale function of X(t) is:

h(x) = B exp
{
− 2 ξ x

ω2

}
(B > 0, x ∈ R).(1.14)

The general solution of (1.5) is

vλ(y) = C1 exp
{
y ϑ1(λ)

}
+ C2 exp

{
y ϑ2(λ)

}
,(1.15)

with C1, C2 arbitrary real constants, and where ϑ1(λ) and ϑ2(λ) are the roots of the char-
acteristic equation:

ω2 ϑ2(λ) + 2 ξ ϑ(λ) − 2λ = 0.(1.16)

By imposing that (1.15) satisfies the boundaries conditions (1.6), the LT of the FPT pdf
through S1 in the presence of an elastic boundary in S2 can be determined:

g−λ (S1, S2 | y) =
eS2 ϑ2(λ)+y ϑ1(λ)K2,2(λ) − eS2 ϑ1(λ)+y ϑ2(λ)K2,1(λ)
eS2 ϑ2(λ)+S1 ϑ1(λ)K2,2(λ) − eS2 ϑ1(λ)+S1 ϑ2(λ)K2,1(λ)

,(1.17)
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where

Ki,j(λ) = αi h(Si) + βi ϑj(λ) (i, j = 1, 2).(1.18)

Furthermore, setting λ = 0 in (1.17), the probability of ultimate FPT through S1 in the
presence of an elastic boundary in S2 is:

P−(S1, S2 | y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

β2 + α2B (S2 − y)
β2 + α2B (S2 − S1)

, ξ = 0

β2 − α2
ω2

2 ξ

[
h(S2) − h(y)

]
β2 − α2

ω2

2 ξ

[
h(S2) − h(S1)

] , ξ �= 0.

(1.19)

In particular, if β2 = 0 from (1.17) one has:

g−λ (S1, S2 | y) =
eS2 ϑ2(λ)+y ϑ1(λ) − eS2 ϑ1(λ)+y ϑ2(λ)

eS2 ϑ2(λ)+S1 ϑ1(λ) − eS2 ϑ1(λ)+S1 ϑ2(λ)
,(1.20)

that identifies with the LT of the FPT pdf through S1 in the presence of an absorbing
boundary in S2 (see, for instance, [4]). Instead, if α2 = 0, from (1.17) one obtains:

g−λ (S1, S2 | y) =
ϑ2(λ) eS2 ϑ2(λ)+y ϑ1(λ) − ϑ1(λ) eS2 ϑ1(λ)+y ϑ2(λ)

ϑ2(λ) eS2 ϑ2(λ)+S1 ϑ1(λ) − ϑ1(λ) eS2 ϑ1(λ)+S1 ϑ2(λ)
,(1.21)

that identifies with the LT of the FPT pdf through S1 in the presence of a reflecting
boundary in S2 (see, for instance, [4]).

Furthermore, by imposing that (1.15) satisfies (1.11), the LT of the FPT pdf through
S2 in the presence of an elastic boundary in S1 is given by:

g+
λ (S1, S2 | y) =

eS1 ϑ1(λ)+y ϑ2(λ)H1,1(λ) − eS1 ϑ2(λ)+y ϑ1(λ)H1,2(λ)
eS1 ϑ1(λ)+S2 ϑ2(λ)H1,1(λ) − eS1 ϑ2(λ)+S2 ϑ1(λ)H1,2(λ)

,(1.22)

where
Hi,j(λ) = αi h(Si) − βi ϑj(λ) (i, j = 1, 2).

The probability of ultimate FPT through S2 in the presence of an elastic boundary in S1

is then obtained by setting λ = 0 in (1.22):

P+(S1, S2 | y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

β1 + α1B (y − S1)
β1 + α1 B (S2 − S1)

, ξ = 0

β1 − α1
ω2

2 ξ

[
h(y) − h(S1)

]
β1 − α1

ω2

2 ξ

[
h(S2) − h(S1)

] , ξ �= 0.

(1.23)

In particular, if β1 = 0 from (1.22) one has:

g+
λ (S1, S2 | y) =

eS1 ϑ1(λ)+y ϑ2(λ) − eS1 ϑ2(λ)+y ϑ1(λ)

eS1 ϑ1(λ)+S2 ϑ2(λ) − eS1 ϑ2(λ)+S2 ϑ1(λ)
,(1.24)
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that identifies with the LT of the FPT pdf through S2 in the presence of an absorbing
boundary in S1 (see, for instance, [4]). Instead, if α1 = 0, from (1.22) one obtains:

g+
λ (S1, S2 | y) =

ϑ1(λ) eS1 ϑ1(λ)+y ϑ2(λ) − ϑ2(λ) eS1 ϑ2(λ)+y ϑ1(λ)

ϑ1(λ) eS1 ϑ1(λ)+S2 ϑ1(λ) − ϑ2(λ) eS1 ϑ2(λ)+S2 ϑ1(λ)
,(1.25)

that identifies with the LT of the FPT pdf through S2 in the presence of a reflecting
boundary in S1.

Finally, taking the limit as S2 → +∞ in (1.20) or taking the limit as S1 → −∞ in (1.24)
one obtains the well-known result:

gλ(S | y) = exp
{ ξ

ω2
(S − y) − |S − y|

ω2

√
ξ2 − 2 σ2 λ

}
(S �= y),(1.26)

from which it follows:

g(S, t | y) =
|S − y|
ω
√

2 π t3
exp

{
− (S − y − ξ t)2

ω2 t

}
(S �= y).(1.27)

In Section 2 we will make use of the equation (1.5) with conditions (1.6) or (1.11) to provide
a direct construction of FPT pdf’s for a preassigned diffusion process in terms of predefined
FPT pdf’s of a known diffusion process. Finally, in Section 3 some diffusion processes of
particular interest for neurons activity modeling are considered and thoroughly analyzed.

2 The construction of FPT pdf’s
Let {X(t), t ≥ 0} be a regular one-dimensional time-homogeneous diffusion process with
drift A1(x) and infinitesimal variance A2(x) defined in I = (r1, r2), with P{X(0) = y} = 1
and let S1, S2 denote arbitrary constant boundaries such that S1, S2 ∈ I and S1 < y < S2.
The scale function of X(t) is given in (1.1). As in Section 1, we denote by g−(S1, S2, t | y)
and P−(S1, S2 | y) the FPT pdf and the probability of ultimate FPT through S1 in the
presence of the elastic boundary S2 and by g+(S1, S2, t | y) and P+(S1, S2 | y) the FPT pdf
and the probability of ultimate FPT through S2 in the presence of the elastic boundary S1.

Furthermore, let {X̂(t), t ≥ 0} be a regular one-dimensional time-homogeneous diffusion
process with drift Â1(x) and infinitesimal variance Â2(x) defined in Î = (r̂1, r̂2), with
P{X̂(0) = ŷ} = 1, and let Ŝ1, Ŝ2 denote arbitrary constant boundaries such that Ŝ1, Ŝ2 ∈ Î.
The scale function of X̂(t) is then:

ĥ(x) = exp
{
−2

∫ x Â1(z)

Â2(z)
dz

}
(x ∈ Î).(2.1)

We now denote by γ−(Ŝ1, Ŝ2, t | ŷ) and Q−(Ŝ1, Ŝ2 | ŷ) the FPT pdf and the probability
of ultimate FPT through Ŝ1 in the presence of the elastic boundary Ŝ2, respectively, and
by γ+(Ŝ1, Ŝ2, t | ŷ) and Q+(Ŝ1, Ŝ2 | ŷ) the FPT pdf and the probability of ultimate FPT
through Ŝ2 in the presence of the elastic boundary Ŝ1, respectively.

As is well-known, ifX(t) and X̂(t) are obtainable from one another by means of a strictly
monotonic transformation, then the infinitesimal moments of the processes are mutually
related, as shown in following Remark.

Remark 2.1 Let X̂(t) be a regular diffusion process defined in Î with drift Â1(x) and
infinitesimal variance Â2(x) and let ψ : I → Î be a strictly monotonic function such that
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ψ(y) ∈ C2(I). Then, X(t) = ψ−1[X̂(t)] defines a regular diffusion process defined in I with
infinitesimal moments:

A1(y) =
(dψ(y)

dy

)−1

Â1[ψ(y)] − 1
2

(dψ(y)
dy

)−3 d2ψ(y)
dy2

Â2[ψ(y)]

(2.2)

A2(y) =
(dψ(y)

dy

)−2

Â2[ψ(y)].

In Theorem 2.1 and Theorem 2.2 we shall consider a generalization of (2.2) that involves
the probabilities of ultimate FPT of two regular diffusion processes X̂(t) and X(t), and
determine some special functional relations among the FPT pdf’s of such processes. We
emphasize that this is accomplished without making use of the transition pdf’s of the
considered processes.

Theorem 2.1 Let X̂(t) and X(t) be regular diffusion processes with infinitesimal moments
Âi(x) (i = 1, 2) and Ai(x) (i = 1, 2) defined in Î and I, respectively. Furthermore, let
ψ : I → Î be a strictly increasing function such that ψ(y) ∈ C2(I).

(i) If

A1(y) =
(dψ(y)

dy

)−1

Â1[ψ(y)] −
(dψ(y)

dy

)−2

Â2[ψ(y)]
[

1
ϕ(y)

dϕ(y)
dy

+
1
2

(dψ(y)
dy

)−1 d2ψ(y)
dy2

]
(2.3)

A2(y) =
(dψ(y)

dy

)−2

Â2[ψ(y)],

with

ϕ(y) =
P−(S1, S2 | y)

Q−[ψ(S1), ψ(S2) | ψ(y)]
,(2.4)

then

g−(S1, S2, t | y) = ϕ(y) γ−[ψ(S1), ψ(S2), t | ψ(y)] (S1 < y < S2).(2.5)

(ii) If relations (2.3) hold with

ϕ(y) =
P+(S1, S2 | y)

Q+[ψ(S1), ψ(S2) | ψ(y)]
,(2.6)

then

g+(S1, S2, t | y) = ϕ(y) γ+[ψ(S1), ψ(S2), t | ψ(y)] (S1 < y < S2).(2.7)

Proof. We set Ŝ1 = ψ(S1), Ŝ2 = ψ(S2) and ŷ = ψ(y). Since S1 < y < S2 and ψ(y) is a
strictly increasing function, one has Ŝ1 < ŷ < Ŝ2.

We now prove separately the cases (i) and (ii).

Case (i) For simplicity, we set

uλ(ŷ) := γ−λ (Ŝ1, Ŝ2 | ŷ), vλ(y) := g−λ (S1, S2 | y)
(2.8)

u0(ŷ) := Q−(Ŝ1, Ŝ2 | ŷ), v0(y) := P−(S1, S2 | y).
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Note that vλ(y) is solution of (1.5) and (1.6) while v0(y) is given in (1.7). Instead, the LT
uλ(ŷ) is solution of the differential equation

Â1(ŷ)
d

dŷ
uλ(ŷ) +

1
2
Â2(ŷ)

d2

dŷ2
uλ(ŷ) = λuλ(ŷ)(2.9)

with the conditions:

lim
�y↓�S1

uλ(ŷ) = 1, lim
�y↑�S2

{
α2 uλ(ŷ) + β2 ĥ

−1(ŷ)
d

dŷ
uλ(ŷ)

}
= 0,(2.10)

where ĥ(x) is given in (2.1). Furthermore, one has

u0(ŷ) =
β2 + α2

∫
�S2

�y

ĥ(u) du

β2 + α2

∫ �S2

�S1

ĥ(u) du

·(2.11)

We shall now prove that if the drifts and the infinitesimal variances of X(t) and X̂(t) satisfy
(2.3) with

ϕ(y) :=
v0(y)
u0(ŷ)

=
P−(S1, S2 | y)
Q−(Ŝ1, Ŝ2 | ŷ)

,(2.12)

then v∗λ(y) := ϕ(y) uλ(ŷ), i.e. the right-hand-side of (2.5), is solution of Eq. (1.5) with the
conditions (1.6). Since

dv∗λ(y)
dy

=
dϕ(y)
dy

uλ(ŷ) + ϕ(y)
duλ(ŷ)
dŷ

dψ(y)
dy

,

d2v∗λ(y)
dy2

=
d2ϕ(y)
dy2

uλ(ŷ) + 2
dϕ(y)
dy

duλ(ŷ)
dŷ

dψ(y)
dy

+ ϕ(y)
d2uλ(ŷ)
dŷ2

(dψ(y)
dy

)2

+ϕ(y)
duλ(ŷ)
dŷ

d2ψ(y)
dy2

,

one obtains:

A1(y)
d

dy
v∗λ(y) +

1
2
A2(y)

d2

dy2
v∗λ(y) − λ v∗λ(y)

= ϕ(y)

{[
A1(y)

1
ϕ(y)

dϕ(y)
dy

+
1
2
A2(y)

1
ϕ(y)

d2ϕ(y)
dy2

− λ
]
uλ(ŷ)

+
[
A1(y)

dψ(y)
dy

+A2(y)
1

ϕ(y)
dϕ(y)
dy

dψ(y)
dy

+
1
2
A2(y)

d2ψ(y)
dy2

] duλ(ŷ)
dŷ

+
1
2
A2(y)

(dψ(y)
dy

)2 d2uλ(ŷ)
dŷ2

}
.(2.13)

Making use of (1.7) and (2.11) one can prove that (2.12) is solution of

A1(y)
dϕ(y)
dy

+
1
2
A2(y)

d2ϕ(y)
dy2

= 0.(2.14)
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Furthermore, recalling (2.3) one has:

A2(y)
(dψ(y)

dy

)2

= Â2(ŷ),

(2.15)

A1(y)
dψ(y)
dy

+A2(y)
1

ϕ(y)
dϕ(y)
dy

dψ(y)
dy

+
1
2
A2(y)

d2ψ(y)
dy2

= Â1(ŷ).

By virtue of (2.14) and (2.15), and due (2.9), Eq. (2.13) yields:

A1(y)
d

dy
v∗λ(y) +

1
2
A2(y)

d2

dy2
v∗λ(y) − λ v∗λ(y)

= ϕ(y)

{
Â1(ŷ)

duλ(ŷ)
dŷ

+
1
2
Â2(ŷ)

d2uλ(ŷ)
dŷ2

− λuλ(ŷ)

}
= 0.(2.16)

Hence, v∗λ(y) is solution of (1.5).
We now prove that v∗λ(y) satisfies the boundaries conditions (1.6). To this purpose, recalling
(1.7), (2.8) and (2.11), we have

lim
y↓S1

v0(y) = 1, lim
y↑S2

v0(y) =
β2

β2 + α2

∫ S2

S1

h(z) dz
,

(2.17)

lim
y↓S1

u0(ŷ) = 1 lim
y↑S2

u0(ŷ) =
β2

β2 + α2

∫ �S2

�S1

ĥ(z) dz

,

so that from (2.12) it follows:

lim
y↓S1

ϕ(y) = 1, lim
y↑S2

ϕ(y) =
β2 + α2

∫
�S2

�S1

ĥ(z) dz

β2 + α2

∫ S2

S1

h(z) dz
·(2.18)

Hence, recalling the first of (2.10), v∗λ(y) and (2.18), one has:

lim
y↓S1

v∗λ(y) ≡ lim
y↓S1

[
ϕ(y)uλ(ŷ)

]
= lim

�y↓�S1

uλ(ŷ) = 1,(2.19)

i.e. v∗λ(y) satisfies the first of (1.6). To prove that v∗λ(y) satisfies the second of (1.6), we
consider the following two cases: (1) β2 = 0 and (2) β2 �= 0.
(1) If β2 = 0, i.e. S2 and Ŝ2 are absorbing boundaries, then

lim
y↑S2

{
α2 v

∗
λ(y) + β2 h

−1(y)
d

dy
v∗λ(y)

}
= α2 ϕ(S2) lim

�y↑�S2

uλ(ŷ) = 0(2.20)

where the last equality follows by virtue of the second of (2.10).
(2) If β2 �= 0, i.e. S2 and Ŝ2 are reflecting or full elastic boundaries, so that

lim
y↑S2

{
α2 v

∗
λ(y) + β2 h

−1(y)
d

dy
v∗λ(y)

}
= ϕ(S2)

ĥ(Ŝ2)
h(S2)

dψ(y)
dy

∣∣∣∣
y=S2

lim
�y↑�S2

{
α2 uλ(ŷ) + β2 ĥ

−1(ŷ)
duλ(ŷ)
dŷ

}
= 0
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the vanishing of the right hand side being a consequence of the second of (2.10). Hence,
v∗λ(y) ≡ g−λ (S1, S2 | y) and thus (2.5) holds.

Case (ii) We now set

uλ(ŷ) = γ+
λ (Ŝ1, Ŝ2 | ŷ), vλ(y) = g+

λ (S1, S2 | y)
(2.21)

u0(ŷ) = Q+(Ŝ1, Ŝ2 | ŷ), v0(y) = P+(S1, S2 | y).

We recall that the LT vλ(y) is solution of (1.5) with the conditions (1.11) and that v0(y) is
given in (1.12). Instead, the LT uλ(ŷ) is solution of the differential equation (2.9) with the
conditions:

lim
�y↓�S1

{
α1 uλ(ŷ) − β1 ĥ

−1(ŷ)
d

dŷ
uλ(ŷ)

}
= 0, lim

�y↑�S2

uλ(ŷ) = 1,(2.22)

with ĥ(x) given in (2.1). Furthermore, one has:

u0(ŷ) =
β1 + α1

∫
�y

�S1

ĥ(u) du

β1 + α1

∫ �S2

�S1

ĥ(u) du

·(2.23)

We shall now prove that if the drifts and the infinitesimal variances of X(t) and X̂(t) satisfy
(2.3) with

ϕ(y) :=
v0(y)
u0(ŷ)

=
P+(S1, S2 | y)
Q+(Ŝ1, Ŝ2 | ŷ)

,(2.24)

then v∗λ(y) := ϕ(y) uλ(ŷ), i.e. the right-hand-side of (2.7), is solution of Eq. (1.5) with the
conditions (1.11). Similarly to case (i), it is easily seen that v∗λ(y) satisfies Eq. (1.5). We
now prove that conditions (1.11) hold for v∗λ(y). To this purpose, we recall (1.12), (2.21)
and (2.23), to note that

lim
y↓S1

v0(y) =
β1

β1 + α1

∫ S2

S1

h(z) dz
, lim

y↑S2
v0(y) = 1,

(2.25)

lim
y↓S1

u0(ŷ) =
β1

β1 + α1

∫
�S2

�S1

ĥ(z) dz

, lim
y↑S2

u0(ŷ) = 1,

so that from (2.24) it follows:

lim
y↓S1

ϕ(y) =
β1 + α1

∫
�S2

�S1

ĥ(z) dz

β1 + α1

∫ S2

S1

h(z) dz
, lim

y↑S2
ϕ(y) = 1.(2.26)
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To prove that v∗λ(y) satisfies the first of (1.11), we consider the following two cases: (1)
β1 = 0 and (2) β1 �= 0.
(1) If β1 = 0, i.e. S1 and Ŝ1 are absorbing boundaries, then

lim
y↓S1

{
α1 v

∗
λ(y) − β1 h

−1(y)
d

dy
v∗λ(y)

}
= α1 ϕ(S1) lim

�y↓�S1

uλ(ŷ) = 0(2.27)

where the last equality follows by virtue of the first of (2.22).
(2) If β1 �= 0, i.e. S1 and Ŝ1 are reflecting or full elastic boundaries, then

lim
y↓S1

{
α1 v

∗
λ(y) − β1 h

−1(y)
d

dy
v∗λ(y)

}
= ϕ(S1)

ĥ(Ŝ1)
h(S1)

dψ(y)
dy

∣∣∣∣
y=S1

lim
�y↓�S1

{
α1 uλ(ŷ) − β1 ĥ

−1(ŷ)
duλ(ŷ)
dŷ

}
that vanishes by virtue of the first of (2.22), so that v∗λ(y) satisfies the first of (1.11). Finally,
recalling the second of (2.22) and (2.26), one has:

lim
y↑S2

v∗λ(y) ≡ lim
y↑S2

[
ϕ(y)uλ(ŷ)

]
= lim

�y↑�S2

uλ(ŷ) = 1,(2.28)

i.e. v∗λ(y) also satisfies the second of (1.11). In conclusion, v∗λ(y) ≡ g+
λ (S1, S2 | y) and thus

(2.7) holds.

Theorem 2.2 Let X̂(t) and X(t) be regular diffusion processes with infinitesimal moments
Âi(x) (i = 1, 2) and Ai(x) (i = 1, 2) defined in Î and I, respectively. Furthermore, let
ψ : I → Î be a strictly decreasing function such that ψ(y) ∈ C2(I).

(i) If relations (2.3) hold with

ϕ(y) =
P−(S1, S2 | y)

Q+[ψ(S2), ψ(S1) | ψ(y)]
,(2.29)

then

g−(S1, S2, t | y) = ϕ(y) γ+[ψ(S2), ψ(S1), t | ψ(y)] (S1 < y < S2).(2.30)

(ii) If relations (2.3) hold with

ϕ(y) =
P+(S1, S2 | y)

Q−[ψ(S2), ψ(S1) | ψ(y)]
,(2.31)

then

g+(S1, S2, t | y) = ϕ(y) γ−[ψ(S2), ψ(S1), t | ψ(y)] (S1 < y < S2).(2.32)

Proof. We set Ŝ1 = ψ(S1), Ŝ2 = ψ(S2) and ŷ = ψ(y). Since S1 < y < S2 and ψ(y) is a
strictly decreasing function, one has Ŝ2 < ŷ < Ŝ1.

We consider separately the cases (i) and (ii).

Case (i) For simplicity, we set

uλ(ŷ) = γ+
λ (Ŝ2, Ŝ1 | ŷ), vλ(y) = g−λ (S1, S2 | y)

(2.33)

u0(ŷ) = Q+(Ŝ2, Ŝ1 | ŷ), v0(y) = P−(S1, S2 | y).
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We note that vλ(y) is solution of (1.5) with the conditions (1.6) and that v0(y) is given in
(1.7). Instead, uλ(ŷ) is solution of (2.9) with the conditions:

lim
�y↓�S2

{
α2 uλ(ŷ) − β2 ĥ

−1(ŷ)
d

dŷ
uλ(ŷ)

}
= 0, lim

�y↑�S1

uλ(ŷ) = 1,(2.34)

where ĥ(x) is given in (2.1). Furthermore, one has:

u0(ŷ) =
β2 + α2

∫
�y

�S2

ĥ(u) du

β2 + α2

∫
�S1

�S2

ĥ(u) du

·(2.35)

We shall now prove that if the drifts and the infinitesimal variances of X(t) and X̂(t) satisfy
(2.3) and (2.29), with

ϕ(y) :=
v0(y)
u0(ŷ)

=
P−(S1, S2 | y)
Q+(Ŝ2, Ŝ1 | ŷ)

(2.36)

then v∗λ(y) := ϕ(y) uλ(ŷ), i.e. the right-hand-side of (2.30), is solution of Eq. (1.5) with the
conditions (1.6). Proceeding as in the proof of Theorem 2.1 one can see that v∗λ(y) satisfies
Eq. (1.5). We now prove that conditions (1.6) hold for v∗λ(y). To this purpose, recalling
(1.7), (2.33) and (2.35), we note that

lim
y↓S1

v0(y) = 1, lim
y↑S2

v0(y) =
β2

β2 + α2

∫ S2

S1

h(z) dz
,

(2.37)

lim
y↓S1

u0(ŷ) = 1, lim
y↑S2

u0(ŷ) =
β2

β2 + α2

∫
�S1

�S2

ĥ(z) dz

·

Hence, from (2.36) it follows:

lim
y↓S1

ϕ(y) = 1, lim
y↑S2

ϕ(y) =
β2 + α2

∫
�S1

�S2

ĥ(z) dz

β2 + α2

∫ S2

S1

h(z) dz
.(2.38)

Hence, recalling the second of (2.34) and (2.38), one has:

lim
y↓S1

v∗λ(y) ≡ lim
y↓S1

[
ϕ(y)uλ(ŷ)

]
= lim

�y↑�S1

uλ(ŷ) = 1,(2.39)

so that v∗λ(y) satisfies the first of (1.6). To prove that the second of (1.6) holds, we consider
the following two cases: (1) β2 = 0 and (2) β2 �= 0.
(1) If β2 = 0, i.e. S2 and Ŝ2 are absorbing boundaries, then,

lim
y↑S2

{
α2 v

∗
λ(y) + β2 h

−1(y)
d

dy
v∗λ(y)

}
= α2 ϕ(S2) lim

�y↓�S2

uλ(ŷ) = 0(2.40)
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where the last equality follows by virtue of the first of (2.34).
(2) If β2 �= 0, i.e. S2 and Ŝ2 are reflecting or full elastic boundaries, then,

lim
y↑S2

{
α2 v

∗
λ(y) + β2 h

−1(y)
d

dy
v∗λ(y)

}
= −ϕ(S2)

ĥ(Ŝ2)
h(S2)

dψ(y)
dy

∣∣∣∣
y=S2

lim
�y↓�S2

{
α2 uλ(ŷ) − β2 ĥ

−1(ŷ)
duλ(ŷ)
dŷ

}
that vanishes by virtue of the first of (2.34), i.e. v∗λ(y) satisfies the second of (1.6). Hence,
v∗λ(y) ≡ g−λ (S1, S2 | y) and thus (2.30) holds.

Case (ii) We now set

uλ(ŷ) = γ−λ (Ŝ2, Ŝ1 | ŷ), vλ(y) = g+
λ (S1, S2 | y)

(2.41)

u0(ŷ) = Q−(Ŝ2, Ŝ1 | ŷ), v0(y) = P+(S1, S2 | y).

We recall that the LT vλ(y) is solution of the differential equation (1.5) with the conditions
(1.11) and that v0(y) is given in (1.12). Instead, the LT uλ(ŷ) is solution of the differential
equation (2.9) with the conditions:

lim
�y↓�S2

uλ(ŷ) = 1, lim
�y↑�S1

{
α1 uλ(ŷ) + β1 ĥ

−1(ŷ)
d

dŷ
uλ(ŷ)

}
= 0,(2.42)

with ĥ(x) given in (2.1). Furthermore, one has:

u0(ŷ) =
β1 + α1

∫ �S1

�y

ĥ(u) du

β1 + α1

∫ �S1

�S2

ĥ(u) du

·(2.43)

We shall now prove that if the drifts and the infinitesimal variances of X(t) and X̂(t) satisfy
(2.3) and (2.31), with

ϕ(y) :=
v0(y)
u0(ŷ)

=
P+(S1, S2 | y)
Q−(Ŝ2, Ŝ1 | ŷ)

(2.44)

then v∗λ(y) := ϕ(y) uλ(ŷ), i.e. the right-hand-side of (2.32), is solution of Eq. (1.5) with the
conditions (1.11). Proceeding similarly to the proof of Theorem 2.1 one can see that v∗λ(y)
satisfies Eq. (1.5). We now prove that conditions (1.11) hold for v∗λ(y). To this purpose,
due to (1.12), (2.41) and (2.43), we have

lim
y↓S1

v0(y) =
β1

β1 + α1

∫ S2

S1

h(z) dz
, lim

y↑S2
v0(y) = 1,

(2.45)

lim
y↓S1

u0(ŷ) =
β1

β1 + α1

∫ �S1

�S2

ĥ(z) dz

, lim
y↑S2

u0(ŷ) = 1,
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so that from (2.44) it follows:

lim
y↓S1

ϕ(y) =
β1 + α1

∫ �S1

�S2

ĥ(z) dz

β1 + α1

∫ S2

S1

h(z) dz
, lim

y↑S2
ϕ(y) = 1.(2.46)

To prove that v∗λ(y) satisfied the first of (1.11), we consider the following two cases: (1)
β1 = 0 and (2) β1 �= 0.
(1) If β1 = 0, i.e. S1 and Ŝ1 are absorbing boundaries, then

lim
y↓S1

{
α1 v

∗
λ(y) − β1 h

−1(y)
d

dy
v∗λ(y)

}
= α1 ϕ(S1) lim

�y↑�S1

uλ(ŷ) = 0(2.47)

where the last equality follows by virtue of the first of (2.42).
(2) If β1 �= 0, i.e. S1 and Ŝ1 are reflecting or full elastic boundaries, then

lim
y↓S1

{
α1 v

∗
λ(y) − β1 h

−1(y)
d

dy
v∗λ(y)

}
= −ϕ(S1)

ĥ(Ŝ1)
h(S1)

dψ(y)
dy

∣∣∣∣
y=S1

lim
�y↑�S1

{
α1 uλ(ŷ) + β1 ĥ

−1(ŷ)
duλ(ŷ)
dŷ

}
that vanishes by virtue of the second of (2.42), i.e. the first of (1.11) holds for v∗λ(y).
Furthermore, recalling the first of (2.42) and (2.46), one has:

lim
y↑S2

v∗λ(y) ≡ lim
y↑S2

[
ϕ(y)uλ(ŷ)

]
= lim

�y↓�S2

uλ(ŷ) = 1,(2.48)

so that v∗λ(y) satisfies the second of (1.11). In conclusion, v∗λ(y) ≡ g+
λ (S1, S2 | y) and thus

(2.32) holds.

3 Wiener process
In this Section we shall assume that {X̂(t), t ≥ 0} is the Wiener process with drift and
infinitesimal variance

Â1 = µ, Â2 = σ2 (µ ∈ R, σ > 0),(3.1)

respectively, defined in R. The scale function is known to be

ĥ(x) = B̂ exp
{
− 2µx

σ2

}
(B̂ > 0, x ∈ R).(3.2)

Starting from X̂(t), we shall provide a direct construction of FPT pdf’s for a new diffusion
process {X(t), t ≥ 0} in terms of the FPT pdf’s of the diffusion process (3.1). We shall
separately consider the cases when X(t) is the Wiener process, the Feller process and the
hyperbolic process.

3.1 Wiener to Wiener processes
Let {X(t), t ≥ 0} be the Wiener process with drift and infinitesimal variance

A1 = ξ, A2 = ω2 (ξ ∈ R, ω > 0),(3.3)
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Wiener processes X(t) and �X(t)

ψ(z) =
σ

ω
z + c (c ∈ �), �S1 = ψ(S1), �S2 = ψ(S2), �y = ψ(y)

Boundaries

S1, �S1 S2, �S2 Conditions Relations

Absorbing Reflecting µ/σ = ξ/ω g−(S1, S2, t | y)
(β1 = 0) (α2 = 0) = γ−(�S1, �S2, t | �y)

Absorbing Absorbing µ/σ = ξ/ω g−(S1, S2, t | y)
(β1 = 0) (β2 = 0) = γ−(�S1, �S2, t | �y)

g+(S1, S2, t | y)
= γ+(�S1, �S2, t | �y)

Reflecting Absorbing µ/σ = ξ/ω g+(S1, S2, t | y)
(α1 = 0) (β2 = 0) = γ+(�S1, �S2, t | �y)

Absorbing Elastic µ/σ = ξ/ω g−(S1, S2, t | y)
(β1 = 0) (α2 > 0, β2 > 0) B = �B σ

ω
e−2 µ c/σ2

= γ−(�S1, �S2, t | �y)
Elastic Absorbing µ/σ = ξ/ω g+(S1, S2, t | y)

(α1 > 0, β1 > 0) (β2 = 0) B = �B σ

ω
e−2 µ c/σ2

= γ+(�S1, �S2, t | �y)

Table 1: FPT pdf’s of Wiener processes �X(t) and X(t), defined in (3.1) and (3.3) respectively.
Here ψ(z) is strictly increasing.

respectively, defined in R with scale function (1.14), r1 = −∞ and r2 = +∞ being natural
boundaries.

If ψ : R → R is a strictly increasing function such that ψ(y) ∈ C2(R), making use of
(3.1) and (3.3) in (2.3), one obtains:

ψ(y) =
σ

ω
y + c (c ∈ R) ,

(3.4)

ξ − ω

σ
µ = −ω2 1

ϕ(y)
dϕ(y)
dy

·

Table 3.1 lists the boundaries (columns 1 and 2) and conditions on parameters ξ, ω, µ, σ
(column 3) of X(t) and X̂(t) such that (3.4) are satisfied with ϕ(y) given in (2.4) or in
(2.6). The last column shows the relations (2.5) and (2.7) implied by Theorem 2.1.

Note that if µ/σ = ξ/ω, by removing either S1 or S2, when both are absorbing bound-
aries, one has:

g(S, t | y) = γ
(σ
ω
S + c, t

∣∣∣σ
ω
y + c

)
(S �= y, c ∈ R),

with γ(x, t | y) and g(x, t | y) denoting the FPT pdf’s to x starting from y for the Wiener
processes (3.1) and (3.3), respectively.

If ψ : R → R is a strictly decreasing function such that ψ(y) ∈ C2(R), making use of
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Wiener processes X(t) and �X(t)

ψ(z) = −σ

ω
z + c (c ∈ �), �S1 = ψ(S1), �S2 = ψ(S2), �y = ψ(y)

Boundaries

S1, �S1 S2, �S2 Conditions Relations

Absorbing Reflecting µ/σ = −ξ/ω g−(S1, S2, t | y)
(β1 = 0) (α2 = 0) = γ+(�S2, �S1, t | �y)

Absorbing Absorbing µ/σ = −ξ/ω g−(S1, S2, t | y)
(β1 = 0) (β2 = 0) = γ+(�S2, �S1, t | �y)

g+(S1, S2, t | y)
= γ−(�S2, �S1, t | �y)

Reflecting Absorbing µ/σ = −ξ/ω g+(S1, S2, t | y)
(α1 = 0) (β2 = 0) = γ−(�S2, �S1, t | �y)

Absorbing Elastic µ/σ = −ξ/ω g−(S1, S2, t | y)
(β1 = 0) (α2 > 0, β2 > 0) B = �B σ

ω
e−2 µ c/σ2

= γ+(�S2, �S1, t | �y)
Elastic Absorbing µ/σ = −ξ/ω g+(S1, S2, t | y)

(α1 > 0, β1 > 0) (β2 = 0) B = �B σ

ω
e−2 µ c/σ2

= γ−(�S2, �S1, t | �y)
Absorbing Absorbing µ = ξ, σ = ω g−(S1, S2, t | y) = e−2 ξ (y−S1)/ω2

(β1 = 0) (β2 = 0) ×γ+(�S2, �S1, t | �y)
g+(S1, S2, t | y) = e2 ξ (S2−y)/ω2

×γ−(�S2, �S1, t | �y)
Table 2: Same as Table 3.1, but with ψ(z) strictly decreasing.

(3.1) and (3.3) in (2.3) one obtains:

ψ(y) = −σ
ω
y + c (c ∈ R) ,

(3.5)

ξ +
ω

σ
µ = −ω2 1

ϕ(y)
dϕ(y)
dy

·

Table 3.1 lists the boundaries (columns 1 and 2) and conditions on parameters ξ, ω, µ, σ
(column 3) of X(t) and X̂(t) such that (3.5) hold with ϕ(y) given in (2.29) or in (2.31). In
the last column the relations (2.30) and (2.32) given in Theorem 2.2 are shown.

If µ/σ = −ξ/ω by removing one of the two boundaries S1 or S2, when both are absorbing,
one obtains:

g(S, t | y) = γ
(
−σ
ω
S + c, t

∣∣∣−σ
ω
y + c

)
(S �= y, c ∈ R).

Table 3.1 also shows the relations among FPT pdf’s for µ = ξ and σ = ω (namely when
X(t) and X̂(t) are identical) when both boundaries are absorbing:

g−(S1, S2, t | y) = exp
{
−2 ξ (y − S1)

ω2

}
g+(−S2 + c,−S1 + c, t | −y + c),

(3.6)

g+(S1, S2, t | y) = exp
{2 ξ (S2 − y)

ω2

}
g−(−S2 + c,−S1 + c, t | −y + c),
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with S1 < y < S2 and c ∈ R. By removing one of the two boundaries S1 or S2, from (3.6)
one has:

g(S, t | y) = exp
{2 ξ (S − y)

ω2

}
g(−S + c, t | −y + c) (S �= y, c ∈ R).(3.7)

Setting c = 2S in (3.7) one obtains the well-known symmetry relation for the FPT pdf of
the Wiener process (cf, for instance, [9]):

g(S, t | y) = exp
{2 ξ (S − y)

ω2

}
g(S, t | 2S − y) (S �= y).

3.2 Wiener to Feller processes
Let {X(t), t ≥ 0} be the Feller process with drift and infinitesimal variance

A1 = p x+ q, A2(x) = 2 r (x− ν) (p, q, ν ∈ R, r > 0),(3.8)

respectively, defined in I = (ν,+∞), with scale function:

h(x) = B (x− ν)−(p ν+q)/r exp
{
−p
r
x
}

(B > 0, x > ν).(3.9)

As is well known, for the process (3.8) x = ν is an exit boundary if p ν + q ≤ 0, a regular
boundary if 0 < p ν + q < r and an entrance boundary if p ν + q ≥ r; instead, boundary
+∞ is natural. We recall that (cf., for instance, [7]) if p ν + q < r the FPT pdf through v
starting from y can be explicitly obtained:

g(ν, t | y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

tΓ
(
1 − q

r

) (y − ν

r t

)1−q/r

exp
{
−y − ν

r t

}
q < r, p = 0

1

Γ
(
1 − p ν + q

r

) p

ep t − 1

[p (y − ν) ep t

r (ep t − 1)

]1−(p ν+q)/r

× exp
{
−p (y − ν) ep t

r (ep t − 1)

}
p ν + q < r, p �= 0.

If ψ : I → R, with I = (ν,+∞), is a strictly increasing function such that ψ(y) ∈ C2(I),
making use of (3.1) and (3.8) in (2.3) one obtains:

ψ(y) = c+

√
2 σ2

r
(y − ν) (c ∈ R) ,

(3.10)

p y + q =
r

2
+
µ

σ

√
2 r (y − ν) − 2 r (y − ν)

1
ϕ(y)

dϕ(y)
dy

,

with ϕ(y) given by (2.4) or (2.6). Table 3.2 summarizes the obtained results for specified
choices of boundaries and parameters.

If ψ : I → R, with I = (ν,+∞), is a strictly decreasing function such that ψ(y) ∈ C2(I),
making use of (3.1) and (3.8) in (2.3) one obtains:

ψ(y) = c−
√

2 σ2

r
(y − ν) (c ∈ R) ,

(3.11)

p y + q =
r

2
− µ

σ

√
2 r (y − ν) − 2 r (y − ν)

1
ϕ(y)

dϕ(y)
dy

,
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Feller process X(t) and Wiener process �X(t)

ψ(z) = c+

�
2σ2

r
(z − ν) (c ∈ �), �S1 = ψ(S1), �S2 = ψ(S2), �y = ψ(y)

Boundaries

S1, �S1 S2, �S2 Conditions Relations

Absorbing Reflecting p = 0, µ = 0 g−(S1, S2, t | y)
(β1 = 0) (α2 = 0) q/r = 1/2 = γ−(�S1, �S2, t | �y)

Absorbing Absorbing p = 0, µ = 0 g−(S1, S2, t | y)
(β1 = 0) (β2 = 0) q/r = 1/2 = γ−(�S1, �S2, t | �y)

g+(S1, S2, t | y)
= γ+(�S1, �S2, t | �y)

Reflecting Absorbing p = 0, µ = 0 g+(S1, S2, t | y)
(α1 = 0) (β2 = 0) q/r = 1/2 = γ+(�S1, �S2, t | �y)

Absorbing Elastic p = 0, µ = 0 g−(S1, S2, t | y)
(β1 = 0) (α2 > 0, β2 > 0) q/r = 1/2 = γ−(�S1, �S2, t | �y)

B = �B
�
σ2

2 r
Elastic Absorbing p = 0, µ = 0 g+(S1, S2, t | y)

(α1 > 0, β1 > 0) (β2 = 0) q/r = 1/2 = γ+(�S1, �S2, t | �y)
B = �B

�
σ2

2 r

Absorbing Absorbing p = 0, µ = 0 g−(S1, S2, t | y) =

�
S1 − ν

y − ν
(β1 = 0) (β2 = 0) q/r = 3/2 ×γ−(�S1, �S2, t | �y)

g+(S1, S2, t | y) =

�
S2 − ν

y − ν
×γ+(�S1, �S2, t | �y)

Table 3: Relations between the FPT pdf’s of the Wiener and Feller processes �X(t) and X(t),
defined in (3.1) and (3.8) respectively. Here ψ(z) is a strictly increasing function.

with ϕ(y) given by (2.29) or (2.31). Table 3.2 lists the results of interest.

Note that when p = 0 and q/r = 1/2 the boundary x = ν of the Feller process (3.8) is
regular. Instead, x = ν is an entrance boundary when p = 0 and q/r = 3/2.

We consider the Feller process (3.8) with p = 0 and q/r = 1/2. If both boundaries S1

and S2 are absorbing, taking the limit as S2 → +∞, from Tables 3.2 and 3.2, for all c ∈ R

one obtains:

gλ(S1 | y) = γλ

(
c+

√
2 σ2

r
(S1 − ν)

∣∣∣∣ c+

√
2 σ2

r
(y − ν)

)
= γλ

(
c−

√
2 σ2

r
(S1 − ν)

∣∣∣∣ c−
√

2 σ2

r
(y − ν)

)
= exp

{
−2

√
λ

r
(y − ν) + 2

√
λ

r
(S1 − ν)

}
(ν < S1 < y),

where gλ(S1 | y) is the LT of the FPT pdf g(S1, t | y) from y to S1 for the Feller process
(3.8) with p = 0 and q/r = 1/2, and γλ(x | z) denotes the LT of the FPT pdf γ(x, t | z) from
z to x for the Wiener process (3.1) with µ = 0. Furthermore, if both boundaries S1 and S2
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Feller process X(t) and Wiener process �X(t)

ψ(z) = c−
�

2σ2

r
(z − ν) (c ∈ �), �S1 = ψ(S1), �S2 = ψ(S2), �y = ψ(y)

Boundaries

S1, �S1 S2, �S2 Conditions Relations

Absorbing Reflecting p = 0, µ = 0 g−(S1, S2, t | y)
(β1 = 0) (α2 = 0) q/r = 1/2 = γ+(�S2, �S1, t | �y)

Absorbing Absorbing p = 0, µ = 0 g−(S1, S2, t | y)
(β1 = 0) (β2 = 0) q/r = 1/2 = γ+(�S2, �S1, t | �y)

g+(S1, S2, t | y)
= γ−(�S2, �S1, t | �y)

Reflecting Absorbing p = 0, µ = 0 g+(S1, S2, t | y)
(α1 = 0) (β2 = 0) q/r = 1/2 = γ−(�S2, �S1, t | �y)

Absorbing Elastic p = 0, µ = 0 g−(S1, S2, t | y)
(β1 = 0) (α2 > 0, β2 > 0) q/r = 1/2 = γ+(�S2, �S1, t | �y)

B = �B
�
σ2

2 r
Elastic Absorbing p = 0, µ = 0 g+(S1, S2, t | y)

(α1 > 0, β1 > 0) (β2 = 0) q/r = 1/2 = γ−(�S2, �S1, t | �y)
B = �B

�
σ2

2 r

Absorbing Absorbing p = 0, µ = 0 g−(S1, S2, t | y) =

�
S1 − ν

y − ν
(β1 = 0) (β2 = 0) q/r = 3/2 ×γ+(�S2, �S1, t | �y)

g+(S1, S2, t | y) =

�
S2 − ν

y − ν
×γ−(�S2, �S1, t | �y)

Table 4: Same as Table 3.2, but with ψ(z) strictly decreasing.

are absorbing, taking the limit as S1 → ν, with ν absorbing boundary, from Tables 3.2 and
3.2, for all c ∈ R one has:

gλ(S2 | y) = γ+
λ

(
c, c+

√
2 σ2

r
(S2 − ν)

∣∣∣∣ c+

√
2 σ2

r
(y − ν)

)
= γ−λ

(
c−

√
2 σ2

r
(S2 − ν), c

∣∣∣∣ c−
√

2 σ2

r
(y − ν)

)

=
sinh

[
2

√
λ (y − ν)

r

]
sinh

[
2

√
λ (S2 − ν)

r

] (ν < y < S2),

where gλ(S2 | y) is the LT of g(S2, t | y) for the Feller process (3.8) with p = 0 and q/r = 1/2
in the presence of an absorbing boundary at ν, whereas γ−λ (u, v | z) and γ+

λ (u, v | z) denote
the LT’s of the FPT pdf’s γ−(u, v, t | z) and γ+(u, v, t | z) in the presence of two absorbing
boundaries u and v (u < z < v) for the Wiener process (3.1) with µ = 0. Instead, if S1 is
reflecting and S2 is absorbing, taking the limit as S1 → ν, with ν reflecting boundary, from
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Tables 3.2 and 3.2, for all c ∈ R one obtains:

gλ(S2 | y) = γ+
λ

(
c, c+

√
2 σ2

r
(S2 − ν)

∣∣∣∣ c+

√
2 σ2

r
(y − ν)

)
= γ−λ

(
c−

√
2 σ2

r
(S2 − ν), c

∣∣∣∣ c−
√

2 σ2

r
(y − ν)

)

=
cosh

[
2

√
λ (y − ν)

r

]
cosh

[
2

√
λ (S2 − ν)

r

] (ν < y < S2),

where gλ(S2 | y) is the LT of g(S2, t | y) for the Feller process (3.8) with p = 0 and q/r = 1/2
in the presence of a reflecting boundary at ν, and γ−λ (x, c | z) and γ+

λ (c, x | z) denote the
LT’s of the FPT pdf’s γ−(x, c, t | z) and γ+(c, x, t | z) in the presence of the reflecting
boundary c and of the absorbing boundary x for the Wiener process (3.1) with µ = 0.

We now consider the Feller process (3.8) with p = 0 and q/r = 3/2. Taking the limit as
S2 → +∞ from Tables 3.2 and 3.2, for all c ∈ R one has:

gλ(S1 | y) =

√
S1 − ν

y − ν
γλ

(
c+

√
2 σ2

r
(S1 − ν)

∣∣∣∣ c+

√
2 σ2

r
(y − ν)

)

=

√
S1 − ν

y − ν
γλ

(
c−

√
2 σ2

r
(S1 − ν)

∣∣∣∣ c−
√

2 σ2

r
(y − ν)

)

=

√
S1 − ν

y − ν
exp

{
−2

√
λ

r
(y − ν) + 2

√
λ

r
(S1 − ν)

}
(ν < S1 < y),

where gλ(S1 | y) is the LT of g(S1, t | y) for the Feller process (3.8) with p = 0 and
q/r = 3/2, and γλ(x | z) denotes the LT of γ(x, t | z) for the Wiener process (3.1) with
µ = 0. Furthermore, since an entrance boundary cannot be attained from the interior of
the diffusion interval, we take the limit as S1 → ν, with ν entrance boundary. Hence, for
all c ∈ R, Tables 3.2 and 3.2 yield:

gλ(S2 | y) =

√
S2 − ν

y − ν
γ+

λ

(
c, c+

√
2 σ2

r
(S2 − ν)

∣∣∣∣ c+

√
2 σ2

r
(y − ν)

)

=

√
S2 − ν

y − ν
γ−λ

(
c−

√
2 σ2

r
(S2 − ν), c

∣∣∣∣ c−
√

2 σ2

r
(y − ν)

)

=

√
S2 − ν

y − ν

sinh
[
2

√
λ (y − ν)

r

]
sinh

[
2

√
λ (S2 − ν)

r

] (ν < y < S2),(3.12)

where gλ(S2 | y) is the LT of g(S2, t | y) for the Feller process (3.8) with p = 0 and q/r = 3/2
in the presence of an entrance boundary at ν. Here, γ−λ (u, v | z) and γ+

λ (u, v | z) denote
the LT’s of the FPT pdf’s γ−(u, v, t | z) and γ+(u, v, t | z) in the presence of two absorbing
boundaries u and v (u < z < v) for the Wiener process (3.1) with µ = 0. Equation (3.12)
provides an a priori unexpected functional relation between the FPT pdf for the Feller
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process (3.8) with p = 0 and q/r = 3/2 (ν entrance boundary) and the FPT pdf in the
presence of two absorbing boundaries for the Wiener process (3.1) with µ = 0.

3.3 Wiener to hyperbolic processes
Let {X(t), t ≥ 0} be the hyperbolic process with drift and infinitesimal variance

A1(x) = µ
1 − ζ exp

{
−2µx

σ2

}
1 + ζ exp

{
−2µx

σ2

} , A2 = σ2 (µ �= 0, ζ > 0, σ > 0),(3.13)

respectively, defined in R, with scale function:

h(x) = B exp
{
−2µx

σ2

} [
1 + ζ exp

{
−2µx

σ2

}]−2

(B > 0, x ∈ R).(3.14)

Here r1 = −∞ and r2 = +∞ are natural boundaries.

If ψ : R → R is a strictly increasing function such that ψ(y) ∈ C2(R), making use of
(3.1) and (3.13) in (2.3) one obtains:

ψ(y) = y + c (c ∈ R) ,
(3.15)

2 ζ µ exp
{
−2µ y

σ2

}
1 + ζ exp

{
−2µ y

σ2

} = σ2 1
ϕ(y)

dϕ(y)
dy

.

In the case when S1 and S2 are absorbing boundaries, it is easily seen that relations (3.15)
are satisfied, with ϕ(y) given in (2.4) or in (2.6). Hence, from (2.5) and (2.7) of Theorem 2.1,
for all c ∈ R and S1 < y < S2 one obtains:

g−(S1, S2, t | y) =
1 + ζ exp

{
−2µS1

σ2

}
1 + ζ exp

{
−2µ y

σ2

} γ−(S1 + c, S2 + c, t | y + c)

(3.16)

g+(S1, S2, t | y) =
1 + ζ exp

{
−2µS2

σ2

}
1 + ζ exp

{
−2µ y

σ2

} γ+(S1 + c, S2 + c, t | y + c),

where γ−(u, v, t | z) and γ+(u, v, t | z) denote the FPT pdf’s in the presence of two absorbing
boundaries u and v (u < z < v) for the Wiener process (3.1).

If ψ : R → R is a strictly decreasing function such that ψ(y) ∈ C2(R), making use of
(3.1) and (3.13) in (2.3), one obtains:

ψ(y) = −y + c (c ∈ R) ,
(3.17)

2µ

1 + ζ exp
{
−2µx

σ2

} = −σ2 1
ϕ(y)

dϕ(y)
dy

.
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If S1 and S2 are absorbing boundaries, one can prove that (3.17) are satisfied with ϕ(y)
given in (2.29) or (2.31). Hence, from (2.30) and (2.32) of Theorem 2.2, for all c ∈ R and
S1 < y < S2 one has:

g−(S1, S2, t | y) =
1 + ζ exp

{
−2µS1

σ2

}
1 + ζ exp

{
−2µ y

σ2

} exp
{
−2µ (y − S1)

σ2

}
×γ+(−S2 + c,−S1 + c, t | −y + c),

(3.18)

g+(S1, S2, t | y) =
1 + ζ exp

{
−2µS2

σ2

}
1 + ζ exp

{
−2µ y

σ2

} exp
{2µ (S2 − y)

σ2

}
×γ−(−S2 + c,−S1 + c, t | −y + c),

where γ−(u, v, t | z) and γ+(u, v, t | z) denote the FPT pdf’s in the presence of two absorbing
boundaries u and v (u < z < v) for the Wiener process (3.1).

By removing one of the two boundaries S1 or S2, from (3.16) and (3.18) for all c ∈ R

one obtains the following result (cf., for instance, [8]):

g(S, t | y) =
1 + ζ exp

{
−2µS

σ2

}
1 + ζ exp

{
−2µ y

σ2

} γ(S + c, t | y + c)

=
1 + ζ exp

{
−2µS

σ2

}
1 + ζ exp

{
−2µ y

σ2

} exp
{
−2µ (y − S)

σ2

}
γ(−S + c, t | −y + c) (S �= y),(3.19)

where g(S, t | y) is the FPT pdf of the process (3.13), whereas γ(x, t | y) denotes the FPT
pdf to x starting from y for the Wiener process (3.1). Hence, recalling (1.27), from (3.19)
it follows:

g(S, t | y) =
1 + ζ exp

{
−2µS

σ2

}
1 + ζ exp

{
−2µ y

σ2

} |S − y|
σ
√

2 π t3
exp

{
− (S − y − µ t)2

σ2 t

}
(S �= y).

4 Concluding remarks
Within certain models of neuron activity based on diffusion processes, the FPT pdf can be
viewed as the neuron firing density. In particular, if S denotes the neuron firing threshold
and if one assumes that the left-hand point r1 of the diffusion interval is either a natural
or an entrance or a regular boundary with a reflection condition superimposed, g(S, t | y)
(r1 < y < S) can be viewed as the firing pdf. In addition, g+(S1, S, t | y) (S1 < y < S),
with S1 and S in the interior of the diffusion interval, can be viewed as the neuron firing
density for models including a reversal potential if at S1 a reflection condition is imposed.

A challenging problem in the neuronal modeling context is to make use of experimental
data in the form of interspike interval histograms to arise to a diffusion process by means
of which the membrane potential time course can be modeled. If the diffusion process is
assumed to be known, and if the initial state, the boundaries of the available state-space as
well as the appropriate absorption, reflection and, in general, elastic boundaries are assumed
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to be known, the FPT pdf can be uniquely determined. Different is the situation when the
nature of the boundaries and the conditions imposed are not known, since in this case the
FPT pdf cannot be uniquely specified.

With such background in mind, in this paper the relation among FPT pdf’s have been
investigated for pairs of time-homogeneous diffusion processes without resorting to space-
transformations of the transition pdf’s. In particular, it is shown that if drifts and infinitesi-
mal variances of the two processes are suitably related to one another, then their FPT pdf’s
are also suitably related. Thus doing, not only classical well-known results are recovered,
but new FPT pdf’s can be obtained, so providing a noteworthy contribution to the search
of candidate data fitting densities in the realm of the biological sciences and, particularly,
in models of neurobiological interest.
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