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ON WEIGHTED RESIDUAL AND PAST ENTROPIES
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Abstract. We consider a “length-biased” shift-dependent information measure, re-
lated to the differential entropy in which higher weight is assigned to large values
of observed random variables. This allows us to introduce the notions of “weighted
residual entropy” and “weighted past entropy”, that are suitable to describe dynamic
information of random lifetimes, in analogy with the entropies of residual and past
lifetimes introduced in [9] and [6], respectively. The obtained results include their
behaviors under monotonic transformations.

1 Introduction It is well known that knowledge and use of schemes for information
coding and transmission play a relevant role in understanding and modeling certain aspects
of biological systems features, such as neuronal activity. Since the pioneering contributions
by Shannon [20] and Wiener [22] numerous efforts have been devoted to enrich and extend
the underlying information theory. Various measures of uncertainty introduced in the past
have been recently invoked in order to deal with information in the context of theoretical
neurobiology (see, for instance, Johnson and Glantz [17]). In addition, recent articles have
thoroughly explored the use of information measures for absolutely continuous non-negative
random variables, that appear to be suitable to describe random lifetimes (see [14] and [5],
for instance). Here, wide use is made of Shannon entropy, that is also applied to residual
and past lifetimes (cf., for instance, [9] and [6]). However, use of this type of entropy has
the drawback of being position-free. In other terms, such an information measure does not
take into account the values of the random variable but only its probability density. As a
consequence, a random variable X possesses the same Shannon entropy as X + b, for any
b ∈ R.

To come up with a mathematical tool whose properties are similar to those of Shannon
entropy, however without being position-free, we introduce the notions of “weighted residual
entropy” and “weighted past entropy”. They are finalized to describe dynamic information
of random lifetimes. In Section 2 we provide some basic notions on weighted entropy,
complemented by some examples. Section 3 is devoted to the presentation of properties
and of results on weighted residual and past entropies, whose behaviors under monotonic
transformations are studied in Section 4.

Throughout this paper, the terms “increasing” and “decreasing” are used in non-strict
sense. Furthermore, we shall adopt the following notations:

X : an absolutely continuous non-negative honest random variable (representing for in-
stance the random lifetime of a system or of a living organism, or the interspike
intervals in a model of neuronal activity);

f(x): the probability density function (pdf) of X ;

S = (0, ν), with ν ≤ +∞: the support of f(x);
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F (x) = Pr(X ≤ x): the cumulative distribution function of X ;

F (x) = 1 − F (x): the survival function of X ;

λ(x) = f(x)/F (x): the hazard function, or failure rate, of X ;

τ(x) = f(x)/F (x): the reversed hazard rate function of X ;

[Z|B]: any random variable whose distribution is identical to the conditional distribution
of Z given B.

2 Weighted entropy The differential entropy of X , or Shannon information measure,
is defined by

H := −E[log f(X)] = −
∫ +∞

0

f(x) log f(x) dx,(1)

where here “log” means natural logarithm. The integrand function on the right-hand-side
of (1) depends on x only via f(x), thus making H shift-independent. Hence, H stays un-
changed if, for instance, X is uniformly distributed in (a, b) or (a+h, b+h), whatever h ∈ R.
However, in certain applied contexts, such as reliability or mathematical neurobiology, it is
desirable to deal with shift-dependent information measures. Indeed, knowing that a device
fails to operate, or a neuron to release spikes in a given time-interval, yields a relevantly
different information from the case when such an event occurs in a different equally wide
interval. In some cases we are thus led to resort to a shift-dependent information measure
that, for instance, assigns different measures to such distributions.

In agreement with Belis and Guiaşu [3] and Guiaşu [16], in this paper we shall refer to
the following notion of weighted entropy:

Hw := −E[X log f(X)] = −
∫ +∞

0

x f(x) log f(x) dx,(2)

or equivalently:

Hw = −
∫ +∞

0

dy
∫ +∞

y

f(x) log f(x)dx.

Recalling Taneja [21] we point out that the occurrence of an event removes a double uncer-
tainty: a qualitative uncertainty related to its probability of occurrence, and a quantitative
uncertainty concerning its value or its usefulness. The factor x, in the integral on the
right-hand-side of (2), may be viewed as a weight linearly emphasizing the occurrence of
the event {X = x}. This yields a “length biased” shift-dependent information measure
assigning greater importance to larger values of X . The use of weighted entropy (2) is
also motivated by the need, arising in various communication and transmission problems,
of expressing the “usefulness” of events by means of an information measure given by
Hw = E[I(u(X), f(X))], where I(u(x), f(x)) satisfies the following properties (see Belis
and Guiaşu [3]):

I(u(x), f(x)g(x)) = I(u(x), f(x)) + I(u(x), g(x)), I(λu(x), f(x)) = λI(u(x), f(x)).

The relevance of weighted entropies as a measure of the average amount of valuable or useful
information provided by a source has also been emphasized by Longo [18].

The following are examples of pairs of distributions that possess same differential en-
tropies but unequal weighted entropies.
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Example 2.1 Let X and Y be random variables with densities

fX(t) =
{

2t if 0 < t < 1,
0 otherwise, fY (t) =

{
2(1 − t) if 0 < t < 1,
0 otherwise.

Their differential entropies are identical (see Example 1.1 of [6], where a misprint has to be
noticed):

HX = HY =
1
2
− log 2.

Hence, the expected uncertainties for fX and fY on the predictability of the outcomes of
X and Y are identical. Instead, Hw

X < Hw
Y , since

Hw
X = −

∫ 1

0

x 2x log 2x dx =
2
9
− 2

3
log 2,

Hw
Y = −

∫ 1

0

2x (1 − x) log(1 − x) dx =
1
9
.

Hence, even though HX = HY , the expected weighted uncertainty contained in fX on the
predictability of the outcome of X is smaller than that of fY on the predictability of the
outcome of Y .

Example 2.2 Consider the piece-wise constant pdf

fX(x) =
n∑

k=1

ck 1{k−1≤x<k}

(
ck ≥ 0, k = 1, 2, . . . , n;

n∑
k=1

ck = 1

)
.

Its differential entropy is HX = −∑n
k=1 ck log ck while its weighted entropy is

Hw
X = −

n∑
k=1

k ck log ck − 1
2
HX .(3)

Note that any new density obtained by permutation of c1, c2, . . . , cn has the same entropy
HX , whereas its weighted entropy is in general different from (3).

Hereafter we recall some properties of differential entropy (1):
(i) for a, b > 0 it is HaX+b = HX + log a.
(ii) if X and Y are independent, then

H(X,Y ) = HX +HY ,

where

H(X,Y ) := −E[log f(X,Y )] = −
∫ +∞

0

∫ +∞

0

f(x, y) log f(x, y) dxdy

is the bidimensional version of (1).
Proposition 2.1, whose proof is omitted being straightforward, shows the corresponding

properties of Hw similar to (i) and (ii), but the essential differences emphasize the role of
the mean value in the evaluation of the weighted entropy.

Proposition 2.1 The following statements hold:
(i) for a, b > 0 it is Hw

aX+b = a[Hw
X + E(X) log a] + b(HX + log a).

(ii) if X and Y are independent, then

Hw
(X,Y ) = E(Y )Hw

X + E(X)Hw
Y ,

where Hw
(X,Y ) := −E[X Y log f(X,Y )].
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Let us now evaluate the weighted entropy of some random variables.

Example 2.3 (a) X is exponentially distributed with parameter λ > 0. Then,

Hw = −
∫ +∞

0

xλe−λ x log
(
λe−λ x

)
dx =

2 − log λ
λ

.(4)

(b) X is uniformly distributed over [a, b]. Then

Hw = −
∫ b

a

x
1

b− a
log

1
b− a

dx =
a+ b

2
log(b− a).(5)

It is interesting to note that in this case the weighted entropy can be expressed as the
product

Hw = E(X)H.(6)

(c) X is Gamma distributed with parameters α and β:

f(x) =

⎧⎨
⎩

xα−1e−x/β

βαΓ(α)
if x > 0,

0 otherwise.

There holds:

Hw = −
∫ +∞

0

xαe−
x
β

βαΓ(α)
log

xα−1e−
x
β

βαΓ(α)
dx

= αβ log[βαΓ(α)] − α(α− 1)β
{

log β + ψ0(α+ 1)
}

+ α(α+ 1)β,

where

ψ0(x) :=
d
dx

log Γ(x) =
Γ′(x)
Γ(x)

(7)

and where we have used the following identities, with α > −1 and β > 0:∫ +∞

0

xαe−
x
β dx =

(
1
β

)−1−α

Γ(1 + α),

∫ +∞

0

xαe−
x
β log xdx =

(
1
β

)−1−α

Γ(1 + α)
{

log β + ψ0(1 + α)
}
.

(d) X is Beta distributed with parameters α and β:

f(x) =

⎧⎨
⎩

xα−1(1 − x)β−1

B(α, β)
if 0 < x < 1,

0 otherwise,

with

B(α, β) =
∫ 1

0

xα−1(1 − x)β−1 dx =
Γ(α)Γ(β)
Γ(α+ β)

.

Then,

Hw =
logB(α, β)
B(α, β)

Γ(α+ 1)Γ(β)
Γ(α+ β + 1)

− (α− 1)
B(α, β)

Γ(α+ 1)Γ(β)
Γ(α + β + 1)

{
ψ0(α+ 1) − ψ0(α+ β + 1)

}
− (β − 1)

B(α, β)
Γ(β)

Γ(α+ β + 1)
{
ψ0(β)Γ(α + 1) − αΓ(α)ψ0(α+ β + 1)

}
,

where ψ0(x) is defined in (7).



ON WEIGHTED RESIDUAL AND PAST ENTROPIES 683

Remark 2.1 We point out that different distributions may have identical weighted en-
tropies. For instance, if X is uniformly distributed over [0, 1] and Y is exponentially dis-
tributed with mean e−2, then from (4) and (5) we have

Hw
X = Hw

Y = 0.

Another example is the following: if X is uniformly distributed in [0, 2] and Y is exponen-
tially distributed with parameter λ = 1.93389 (such that log λ+ λ log 2 = 2), then from (4)
and (5) one obtains:

Hw
X = Hw

Y = log 2.

Remark 2.2 There exist random variables having negative arbitrarily large weighted en-
tropy. For instance, if X is uniformly distributed over [a, b], with b > 0, then from (5) we
have

lim
a→b−

Hw = lim
a→b−

a+ b

2
log(b − a) = −∞.

Remark 2.3 Notice that in general Hw can be either larger or smaller than H . For
instance, if X is uniformly distributed over [a, b], from (6) it follows Hw ≥ H when E(X) ≥
1, and Hw ≤ H when E(X) ≤ 1.

Remark 2.4 If the support of X is [0, ν], with ν finite, the following upper bound for the
weighted entropy of X holds:

Hw ≤ µ log
ν2

2µ
, where µ = E(X) ∈ [0, ν].(8)

This follows via the continuous version of Jensen’s inequality. The maximum of b(µ) :=
µ log ν2

2µ is attained at µ = µM , where

µM =

⎧⎨
⎩

ν2

2e
if ν < 2e,

ν if ν ≥ 2e,
with b(µM ) =

⎧⎨
⎩

ν2

2e
if ν < 2e,

ν log
ν

2
if ν ≥ 2e.

If, in particular, X is uniformly distributed over [0, ν], then (8) holds with the equal sign
since Hw = ν

2 log ν and µ = ν/2.

3 Weighted residual and past entropies The residual entropy at time t of a random
lifetime X was introduced by Ebrahimi [9] and defined as:

H(t) = −
∫ +∞

t

f(x)
F (t)

log
f(x)
F (t)

dx

= logF (t) − 1
F (t)

∫ +∞

t

f(x) log f(x) dx

= 1 − 1
F (t)

∫ +∞

t

f(x) log λ(x) dx,(9)

for all t ∈ S. We note that H(t) is the differential entropy of the residual lifetime of X at
time t, i.e. of [X |X > t]. Various result on H(t) have been the object of recent researches
(see [1], [4], [10], [11], [12]). The past entropy at time t of X is defined by Di Crescenzo and
Longobardi [6] as:

H(t) = −
∫ t

0

f(x)
F (t)

log
f(x)
F (t)

dx , t ∈ S,(10)
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where f(x)/F (t), 0 < x < t, is the pdf of the past lifetime [X |X ≤ t]. Hence, given for
instance that an item has been found failing at time t, H(t) measures the uncertainty about
its past life. We remark that H(t) can also be viewed as the entropy of the inactivity time
[t−X |X ≤ t].

Various dynamic information functions have been recently introduced to measure dis-
crepancies between residual lifetime distributions [13] and between past lifetime distribu-
tions [7], as well as to measure dependence between two residual lifetimes [8]. In order to
introduce new shift-dependent dynamic information measures, we now make use of (2) to
define two weighted entropies for residual lifetimes and past lifetimes that are the weighted
version of entropies (9) and (10).

Definition 3.1 For all t ∈ S,
(i) the weighted residual entropy at time t of a random lifetime X is the differential weighted
entropy of [X |X > t]:

Hw(t) := −
∫ +∞

t

x
f(x)
F (t)

log
f(x)
F (t)

dx;(11)

(ii) the weighted past entropy at time t of a random lifetime X is the differential weighted
entropy of [X |X ≤ t]:

H
w
(t) := −

∫ t

0

x
f(x)
F (t)

log
f(x)
F (t)

dx.(12)

We notice that
lim

t→+∞Hw(t) = lim
t→0+

H
w
(t) = Hw.

In addition, due to (11), the weighted residual entropy can be rewritten as

Hw(t) = − 1
F (t)

∫ +∞

t

x f(x) log f(x) dx+
logF (t)
F (t)

∫ +∞

t

x f(x) dx.(13)

The second integral in (13) can be calculated by noting that∫ +∞

t

x f(x) dx = t F (t) +
∫ +∞

t

F (y) dy.(14)

Furthermore, an alternative way of writing Hw(t) is the following:

Hw(t) = −
∫ +∞

t

dx
∫ x

0

f(x)
F (t)

log
f(x)
F (t)

dy

= −
∫ t

0

dy
∫ +∞

t

f(x)
F (t)

log
f(x)
F (t)

dx−
∫ +∞

t

dy
∫ +∞

y

f(x)
F (t)

log
f(x)
F (t)

dx.

Recalling (9), we thus obtain:

Hw(t) = tH(t) +
∫ +∞

t

H(y) dy.(15)

From (15) it easily follows
d
dt
Hw(t) = t

d
dt
H(t).(16)

In analogy with Theorem 1 of Belzunce et al. [5], the following characterization result
holds.
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Theorem 3.1 If X has an absolutely continuous distribution function F (t) and if H(t) is
increasing for all t ∈ S, then Hw(t) uniquely determines F (t).

Proof. From (13) and (14) we have:∫ +∞

t

x f(x) log f(x) dx = logF (t)
[
t F (t) +

∫ +∞

t

F (y) dy
]
−Hw(t)F (t).

Differentiating both sides we obtain:

−t f(t) log f(t) = −t f(t) logF (t)−t f(t)− f(t)
F (t)

∫ +∞

t

F (y) dy+f(t)Hw(t)−F (t)
d
dt
Hw(t).

Hence, due to (16) and recalling the hazard function λ(t) = f(t)/F (t), it follows:

t λ(t)[1 − log λ(t)] = λ(t)Hw(t) − λ(t)
∫ +∞

t

F (y)
F (t)

dy − t
d
dt
H(t).

Then, for any fixed t ∈ S, λ(t) is a positive solution of equation g(x) = 0, where

g(x) := x

[
t (1 − log x) −Hw(t) +

∫ +∞

t

F (y)
F (t)

dy
]

+ t
d
dt
H(t).(17)

Note that lim
x→+∞ g(x) = −∞ and g(0) = t d

dtH(t) ≥ 0. Furthermore, from (17) we have:

d
dx
g(x) = −t log x−Hw(t) +

∫ +∞

t

F (y)
F (t)

dy,

so that d
dxg(x) = 0 if and only if

x = exp
{
−1
t

[
Hw(t) −

∫ +∞

t

F (y)
F (t)

dy
]}

.

Therefore, g(x) = 0 has a unique positive solution so that λ(t), and hence F (t), is uniquely
determined by Hw(t) under assumption d

dtH(t) ≥ 0. This concludes the proof.

Remark 3.1 We note that, by virtue of (16), if H(t) is increasing [decreasing], then also
Hw(t) is increasing [decreasing].

In order to attain a decomposition of the weighted entropy, similar to that given in
Proposition 2.1 of Di Crescenzo and Longobardi [6], for a random lifetime X possessing
finite mean E(X) we recall that the length-biased distribution function and the length-biased
survival function are defined respectively as

F ∗(t) =
1

E(X)

∫ t

0

x f(x) dx, F
∗
(t) =

1
E(X)

∫ +∞

t

x f(x) dx, t ∈ S.(18)

These functions characterize weighted distributions that arise in sampling procedures where
the sampling probabilities are proportional to sample values. (See Section 3 of Belzunce et
al. [5] for some results on uncertainty in length-biased distributions. Moreover, see Navarro
et al. [19], Bartoszewicz and Skolimowska [2] and references therein for characterizations
involving weighted distributions).
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Theorem 3.2 For a random lifetime X having finite mean E(X), for all t ∈ S the weighted
entropy can be expressed as follows:

Hw = E(X)
{
−F ∗(t) logF (t) − F

∗
(t) logF (t)

}
+ F (t)H

w
(t) + F (t)Hw(t).

Proof. Recalling Eqs. (2), (11) and (12) we have:

Hw = −F (t)
∫ t

0

x
f(x)
F (t)

log f(x) dx− F (t)
∫ +∞

t

x
f(x)
F (t)

log f(x) dx

= − logF (t)
∫ t

0

x f(x) dx − logF (t)
∫ +∞

t

x f(x) dx + F (t)H
w
(t) + F (t)Hw(t).

The proof then follows from (18).

In order to provide a lower bound for the weighted residual entropy of a random lifetime
X , let us introduce the following conditional mean value:

δ(t) := E(X |X > t) =
1

F (t)

∫ +∞

t

x f(x) dx = t+
1

F (t)

∫ +∞

t

F (x) dx, t ∈ S.(19)

Theorem 3.3 If the hazard function λ(t) is decreasing in t ∈ S, then

Hw(t) ≥ −δ(t) log λ(t), t ∈ S.(20)

Proof. From (11) we have:

Hw(t) = − 1
F (t)

∫ +∞

t

x f(x) log λ(x) dx − 1
F (t)

∫ +∞

t

x f(x) log
F (x)
F (t)

dx, t ∈ S.

Since log F (x)

F (t)
≤ 0 for x ≥ t and, by assumption, log λ(x) ≤ log λ(t), there holds:

Hw(t) ≥ − 1
F (t)

∫ +∞

t

x f(x) log λ(x) dx

≥ − logλ(t)
F (t)

∫ +∞

t

x f(x) dx.

The proof then follows by recalling (19).

In the following example we consider the case of constant hazard function.

Example 3.1 For an exponential distribution with parameter λ > 0, the weighted residual
entropy is given by

Hw(t) = −
∫ +∞

t

x
λe−λ x

e−λ t
log

λe−λ x

e−λ t
dx = t+

2
λ
−
(
t+

1
λ

)
log λ, t ≥ 0.(21)

Recalling that for an exponential r.v. λ(t) = λ and δ(t) = t + 1
λ , it is easily seen that (20)

is fulfilled.
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Let us now discuss some properties of the weighted past entropy. From (12) we have:

H
w
(t) = − 1

F (t)

∫ t

0

x f(x) log f(x) dx +
logF (t)
F (t)

∫ t

0

x f(x) dx, t ∈ S,

where, similarly to (14), it is∫ t

0

x f(x) dx = t F (t) −
∫ t

0

F (y) dy.(22)

Alternatively,

H
w
(t) = −

∫ t

0

dx
∫ x

0

f(x)
F (t)

log
f(x)
F (t)

dy

= tH(t) −
∫ t

0

H(y) dy,(23)

where H(t) is the past entropy given in (10). We note that Eq. (23) gives:

d
dt
H

w
(t) = t

d
dt
H(t), t ∈ S.

Example 3.2 The weighted past entropy of an exponentially distributed random variable
with parameter λ > 0 is instead given by

H
w
(t) =

1
1 − e−λt

[
2
λ
− 2
λ
e−λt − 2t e−λt − λt2 e−λt +

(
1
λ
− 1
λ
e−λt − t e−λt

)
log

1 − e−λt

λ

]
for t > 0.

In order to obtain upper bounds for the weighted past entropy let us now recall the
definition of mean past lifetime:

µ(t) := E(X |X ≤ t) =
∫ t

0

x
f(x)
F (t)

dx = t− 1
F (t)

∫ t

0

F (y) dy.(24)

We incidentally note that this is related to the Bonferroni Curve by µ(t) = E(X)BF [F (t)]
(see Giorgi and Crescenzi [15]).

Theorem 3.4 (i) For all t ∈ S, it is

H
w
(t) ≤ µ(t) log

t2

2µ(t)
.(25)

(ii) If τ(t) is decreasing in t ∈ S, then

H
w
(t) ≤

∫ t

0

x τ(x) dx − µ(t) [1 + log τ(t)].(26)

Proof. Eq. (25) is an immediate consequence of (8). Furthermore, from (12) we have:

H
w
(t) = − 1

F (t)

∫ t

0

x f(x) log τ(x) dx − 1
F (t)

∫ t

0

x f(x) log
F (x)
F (t)

dx.

Since τ(t) is decreasing in t ∈ S, we have log τ(x) ≥ log τ(t) for 0 < x < t. Moreover,
recalling that log x < x− 1 for x > 0, we obtain:

H
w
(t) ≤ − log τ(t)

F (t)

∫ t

0

x f(x) dx +
1

F (t)

∫ t

0

x f(x)
[
F (t)
F (x)

− 1
]

dx.

By (22) and (24) we finally come to (26).
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Remark 3.2 If X is uniformly distributed on (0, ν), the weighted past entropy is:

H
w
(t) =

t

2
log t, 0 < t < ν.(27)

Hence, since µ(t) = t/2, Eq. (25) is satisfied with the equality sign for all t ∈ (0, ν).

We shall now introduce two new classes of distributions based on monotonicity properties
of the weighted entropies.

Definition 3.2 A random lifetime X will be said to have
(i) decreasing [increasing] weighted uncertainty residual life (DWURL) [IWURL] if and only
if Hw(t) is decreasing [increasing] in t ∈ S;
(ii) decreasing [increasing] weighted uncertainty past life (DWUPL) [IWUPL] if and only if
H

w
(t) is decreasing [increasing] in t ∈ S.

LetX be a random variable uniformly distributed on (0, ν). SinceHw(t) = t+ν
2 log(b−t),

0 < t < ν, X is DWURL if and only if 0 < ν ≤ e, and it can never be IWURL. Moreover,
from (27) X is DWUPL if and only if 0 < ν ≤ 1

e , and it can never be IWUPL. Finally, by
virtue of (21), an exponential distribution with parameter λ is DWURL (IWURL) if and
only if λ ≥ e (0 < λ ≤ e).

4 Monotonic transformations In this section we study the weighted residual entropy
and the weighted past entropy under monotonic transformations. Similarly to Proposition
2.4 of Di Crescenzo and Longobardi [6], we have:

Theorem 4.1 Let Y = φ(X), with φ strictly monotonic, continuous and differentiable,
with derivative φ′. Then, for all t ∈ S

Hw
Y (t) =

⎧⎨
⎩
Hw,φ

(
φ−1(t)

)
+ E

{
φ(X) log φ′(X) |X > φ−1(t)

}
, φ strictly increasing

H
w,φ (

φ−1(t)
)

+ E
{
φ(X) log[−φ′(X)] |X ≤ φ−1(t)

}
, φ strictly decreasing

(28)
and

H
w

Y (t) =

⎧⎨
⎩
H

w,φ (
φ−1(t)

)
+ E

{
φ(X) log φ′(X) |X ≤ φ−1(t)

}
, φ strictly increasing

Hw,φ
(
φ−1(t)

)
+ E

{
φ(X) log[−φ′(X)] |X > φ−1(t)

}
, φ strictly decreasing,

(29)
where

Hw,φ(t) = − 1
FX(t)

∫ +∞

t

φ(x) fX(x) log
fX(x)
FX(t)

dx,

H
w,φ

(t) = − 1
FX(t)

∫ +∞

t

φ(x) fX(x) log
fX(x)
FX(t)

dx.

Proof. From (11) we have

Hw
Y (t) = −

∫ +∞

t

y
fX(φ−1(y))
P (Y > t)

∣∣∣∣ d
dy
φ−1(y)

∣∣∣∣ log
{
fX(φ−1(y))
P (Y > t)

∣∣∣∣ d
dy
φ−1(y)

∣∣∣∣
}

dy.

Let φ be strictly increasing. By setting y = φ(x), we obtain

Hw
Y (t) = −

∫ φ−1(+∞)

φ−1(t)

φ(x)
fX(x)

FX(φ−1(t))
log

{
fX(x)

FX(φ−1(t))

∣∣∣∣ d
dx
φ(x)

∣∣∣∣
−1
}

dx,
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or

Hw
Y (t) = −

∫ +∞

φ−1(t)

φ(x)fX(x)
FX(φ−1(t))

log
fX(x)

FX(φ−1(t))
dx+

∫ +∞

φ−1(t)

φ(x)fX (x)
FX(φ−1(t))

log
∣∣∣∣ d
dx
φ(x)

∣∣∣∣ dx,
giving the first of (28). If φ is strictly decreasing we similarly obtain:

Hw
Y (t) = −

∫ φ−1(t)

φ−1(+∞)

φ(x) fX(x)
FX(φ−1(t))

log
fX(x)

FX(φ−1(t))
dx+

∫ φ−1(t)

0

φ(x) fX(x)
FX(φ−1(t))

log
∣∣∣∣ d
dx
φ(x)

∣∣∣∣ dx,
i.e., the second of (28). The proof of (29) is analogous.

According to Remark 2.3 of [6] we note that when Y = φ(X) is distributed as X (like
as for certain Pareto and beta-type distributions), Theorem 4.1 yields useful identities that
allow to express Hw

X(t) and H
w

X(t) in terms of Hw,φ
(
φ−1(t)

)
or H

w,φ (
φ−1(t)

)
, depending

on the type of monotonicity of φ.

Remark 4.1 Due to Theorem 4.1, for all a > 0 and t > 0 there holds:

Hw
aX(t) = aHw

(
t

a

)
+ δ

(
t

a

)
a log a,

H
w

aX(t) = aH
w
(
t

a

)
+ µ

(
t

a

)
a log a.

Furthermore, for all b > 0 and t > b one has:

Hw
X+b(t) = Hw(t− b) + bH(t− b),

H
w

X+b(t) = H
w
(t− b) + bH(t− b).
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[16] Guiaşu, S. (1986), Grouping data by using the weighted entropy. J. Statist. Plann. Infer 15,
63–69.

[17] Johnson, D.H. and Glantz, R.M. (2004), When does interval coding occur? Neurocomput-
ing 59-60, 13–18.

[18] Longo, G. (1976), A noiseless coding theorem for sources having utilities. SIAM J. Appl.
Math. 30, 739–748.

[19] Navarro, J., del Aguila, Y. and Ruiz, J.M. (2001), Characterizations through reliability
measures from weighted distributions. Stat. Papers 42, 395–402.

[20] Shannon, C.E. (1948), A mathematical theory of communication. Bell System Tech. J. 27,
279–423.

[21] Taneja, I.J. (1990), On generalized entropy with applications. In: Lectures in Applied Mathe-
matics and Informatics (L.M. Ricciardi, Ed.), p. 107–169. Manchester Univ. Press, Manchester.

[22] Wiener, N. (1948, 2nd Ed. 1961), Cybernetics, The MIT Press and Wiley, New York.

Antonio Di Crescenzo
Dipartimento di Matematica e Informatica, Università degli Studi di Salerno
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