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LAWS OF LARGE NUMBERS FOR PRODUCT OF RANDOM VARIABLES
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Abstract. We state and prove weak and strong laws of large numbers for a product
of random variables. A statistical application to a problem in geometric probability is
also provided.

1 Introduction and results. Let (Ω,F ,P) be a probability space and denote by E the
expectation with respect to P. Consider a sequence ξ0, ξ1, ξ2, ... of i.i.d. random variables
defined on (Ω,F ,P) and suppose that E[ξ4

0 ] < +∞. Let {cn ; n ≥ 1} be an increasing
sequence of integers such that c−1

n nα → 0, for some α > 1. For a fixed λ > 0, denote by
mn := �λcn� the integer part of λcn. The classical laws of large numbers (see any basic
book in probability theory, as [7]) state that (even under weaker assumptions):

lim
n

1
mn

mn∑
i=1

ξi = E (ξ0) in P− probability,(1)

and

lim
n

1
mn

mn∑
i=1

ξi = E (ξ0) P − almost surely.(2)

Being, for any n ≥ 1: (
mn∏
i=1

ξi

) 1
cn

= exp

(
1
cn

mn∑
i=1

ln (ξi)

)
,

and because of the continuity of the exponential, from (1) and (2) we may derive the
following laws of large numbers for product:

lim
n

(
mn∏
i=1

ξi

) 1
cn

= exp (λE (ln (ξ0))) , in P − probability,

and

lim
n

(
mn∏
i=1

ξi

) 1
cn

= exp (λE (ln (ξ0))) , P− almost surely.

However to compute the limit one should be able to compute E (ln (ξ0)).
We consider different kind of product and laws of large numbers. We define, for any

n ≥ 1:

Ŝn :=
mn∏
i=1

(
1 − ξi

cn

)
,(3)
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and

sn :=
(

1 − E (ξ0)
cn

)mn

.(4)

and we will prove the following Theorems.

Theorem 1 (Weak Law of Large Numbers) The sequence Ŝn−sn converges in P-probability
to 0, that is:

for any ε > 0 : lim
n

P
(
|Ŝn − sn| > ε

)
= 0.

Theorem 2 (Strong Law of Large Numbers) The sequence Ŝn − sn converges P-almost
surely to 0, that is:

P
(
lim
n

(
Ŝn − sn

)
= 0
)

= 1.

In the next section we give motivations for considering these results and an application of
them. In section 3 we provide proofs of the Theorem 1 and Theorem 2. In section 4 we
recall previous results related to dynamical models.

2 Applications and motivations. Theorem 1 and Theorem 2 may be applied to the
following mathematical model.

Let’s consider a convex averaging sequence {Cn ; n ≥ 1} (see [3]), that is:

1. Cn ⊂ R2 convex Borel set,

2. Cn ⊂ Cn+1, for any n ≥ 1,

3. r(Cn) := sup{r > 0 : Cn contains a ball of radius r} −→ +∞, as n −→ +∞.

So, denoting by � Lebesgue measure on R2: cn := �(Cn) ↑ +∞, as n −→ +∞. We also
assume that c−1

n nα −→ 0, as n −→ +∞, for some α > 1.
For a fixed λ > 0 and for any n ≥ 1, we consider mn = �λcn� discs D1, ...,Dmn of random

(bounded) sizes placed at random on Cn. The disc areas, say ξ1, ξ2, ..., ξmn , are supposed
to be i.i.d. and known. The positions of the centers of the discs, say X1, X2, ...,Xmn , are
supposed to be unknown (not observable). We assume they are i.i.d. uniformly distributed
on Cn and independent of the areas.

Let’s denote by Θn the union of the discs and by ∆n the area fraction of the uncovered
part of Cn:

Θn :=
mn⋃
i=1

Di, ∆n :=
1
cn

� (Cn \ Θn) =
1
cn

∫
Cn

I (x �∈ Θn) d�(x).

Because the model is only partially observable, we are not able to compute ∆n. So an
estimation problem arises for its expectation E(∆n). In the following example we present
concrete situations in which there is an interest in the estimation of E(∆n).

Example 1. Bombing model with obscuring object. Suppose that, during a bombing,
mn bombs have been dropped on a region Cn. Because of the presence of obscuring objects
(clouds, hills, ...) it is not possible to observe the hitting points of the bombs. It is assumed
that each bomb destroys a circular region around it proportional to its destructive power,
and that the destructive power of each dropped bomb is known. It is useful an estimation
of the expected not destroyed portion of the region.
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Example 2. Sources of pollution. Suppose it is known that mn sources of pollution
entered a region Cn but the positions of them are unknown. Suppose further that the
polluting power of each source is known and that each source damages a circular region
around it proportional to its polluting power. It is interesting to estimate the expected not
damaged portion of the region.

In the following results we shows that E (∆n) is equal to sn as defined in (4). In the
proof we do not consider edge effect. They are negligible if, as in our case, the region area
cn is very large with respect to the discs areas.

Theorem 3 With the previous definitions and notations it is:

sn = E (∆n) .

Proof. If 0 ∈ Cn is a fixed test point, and D is the generic disc with area distributed
as ξ0 and center X uniformly distributed on Cn and independent of ξ0, then:

P (0 �∈ D) =
∫

P (0 �∈ D | ξ = x) fξ(x) dx =

=
∫

P
(
X �∈ B

(
0,
√

x/π
))

fξ(x) dx =

=
∫ (

1 − x

cn

)
fξ(x) dx = 1 − E (ξ0)

cn
,

where B(0, r) denotes the ball with center 0 and radius r. It follows that:

E (∆n) =
1
cn

E
(∫

Cn

I (x �∈ Θn) d�(x)
)

=

=
1
cn

∫
Cn

P (0 �∈ Θn) d�(x) = P (0 �∈ Θn) =

=
mn∏
i=1

P (0 �∈ Di) =
(

1 − E (ξ0)
cn

)mn

= sn. �

So we are looking for an estimator of sn. One may think to consider the estimator(
1 − ξ

cn

)mn

,

or, noting that

lim
n

sn = e−λE(ξ0),(5)

to consider the estimator e−λξ, where ξ, the sample mean of ξ1, ..., ξmn , is the natural
estimator of E(ξ0). But both of these estimators are not even unbiased.

Instead we consider the estimator Ŝn of sn defined in (1). By using independence and
standard properties of expectation, it is easy to verify that Ŝn is an unbiased estimator of
sn, that is: E

(
Ŝn

)
= sn. Now the questions are:

Is Ŝn a weakly consistent estimator of sn and in which sense?
Is Ŝn a strongly consistent estimator of sn and in which sense?
Theorem 1 and 2 give positive answers to the first and second question, respectively.
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3 Proof of the Theorems. In this section we give the proofs of Theorem 1 and Theorem
2.

Proof of Theorem 1. Being Ŝn an unbiased estimator of sn, and because of Chebychev
inequality, it is enough to prove that

lim
n

(
E
(
Ŝ2

n

)
− s2

n

)
= 0.

Because of independence,

E
(
Ŝ2

n

)
=

mn∏
i=1

E

((
1 − ξi

cn

)2
)

=
(

1 − 2E(ξ0)
cn

+
E(ξ2

0)
c2
n

)mn

.

so that
lim
n

(
E
(
Ŝ2

n

))
= e−2λE(ξ0),

and the conclusion follows from (5). �

Proof of Theorem 2. If we prove that

∞∑
n=1

E
((

Ŝn − sn

)4
)

< ∞,(6)

then, because of Chebishev inequality,

for every ε > 0 :
∞∑

n=1

P
(
|Ŝn − sn| > ε

)
< ∞,

and then, by the first Borel-Cantelli lemma:

for every ε > 0 : P
(

lim sup
n

{
|Ŝn − sn| > ε

})
= 0,

from which the conclusion of Theorem 2 follows. So we just have to prove (6). By expanding,
using independence and computing expectation we have:

E
((

Ŝn − sn

)4
)

=

=
(

1 − 4a1

cn
+

6a2

c2
n

− 4a3

c3
n

+
a4

c4
n

)mn

+ 6
(

1 − 2a1

cn
+

a2

c2
n

)mn
(

1 − a1

cn

)2mn

−4
(

1 − 3a1

cn
+

3a2

c2
n

− a3

c3
n

)mn
(

1 − a1

cn

)mn

− 3
(

1 − a1

cn

)4mn

where: ai = E
(
ξi
0

)
. Note that we may write

E
((

Ŝn − sn

)4
)

= f(1/cn; A,B1, C1, D1) + 6 f(1/cn; A,B2, C2, D2)

−4 f(1/cn; A,B3, C3, D3) − 3 f(1/cn; A,B4, C4, D4),(7)

where

f(x;A,B, C,D) :=

⎧⎨⎩(1 + Ax + Bx2 + Cx3 + Dx4)1/x, for x �= 0

eA, for x = 0
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A := −4a1,

B1 := 6a2, B2 := 5a2
1 + a2, B3 := 3a2

1 + 3a2, B4 := 6a2
1,

C1 := −4a3, C2 := −(2a3
1 + 2ab), C3 := −(3a1a2 + a3), C4 := −4a3

1

D1 := a4, D2 := a2
1a2, D3 := a1a3, D4 := a4

1.

The function f(·;A,B, C,D) is defined and smooth in a neighborhood of x = 0 and it
admits the following Taylor expansion around 0:

f(x;A,B, C,D) = eA

(
1 +

(
B − A2

2

)
x +

(
A4

8
+

A3

3
−
(A2

2
+ A

)
B +

B2

2
+ C

)
x2 + o(x2)

)(8)

(notice that D does not appear).
Expanding each addendum in (7) as in (8) yields

E
((

Ŝn − sn

)4
)

=

= eA

[
1 +

(
B1 − A2

2

)
1
cn

+
(

A4

8
+

A3

3
−
(

A2

2
+ A

)
B1 +

B2
1

2
+ C1

)
1
c2
n

+

6
[
1 +

(
B2 − A2

2

)
1
cn

+
(

A4

8
+

A3

3
−
(

A2

2
+ A

)
B2 +

B2
2

2
+ C2

)
1
c2
n

]
−

4
[
1 +

(
B3 − A2

2

)
1
cn

+
(

A4

8
+

A3

3
−
(

A2

2
+ A

)
B3 +

B2
3

2
+ C3

)
1
c2
n

]
−

3
[
1 +

(
B4 − A2

2

)
1
cn

+
(

A4

8
+

A3

3
−
(

A2

2
+ A

)
B4 +

B2
4

2
+ C4

)
1
c2
n

] ]
+ o

(
1
c2
n

)
.

Whence

E
((

Ŝn − sn

)4
)

= eA

[(
B1 + 6B2 − 4B3 − 3B4

) 1
cn

+
(
−
(A2

2
+ A

)
(B1 + 6B2 − 4B3 − 3B4) +

1
2
(B2

1 + 6B2
2 − 4B2

3 − 3B2
4) + (C1 + 6C2 − 4C3 − 3C4)

)
1
c2
n

]
+ o

(
1
c2
n

)
.

A direct inspection shows that

B1 + 6B2 − 4B3 − 3B4 = C1 + 6C2 − 4C3 − 3C4 = 0,

and
B2

1 + 6B2
2 − 4B2

3 − 3B2
4 = 6

(
a2
1 − a2

)2
,

thus

E
((

Ŝn − sn

)4
)

= 3e−4a1
(
a2
1 − a2

)2 1
c2
n

+ o

(
1
c2
n

)
.

The conclusion follows. �
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4 Dynamical models. In previous papers we have considered dynamical models in
which discs drop on the region at the times of a point process. In this section we recall the
obtained results.

In [4] it is assumed that discs drop on Cn following a Poisson process Nn with mean
measure of the form

µn((s, t]) := cn ·
∫ t

s

λ(u)du, 0 < s ≤ t,

and that disc volume is a function ξ(t) of dropping time t.
By using stochastic geometry (see [8]) and thinning properties of Poisson process it is

shown that the expected free area function S is given by

S(t) = exp
(
−
∫ t

0

λ(s) E(ξ(s)) ds

)
, t > 0.

The estimator Ŝn of S is defined by:

Ŝn(t) :=
∏
s≤t

(
1 − ξ(s) dNn(s)

cn

)
, t > 0,

where
∏

s≤t means product integral (see [1] or [6]).
The following uniform weak law of large numbers is stated and proved.

Theorem 4 Ŝn is a uniformly consistent estimator of S in [0, T ], that is

sup
t∈[0,T ]

|Ŝn(t) − S(t)| P−→ 0, as n −→ +∞;

In the proof martingales theory, Lenglart’s inequality and properties of product integral
are used (see [1]). Martingales theory is also used to prove the following result.

Theorem 5 The process MS
n = {MS

n(t) ; t > 0}, defined by

MS
n(t) :=

√
cn

(
Ŝn(t) − S(t)

)
, t > 0,

is a zero-mean square integrable martingale, and, for any t > 0, its predictable variation is
given by:

〈MS
n〉(t) = (S(t))2

∫ t

0

(
Ŝn(s−)
S(s)

)2

E(ξ2(s)) λ(s) ds, t > 0.

About asymptotic gaussianity, the following result is stated and its proof is obtained
by using the central limit theorem for martingales, Duhamel’s equation and properties of
product integral (see [1]).

Theorem 6 The process MS
n converges on the Skorokhod function space D(0, T ) to −S·M,

MS
n

D−→ −S ·M, as n −→ +∞,

where M is a Gaussian martingale with variance function v = {v(t) ; t > 0} defined by:

v(t) :=
∫ t

0

E
(
ξ2(s)

)
λ(s) ds, t > 0.
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About variance estimation the following result holds.

Theorem 7 The process v̂n defined by

v̂n(t) :=
1
cn

∫ t

0

ξ2(s) dNn(s), t > 0,

is a uniformly consistent estimator of v in [0, T ], that is

sup
t∈[0,T ]

|v̂n(t) − v(t)| P−→ 0, as n −→ +∞.

So that confidence bands may be obtained. The asymptotic 100(1 − α)% confidence band
for S in [0, T ] is

Ŝn(t)

(
1 ∓ 1 + v̂n(t)√

cn)
eα/2(c)

)
, 0 ≤ t ≤ T

where eα/2(c) denotes the upper (α/2)-quantile of the distribution of supx∈[0,c]

∣∣W 0(x)
∣∣, ,

W 0 standard Brownian bridge.
In [5] it is assumed that the dropping times sequence is a process

Nn(t) := N(cnt), 0 ≤ t

where N is a renewal process with mean interarrival time µ. Denoting by ωn(t) the expected
free area at time t and

Sn(t) :=
(

1 − E(ξ)
cn

)Nn(t)

, S(t) := exp
(
−E(ξ)

µ
t

)
,

the following result holds.

Theorem 8 a) ωn(t) = E[Sn(t)], for any t ≥ 0;
b) sup0≤t≤T |ωn(t) − S(t)| −→ 0, as n → +∞.

The estimator Ŝn of ωn is defined by

Ŝn(t) :=
∏

Tni≤t

(
1 − ξni

cn

)
, 0 ≤ t ≤ T.

The following uniform weak law of large numbers is proved by using Kolmogorov’s
inequality and product integral properties.

Theorem 9 Ŝn is a Uniform Consistent estimator of ωn, that is:

sup
0≤t≤T

|Ŝn(t) − ωn(t)| =⇒ 0, as n → +∞.

The asymptotic Gaussianity stated below is proved by using product integral continuity
properties, Duhamel’s equation (see [1]), weak convergence theory and Donsker theorem
(see [2]).
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Theorem 10 The process MS
n = {MS

n(t) : 0 ≤ t ≤ T }, defined by

MS
n(t) :=

√
cn

(
Ŝn(t) − Sn(t)

Sn(t)

)
, 0 ≤ t ≤ T,

converges to W (v):
MS

n ⇒ W (v), as n −→ +∞,

where W is a Standard Brownian motion on [0,T], and v = {v(t) ; 0 ≤ t ≤ T } is defined
by

v(t) := V ar(ξ0(t)) · t

µ
, 0 ≤ t ≤ T.

The following result concern variance estimation.

Theorem 11 The process v̂n defined by

v̂n(t) :=
1
cn

Nn(t)∑
i=1

⎛⎝ξi − 1
Nn(t)

Nn(t)∑
i=1

ξi

⎞⎠2

, 0 ≤ t ≤ T.

is a uniformly consistent estimator of the variance function v, that is:

sup
0≤t≤T

|v̂n(t) − v(t)| =⇒ 0, as n −→ +∞.

The asymptotic 100(1 − α)% confidence band for Sn in [0, T ] is:

Ŝn(t)
(

1 ∓ 1 + v̂n(t)√
cn

eα/2(c)
)

, 0 ≤ t ≤ T,

where eα/2(c) is the upper (α/2)-quantile of the distribution of sup0≤x≤c

∣∣W 0(x)
∣∣, W 0

standard Brownian bridge.
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