ON NEW CHARACTERIZATIONS OF SEMI-T_i-SPACES, WHERE i = 0, 1/2

N. Araki, M. Ganster, H. Maki and A. Nishi

Received December 12, 2005

ABSTRACT. In this paper, we characterize semi-T₀-spaces [11] and semi-T_{1/2}-spaces [3] by using the notion of semi- λ -closed sets [6].

Introduction and results In 1997, Arenas, Dontchev and Ganster [2] introduced the 1 notion of λ -closed sets in a topological space and using the λ -closedness they characterized T_i -spaces, where $i \in \{0, 1/4, 1/2, 1\}$. The purpose of this paper is to characterize two separation axioms semi-T₀ [11] and semi-T_{1/2}-spaces [3] by using the notion of semi- λ closed sets [6]. Throughout this paper, "a space" means a topological space which lacks any separation axioms unless explicitly stated. Let (X, τ) be a space. Recall that a subset A of X is said to be *semi-open* in (X,τ) if $A \subset ClInt(A)$ holds. Let $SO(X,\tau)$ be the family of all semi-open sets in (X, τ) . A set A is said to be *semi-closed* if $X \setminus A \in SO(X, \tau)$. Let $SC(X, \tau)$ be the family of all semi-closed sets of (X, τ) . The semi-closure sCl(E) (resp. semi-kernel sKer(E)) of a subset E is defined by $sCl(E) := \bigcap \{F | E \subset F, F \in SC(X, \tau)\}$ (resp. $sKer(E) := \bigcap \{ U | E \subset U, U \in SO(X, \tau) \}$. It is well known that $sCl(E) = E \cup IntCl(E)$ holds for any subset E of (X, τ) ([9, Lemma 1]). In [6], the notion of semi- λ -closed sets is introduced and investigated. A subset A of a space (X, τ) is semi- λ -closed if and only if $A = sKer(A) \cap sCl(A)$ ([6, Proposition 2.6]). The complement of a semi- λ -closed set is called semi- λ -open. Let $SLO(X,\tau)$ be the family of all semi- λ -open sets of (X,τ) . In [6, p.263], it was stated that $SLO(X, \tau)$ is always a topology on X.

A space (X, τ) is semi- T_0 [11] if, for each $x, y \in X$ such that $x \neq y$ there exists a semiopen set containing x but not y or a semi-open set containing y but not x. A space (X, τ) is called semi- $T_{1/2}$ [3] if every sg-closed set is semi-closed. A space (X, τ) is semi- $T_{1/2}$ if and only if every singleton of X is semi-open(=open) or semi-closed ([13, Theorem 4.8] [4, Definition 3.2]). Using the concept of semi- λ -closed sets [6], we characterize semi- T_0 -spaces and semi- $T_{1/2}$ -spaces. Main theorems are as follows:

Theorem 1.1 The following properties are equivalent:

- (1) A space (X, τ) is semi-T₀;
- (2) Every singleton of X is semi- λ -closed in (X, τ) ;
- (3) Every finite subset of X is semi- λ -closed in (X, τ) ;
- (4) For every finite set F of X and for every point $y \notin F$ there exists a set V_y containing
- F and disjoint from $\{y\}$ such that $V_y \in SO(X, \tau)$ or $V_y \in SC(X, \tau)$.
 - (5) An induced space $(X, SLO(X, \tau))$ is T_1 .

Theorem 1.2 The following properties are equivalent:

- (1) A space (X, τ) is semi- $T_{1/2}$;
- (2) Every subset of X is semi- λ -closed in (X, τ) ;
- (3) $SLO(X, \tau) = P(X)$ holds.

²⁰⁰⁰ Mathematics Subject Classification. Primary:54D10.

Key words and phrases. semi-T₀-spaces, semi-T_{1/2}-spaces, semi-closed sets, semi- λ -closed sets, semi- λ -open sets, digital planes.

2 A lemma and a corollary We first prepare a lemma from a generalized point of view in the light of [7]. We recall the following concepts from [7, Section 4]: For a space (X, τ) , let \mathcal{E}_X and \mathcal{E}'_X be subfamilies of the power set P(X) of X satisfying the following properties:

 $(\mathcal{A}) \ \{\emptyset, X\} \subset \mathcal{E}_X \text{ and } \{\emptyset, X\} \subset \mathcal{E}'_X.$

Sometimes, \mathcal{E}_X and \mathcal{E}'_X are denoted by \mathcal{E} and \mathcal{E}' , respectively. Then, for a subset A of X, the following two sets are well defined:

 $\mathcal{E}_X \text{-} Ker(A) := \bigcap \{ U | A \subset U, U \in \mathcal{E}_X \},\$

 $\mathcal{E}_X - Cl(A) := \bigcap \{ F | A \subset F, X \setminus F \in \mathcal{E}_X \}.$

A subset A is said to be an \mathcal{E}_X -closed in (X, τ) if $X \setminus A \in \mathcal{E}_X$. A subset B is said to be an \mathcal{E}_X - Λ -set in (X, τ) if $B = \mathcal{E}_X$ -Ker(B). We note that, in [7, p.63], the above teminology, " \mathcal{E}_X - Λ -sets" was used as " \mathcal{E}_X - λ -sets". For an ordered pair $(\mathcal{E}_X, \mathcal{E}'_X)$, a subset A is said to be $(\mathcal{E}_X, \mathcal{E}'_X)$ - λ -closed in (X, τ) if A is an intersection of an \mathcal{E}_X - Λ -set and an \mathcal{E}'_X -closed set. The following (i) and (ii) are useful for the present paper ([7, Theorem 4.1]).

(i) Let $(\mathcal{E}_X, \mathcal{E}'_X)$ be an ordered pair of given subfamilies of P(X) satisfying (\mathcal{A}) . If a subset A is $(\mathcal{E}_X, \mathcal{E}'_X)$ - λ -closed in (X, τ) , then $A = \mathcal{E}_X$ -Ker $(A) \cap \mathcal{E}'_X$ -Cl(A) holds.

(ii) Let $(\mathcal{E}_X, \mathcal{E}'_X)$ be an ordered pair satisfying (\mathcal{A}) and the following property:

 $(\mathcal{B})_{\mathcal{E}'}$ The union of any family of subsets belonging to \mathcal{E}'_X belongs to \mathcal{E}'_X .

Then, the converse of (i) is true, i.e. a subset A is $(\mathcal{E}_X, \mathcal{E}'_X)$ - λ -closed in (X, τ) if and only if $A = \mathcal{E}_X$ -Ker $(A) \cap \mathcal{E}'_X$ -Cl(A) holds.

Indeed, the property $(\mathcal{B})_{\mathcal{E}'}$ is equivalent to the property $(\mathcal{C})_{\mathcal{E}'}$ in [7, Theorem 4.1] and so (ii) is obtained from [7, Theorem 4.1].

(iii) Under the assumptions (\mathcal{A}) and $(\mathcal{B})_{\mathcal{E}}$, a subset B is \mathcal{E}_X -closed if and only if \mathcal{E}_X -Cl(B) = B holds.

Example 2.1 (i) In the above, let $\mathcal{E} = \mathcal{E}' = \tau$, then we have τ -Ker(A) = Ker(A), τ -Cl(A) = Cl(A), (τ, τ) - λ -closed set= λ -closed set. We note that (A) and (\mathcal{B}) $_{\tau}$ are satisfied in (X, τ) . (ii) Let $\mathcal{E} = \mathcal{E}' = SO(X, \tau)$, then we have $SO(X, \tau)$ -Ker(A) = sKer(A), $SO(X, \tau)$ -Cl(A) = sCl(A), $(SO(X, \tau), SO(X, \tau))$ - λ -closed set =semi- λ -closed set. We note that (A) and (\mathcal{B})_{SO(X, τ)} are satisfied in (X, τ) ; and so a subset A is semi- λ -closed in (X, τ) if and only if $A = sKer(A) \cap sCl(A)$ holds.

Lemma 2.2 Let $(\mathcal{E}_X, \mathcal{E}'_X)$ be an ordered pair of given subfamilies of P(X) satisfying (\mathcal{A}) and $(\mathcal{B})_{\mathcal{E}'}$:

 $(\mathcal{A}) \ \{\emptyset, X\} \subset \mathcal{E}_X \text{ and } \{\emptyset, X\} \subset \mathcal{E}'_X;$

 $(\mathcal{B})_{\mathcal{E}'}$ The union of any family of subsets belonging to \mathcal{E}'_X belongs to \mathcal{E}'_X .

Then, for a space (X, τ) and a subset F of X, the following properties are equivalent:

(1) For every point $y \notin F$, there exists a set V_y containing F and disjoint from $\{y\}$ such that $V_y \in \mathcal{E}_X$ or $X \setminus V_y \in \mathcal{E}'_X$;

(2) The subset F is $(\mathcal{E}_X, \mathcal{E}'_X)$ - λ -closed in (X, τ) .

Proof. (1) \Rightarrow (2) For each point $y \notin F$, there exists a set V_y such that $V_y \cap \{y\} = \emptyset, F \subset V_y$ and $V_y \in \mathcal{E}_X$ or $X \setminus V_y \in \mathcal{E}'_X$. Set $\mathcal{L} := \{V_y | V_y \in \mathcal{E}_X, y \notin F\}$ and $\mathcal{C} := \{V_y | X \setminus V_y \in \mathcal{E}'_X, y \notin F\}$. Let $L := \bigcap \{V | V \in \mathcal{L}\}$ if $\mathcal{L} \neq \emptyset$, L := X if $\mathcal{L} = \emptyset$ and $C := \bigcap \{V | V \in \mathcal{C}\}$ if $\mathcal{C} \neq \emptyset$, C := X if $\mathcal{C} = \emptyset$. Then, it is shown that $F = L \cap C$ holds, L is an \mathcal{E}_X -A-set and $X \setminus C \in \mathcal{E}'_X$ because $(\mathcal{B})_{\mathcal{E}'}$ is assumed. Hence, F is $(\mathcal{E}_X, \mathcal{E}'_X) - \lambda$ -closed in (X, τ) . (2) \Rightarrow (1) Let y be a point of X such that $y \notin F$. It follows from assumption and (i) above [7, Theorem 4.1] that $F = \mathcal{E}_X$ -Ker $(F) \cap \mathcal{E}'_X$ -Cl(F).

Case 1. $y \notin \mathcal{E}'_X$ -Cl(F): Let $V_y := \mathcal{E}'_X$ -Cl(F). Then, by $(\mathcal{B})_{\mathcal{E}'}, X \setminus V_y \in \mathcal{E}'_X, F \subset V_y$ and $V_y \cap \{y\} = \emptyset$ hold.

Case 2. $y \in \mathcal{E}'_X$ -Cl(F): Since $y \notin \mathcal{E}_X$ -Ker(F), there exists a subset $U \in \mathcal{E}_X$ such that $y \notin U$ and $F \subset U$. Thus, let $V_y := U$.

Therefore, we show (1) for both cases. \Box

In Lemma 2.2 above, let $\mathcal{E}_X = \mathcal{E}'_X = SO(X, \tau)$ for a space (X, τ) . Then, we finally have the following lemma as a corollary (cf. Example 2.1(ii)).

Corollary 2.3 For a space (X, τ) and a subset F of X, the followings are equivalent:

(1) For every point $y \notin F$, there exists a set V_y containing F and disjoint from $\{y\}$ such that $V_y \in SO(X, \tau)$ or $V_y \in SC(X, \tau)$;

(2) F is semi- λ -closed in (X, τ) . \Box

3 Proofs of Theorem 1.1 and Theorem 1.2 We first recall the following properties:

Theorem 3.1 ([6, Theorem 2.7]) A subset A of (X, τ) is semi- λ -closed if and only if $X_2 \cap sCl(A) \subset A$, where $X_2 := \{x \in X | \{x\} \text{ is preopen } \}.$

The proof of the following theorem was not given in [6] and this fact is used in the present paper. We give a sketch of the proof.

Theorem 3.2 ([6, p.263]) For any space (X, τ) , $SLO(X, \tau)$ is a topology on X.

Proof. It is evident that \emptyset and X are semi- λ -closed. We first claim that if A and B are semi- λ -closed then $A \cup B$ is semi- λ -closed. Let $x \in X_2 \cap sCl(A \cup B)$. We have that $x \in IntCl(\{x\}) \subset IntClIntCl(A \cup B) \subset IntCl(A \cup B) \subset IntCl(A) \cup Cl(B)$. We consider the following two cases:

Case 1. $x \in IntCl(A)$: Since $X_2 \cap sCl(A) = X_2 \cap (A \cup IntCl(A)) \subset A$ by Theorem 3.1, we have that $x \in A$.

Case 2. $x \in Cl(B)$: We have that $x \in IntCl(\{x\}) \subset IntClCl(B) = IntCl(B)$. Then, we show that $x \in B$, because $X_2 \cap sCl(B) = X_2 \cap (B \cup IntCl(B)) \subset B$ hold (cf. Theorem 3.1).

Thus we show that $X_2 \cap sCl(A \cup B) \subset A \cup B$ and so $A \cup B$ is semi- λ -closed by Theorem 3.1. Finally, we show that if $A_i, i \in \mathcal{B}$, are semi- λ -closed, then $\bigcap \{A_i | i \in \mathcal{B}\}$ is semi- λ -closed, where the index set \mathcal{B} is not necessarily finite. We have that $X_2 \cap sCl(\bigcap \{A_i | i \in \mathcal{B}\}) \subset X_2 \cap sCl(A_i) \subset A_i$ for any $i \in \mathcal{B}$ and so $X_2 \cap sCl(\bigcap \{A_i | i \in \mathcal{B}\}) \subset \bigcap \{A_i | i \in \mathcal{B}\}$. Therefore, $\bigcap \{A_i | i \in \mathcal{B}\}$ is semi- λ -closed (cf. Theorem 3.1). \Box

We have the proofs of Theorem 1.1 and Theorem 1.2.

Proof of Theorem 1.1

(1) \Rightarrow (2) Let $x \in X$. It follows from the assumption that, for every point $y \neq x$ there exists a set U_y containing x and disjoint $\{y\}$ such that U_y is semi-open or semi-closed. Let $\mathcal{L} := \{U_y | U_y \in SO(X, \tau), y \neq x\}$ and $\mathcal{C} := \{U_y | U_y \in SC(X, \tau), y \neq x\}$. We define the following sets L and C: $L := \bigcap \{V | V \in \mathcal{L}\}$ if $\mathcal{L} \neq \emptyset$, L := X if $\mathcal{L} = \emptyset$ and $C := \bigcap \{V | V \in \mathcal{C}\}$ if $\mathcal{C} \neq \emptyset$ and C := X if $\mathcal{C} = \emptyset$. Then, L is a semi- Λ -set and C is a semi-closed set. It is shown that $L \cap C = \{x\}$ and hence $\{x\}$ is semi- λ -closed. (2) \Rightarrow (1) Let x and y be two different points of X. Since $\{x\}$ is semi- λ -closed, there exist a semi- Λ -set L and a semi-closed sets C such that $\{x\} = L \cap C$.

Case 1. $y \notin C$: The set $X \setminus C$ is a semi-open set containing y such that $x \notin X \setminus C$.

Case 2. $y \in C$: Since $y \notin L$, there exists a semi-open set W_y containing x such that $y \notin W_y$.

Therefore, (X, τ) is semi- T_0 . \Box

For a subset E of a space (X, τ) , let $E_{SO} := \{x | x \in E, \{x\} \in SO(X, \tau)\}$. **Proof of Theorem 1.2**

(1) \Rightarrow (2) We first recall that a space (X, τ) is semi- $T_{1/2}$ if and only if for each $x \in X, \{x\}$ is semi-open(=open) or semi-closed ([13, Theorem 4.8]). Let A be a subset of X. Set $B := X \setminus (A \cup (X \setminus A)_{S\mathcal{O}})$. We define the following subsets L and C as follows: $L := \cap \{X \setminus \{x\} | x \in B\}$ and $C := \cap \{X \setminus \{y\} | y \in (X \setminus A)_{S\mathcal{O}}\}$. Then, C is semi-closed. Indeed, for any $y \in (X \setminus A)_{S\mathcal{O}}, X \setminus \{y\}$ is a semi-closed set containing A. And, L is a semi- Λ -set. Indeed, for any $x \in B, X \setminus \{x\}$ is a semi-open set containing $A \cup (X \setminus A)_{S\mathcal{O}}$. It is shown that $A = L \cap C$ and hence A is semi- λ -closed.

(2) \Rightarrow (1) Assume that $\{x\}$ is not semi-open. We claim that $\{x\}$ is semi-closed. Since $X \setminus \{x\}$ is not semi-closed and it is semi- λ - closed, by [6, Proposition 2.6] we have that $X \setminus \{x\} = sKer(X \setminus \{x\}) \cap sCl(X \setminus \{x\})$ and hence $X \setminus \{x\} = sKer(X \setminus \{x\})$. It is shown that $\{x\}$ is semi-closed. Therefore, (X, τ) is semi- $T_{1/2}$, by [13, Theorem 4.8]. (2) \Leftrightarrow (3) It is evident. \Box

4 The digital plane is semi- $\mathbf{T}_{1/2}$ In the present paper, the digital plane (\mathbf{Z}^2, κ^2) is the topological product of two copies of the digital line (\mathbf{Z}, κ) , where $\mathbf{Z}^2 = \mathbf{Z} \times \mathbf{Z}$ and $\kappa^2 = \kappa \times \kappa$ (eg. [5] [8] [12]; cf. [10, p.10]). The proof of the following proposition is done using Theorem 1.2 (cf. Remark 4.2(i)).

Proposition 4.1 The digital plane (\mathbf{Z}^2, κ^2) is semi- $T_{1/2}$.

Proof. We first claime that

(*) every singleton $\{x\}$ of the digital plane (\mathbf{Z}^2, κ^2) is semi- λ -open, that is, F is semi- λ -closed, where $F := \mathbf{Z}^2 \setminus \{x\}$.

Case 1. x = (2n, 2m), where $n, m \in \mathbb{Z}$: Then, it is shown that $x \in sCl(F)$ and so $\mathbb{Z}^2 = sCl(F)$. Indeed, $sCl(F) = F \cup IntCl(F) = F \cup \mathbb{Z}^2 = \mathbb{Z}^2$. By using Theorem 3.1, the set F is semi- λ -closed. Indeed, $(\mathbb{Z}^2)_2 \cap sCl(F) = (\mathbb{Z}^2)_2 \cap \mathbb{Z}^2 = (\mathbb{Z}^2)_2 \subset F$, because $\{x\}$ is not preopen and so $x \notin (\mathbb{Z}^2)_2$, where $(\mathbb{Z}^2)_2 = \{y \in \mathbb{Z}^2 | \{y\} \subset IntCl(\{y\})\}$.

Case 2. x = (2n + 1, 2m + 1), where $n, m \in \mathbb{Z}^2$: Since $\{x\}$ is open, F is closed and so it is semi- λ closed.

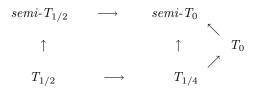
Case 3. x = (2n, 2m + 1), where $n, m \in \mathbb{Z}$: Let U be an open set containing x. Then, $U(x) := \{2n - 1, 2n, 2n + 1\} \times \{2m + 1\} \in \kappa^2 \text{ and } x \in U(x) \subset U$. Because $(2n + 1, 2m + 1) \in F \cap U$, we have that $Cl(F) = \mathbb{Z}^2$; $sCl(F) = F \cup IntCl(F) = \mathbb{Z}^2$. By using Theorem 3.1, F is semi- λ -closed because $\{x\}$ is not preopen and so $(\mathbb{Z}^2)_2 \cap sCl(F) \subset F$ holds.

Case 4. x = (2n + 1, 2m), where $n, m \in \mathbb{Z}$: By an argument similar to that in Case 3 above, it is shown that F is semi- λ -closed.

Thus, we have that the set F is semi- λ -closed; so every singleton $\{x\}$ is semi- λ -open, that is, $\{x\} \in SLO(\mathbb{Z}^2, \kappa^2)$. We finally have that, for every subset E of $\mathbb{Z}^2, E = \bigcup \{\{x\} | x \in E\} \in SLO(\mathbb{Z}^2, \kappa^2)$ (cf. Theorem 3.2 and (*) above). We now conclude as follows: (\mathbb{Z}^2, κ^2) is semi- $T_{1/2}$ (cf. Theorem 1.2). \Box

Remark 4.2 (i) We have an alternative proof of Proposition 4.1 using a fact that a topological space is semi- $T_{1/2}$ if and only if every singleton is semi-open or semi-closed ([13, Theorem 4.8]). (ii) The digital plane (\mathbb{Z}^2, κ^2) is not $T_{1/4}$ (cf.[1]); so it is not $T_{1/2}$. Every $T_{1/2}$ -space is semi- $T_{1/2}$ [3]. The Proposition 4.1 shows that the converse of an implication above is not true.

(iii) Using Theorem 1.1, [2, Theorem 2.6] and definitions, we obtain the following diagram of implications.



All implications are not reversible (cf. (ii) above and well known facts).

References

- [1] N.Araki, M.Ganster, H.Maki and A.Nishi, Properties of $T_{1/4}$ spaces, (submitting).
- [2] F.G.Arenas, J.Dontchev and M.Ganster, On λ-sets and the dual of generalized continuity, Questions Answers in Gen. Topology, 15(1997), 3–13.
- [3] P.Bhattacharyya and B.K.Lahiri, Semi-generalized closed sets in topology, Indian J.Math., 29(1987), 376–382.
- [4] J.Cao, M.Ganster, I.Reilly and M.Steiner δ-closure, θ-closure and generalized closed sets, Applied General Topology, 6 (2005), 79–86.
- [5] R.Devi, K.Bhuvaneswari and H.Maki, Weak form on $g\rho$ -closed sets, where $\rho \in \{\alpha, \alpha^*, \alpha^{**}\}$, and digital planes, *Mem. Fac. Sci. Kochi Univ. (Math.)*, **25** (2004), 37–54.
- [6] J.Dontchev and H.Maki, On sg-closed sets and semi-λ-closed sets, Questions Answers in Gen. Topology, 15 (1997), 259–266.
- [7] J.Dontchev and H.Maki, On the behavior of gp-closed sets and their generalizations, Mem. Fac. Sci. Kochi Univ. (Math.), 19 (1998), 57–72.
- [8] M.Fujimoto, H.Maki, T.Noiri and S.Takigawa, The digital plane is quasi-submaximal, Questions Answers in Gen. Topology, 22 (2004), 163–168.
- [9] D.S.Janković and I.L.Reilly, On semi separation properties, Indian J. Pure Appl. Math., 16(9) (1985), 957–964.
- [10] E.D.Khalimsky, R.Kopperman and P.R.Meyer, Computer graphics and connected topologies in finite ordered sets, *Topology Appl.*, 36(1990),1–17.
- [11] S.N.Maheshwari and R.Prasad, Some new separation axioms, Ann. Soc. Sci. Bruxelles, 89(1975), 395–402.
- [12] K.Nôno, R.Devi, M.Devipriya, K.Muthukumarraswamy and H. Maki, On $g^{\#\alpha}$ -closed sets and the digital plane, *Bull. Fukuoka Univ. Ed. Part III*,**53**(2004),15–24.
- [13] P. Sundaram, H. Maki and K. Balachandran, Semi-generalized continuous maps and semi- $T_{1/2}$ spaces, *Bull. Fukuoka Univ. Ed. Part III*, **40**(1991), 33–40.

Nobuyuki ARAKI; Department of Mathematics, Chienkan High School, Saga, 849-0915 Japan

Maximilian GANSTER; Department of Mathematics, Graz University of Technology, Steyrergasse 30, A-8010, Graz, Austria

Haruo MAKI; Wakagidai 2-10-13, Fukutsu-shi, Fukuoka-ken, 811-3221, Japan e-mail: makih@pop12.odn.ne.jp

Akihiro NISHI; Department of Mathematics, Faculty of Culture and Education, Saga University, Saga, 840-8502 Japan