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Abstract. First we see that Ando’s inequality A ∗ B ≥ (A#B) ∗ (A#B) gives a
characterization of the geometric operator mean #, where ∗ is the Hadamard product.
Extending this, we discuss inequalities for operator means and the Hadamard product.
Moreover we show monotone convergence theorems including such inequalities.

1 Introduction. One of the author [5] discussed inequalities for Haramard products
for operators from the following viewpoint: For a standard orthonormal basis {ek} of a
(separable) Hilbert space, the Hadamard product A ∗ B for operators A and B on H is
defined as

U∗(A ⊗ B)U

where U is the isometric operator
∑

k(ek⊗ek)⊗ek from H to H⊗H . Thereby the Hadamard
product has the monotone convergence property for selfadjoint operators:

An ↓ A and Bn ↓ B imply An ∗ Bn ↓ A ∗ B

The theory of operator means is started at Ando’s lecture note [3] and established as
the Kubo-Ando theory [11]. For positive operators on a Hilbert space H , the theory of
operator means is defined axiomatically: An (operator) connection m is a binary operation
on positive operators satisfying the following axioms:

monotonicity: A1 ≤ A2 and B1 ≤ B2 imply A1 m B1 ≤ A2 m B2.

semi-continuity: An ↓ A and Bn ↓ B imply An m Bn ↓ A m B.

transformer inequality: T ∗(A m B)T ≤ (T ∗AT )m(T ∗BT ).

An operator mean is a connection m satisfying

normalization: A m A = A.

When we discuss operator means, we may assume that positive operators are invertible
by virtue of the above semi-continuity. Moreover, when discussing inequalities of Hadamard
products of operator means, we have only to show the case for positive-definite matrices by
approximated by the simple functions of them.

It is easy to show that the transformer inequality becomes equality if T is invertible.
For an operator mean m, the representing function fm(x) = 1 m x is operator monotone:

0 ≤ A ≤ B implies fm(A) ≤ fm(B).
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This correspondence m �→ fm is bijective. In fact, if f is a continuous nonnegative operator
monotone functional on [0,∞) with f(1) = 1, then a binary operation m defined by

A m B = A1/2f
(
A−1/2BA−1/2

)
A1/2

for positive invertible operators A and B induces an operator mean A m B. They also
introduced the three operations in operator means; the transpose ◦, the adjoint ∗ and the
dual ⊥:

A m◦B = B m A, f◦(x) = xf

(
1
x

)

A m∗B = (A−1m B−1)−1, f∗(x) =
1

f(1/x)

A m⊥B = (B−1m A−1)−1, f⊥(x) =
x

f(x)

An operation in the above is the composition of the other two. Self-transpose means are
called symmetric and the geometric (operator) mean # is invariant for all the above oper-
ations. The arithmetic and the harmonic ones, other typical symmetric means, are adjoint
(or dual) each other.

In this note, we discuss inequalities of Hadamard products for operator means, which is
based on the following Ando’s theorem [2]:

Theorem (Ando). If A and B are positive operators, then

A ∗ B ≥ (A # B) ∗ (A # B).

2 Various interpretations. As in the above, the geometric mean # is the central one
as operator means. So Ando’s theorem might be extend in various ways. First we consider
the form (A m B) ∗ (A m B). It is known that the greatest (resp. smallest) symmetric
operator mean is the arithmetic (resp. harmonic) one. Ando’s theorem shows

A ∗ B ≥ (A # B) ∗ (A # B) ≥ (A m B) ∗ (A m B)

if # ≥ m like the harmonic mean. Moreover the geometric mean is characterized as the
maximum mean satisfying such inequalities:

Theorem 1. The geometric mean # is the maximum among the operator means m satis-
fying

A ∗ B ≥ (A m B) ∗ (A m B)

for all A,B ≥ 0.

Proof. Let f be the representing function of an operator mean m satisfying the above
condition. Then, the scalar inequality

x = 1 ∗ x ≥ f(x) ∗ f(x) = f(x)2

implies f(x) ≤ √
x and hence m ≤ #. The geometric mean # itself satisfies it by Ando’s

theorem (see another proof in Theorem 3).

Remark 1. The geometric operator mean # is characterized in various ways: Ando himself
characterized it by operator matrices in [3]. A remarkable presentation is in [1]: A#B is
a unique positive solution of the Riccati operator equation XA−1X = B. Related several
ones are shown in [6].
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On the other hand, we showed in [5] the following inequality, which is an extension of the
inequality of Aujla and Vasudeva [4], which also extend Ando’s theorem:

Theorem F. If m is an operator mean whose representing function f is supermultiplicative
(i.e., f(xy) ≥ f(x)f(y)), then

(A ∗ B)m(C ∗ D) ≥ (AmC) ∗ (BmD)

for all operators A,B, C,D ≥ 0.

Thus, we have the following inequality putting C = B and D = A:

Corollary 2. If m is an operator mean whose representing function f is supermultiplica-
tive, then

A ∗ B ≥ (AmB) ∗ (Am◦B)

for all operators A,B ≥ 0.

Ando’s theorem was slightly extended for other operator means as in [8, Th. 6.6]. So,
as a general result along the same line, we show the following extension:

Theorem 3. If A and B are positive operators, then

A ∗ B ≥ (AmB) ∗ (Am⊥B).

Proof. We may assume that operators are invertible and have the following spectral decom-
positions:

X ≡ A−1/2BA−1/2 =
∑

k

tkEk and Ck ≡ A1/2EkA1/2 ≥ 0.

Here note that

AmB = A1/2f

(∑
k

tkEk

)
A1/2 =

∑
k

f(tk)Ck.

It follows that

A ∗ B =

(∑
k

Ck

)
∗
(
A1/2XA1/2

)
=
∑
k,j

tkCk ∗ Cj

=
∑

k

tkCk ∗ Ck +
∑
k<j

(tk + tj)Ck ∗ Cj

and f(x)f⊥(x) = x implies

(AmB) ∗ (Am⊥B) =
∑
k,j

f(tk)f⊥(tj)Ck ∗ Cj

=
∑

k

tkCk ∗ Ck +
∑
k<j

(
f(tk)f⊥(tj) + f(tj)f⊥(tk)

)
Ck ∗ Cj .

Thus we have

A ∗ B − (AmB) ∗ (Am⊥B) =
∑
k<j

(
tk + tj − f(tk)f⊥(tj) − f(tj)f⊥(tk)

)
Ck ∗ Cj

=
∑
k<j

(f⊥(tk) − f⊥(tj))(f(tk) − f(tj))Ck ∗ Cj ≥ 0.
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3 Parametrizations. Here we discuss parametrizations for Theorem 3. First we con-
sider the path

A#tB = A1/2(A−1/2BA−1/2)tA1/2

which runs from A to B via the midpoint A#B = A#1/2B as t runs from 0 to 1. By
#⊥

t = #1−t, means A#⊥
t B give a reversed path from B to A. If B ≥ A, then it is

shown that A#tB (resp. A#⊥
t B) is nondecreasing (resp. nonincreasing). Though such

monotonicity does not hold in general, we have:

Theorem 4. For t < 1/2 (resp. t > 1/2) The operators (A#tB) ∗ (A#⊥
t B) is not greater

than
(A#B) ∗ (A#⊥B) = lim

t→1/2
(A#tB) ∗ (A#⊥

t B)

and converges monotone increasingly to A ∗ B as t ↓ 0 (resp. t ↑ 1).

Proof. By symmetricity, we have only to show the case t < 1/2. Let 0 < r < s < 1/2. Since
#⊥

t = #1−t, then Theorem 3 implies

(A#rB) ∗ (A#⊥
r B) ≥ (A#rB)#t(A#1−rB) ∗ (A#rB)#⊥

t (A#1−rB)
= (A#(1−t)r+t(1−r)B) ∗ (A#tr+(1−t)(1−r)B)

= (A#sB) ∗ (A#1−sB) = (A#sB) ∗ (A#⊥
s B)

for t = (s − r)/(1 − 2r). We can also show the case t > 1/2.

But along the above line, we cannot extend it to general operator means. So we take
another path: For 0 < p < 1, if f is operator monotone, then so is f[p](x) = f(x)p. The
mean corresponding to f[p] is denoted by m[p];

Am[p]B = A1/2f(A−1/2BA−1/2)pA1/2.

For x > 0, we have

lim
p↓0

f[p](x) = 1, lim
p↓0

f⊥
[p](x) = lim

p↓0
x/f[p](x) = lim

p↓0
x/f(x)p = x,

which implies
lim
p↓0

Am[p]B = A, lim
p↓0

Am⊥
[p]B = B.

Thus this path is a bridge between both sides in Theorem 3:

A ∗ B = lim
p↓0

(Am[p]B) ∗ (Am⊥
[p]B) ≥ (Am[p]B) ∗ (Am⊥

[p]B)

(AmB) ∗ (Am⊥B) = lim
p↑1

(Am[p]B) ∗ (Am⊥
[p]B)

Now we have the following monotone property of this path:

Theorem 5. For p ≤ 1/2, (Am[p]B) ∗ (Am⊥
[p]B) ↑ A ∗ B (p ↓ 0).

Proof. We may assume that 1 ≤ X ≡ A−1/2BA−1/2 =
∑

k tkEk is a spectral decomposition
with distinct eigenvalues tk. Put Ck = A1/2EkA1/2. It follows from f[p](x)f⊥

[p](x) = x that

(Am[p]B) ∗ (Am⊥
[p]B) =

(∑
k

f[p](tk)Ck

)
∗
(∑

k

f⊥
[p](tk)Ck

)

=
∑
i,j

f[p](ti)f⊥
[p](tj)Ci ∗ Cj

=
∑
i<j

(
f[p](ti)f⊥

[p](tj) + f[p](tj)f⊥
[p](ti)

)
Ci ∗ Cj +

∑
i

tiCi ∗ Ci.
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Thus we have only to show the following function is monotone decreasing for p and fixed t
and s:

H(p) ≡ f[p](t)f⊥
[p](s) + f[p](s)f⊥

[p](t)

= s

(
f(t)
f(s)

)p

+ t

(
f(s)
f(t)

)p

Under the condition t �= s, we have

H ′(p) = s

(
f(t)
f(s)

)p

log
f(t)
f(s)

+ t

(
f(s)
f(t)

)p

log
f(s)
f(t)

=
[
s

(
f(t)
f(s)

)p

− t

(
f(s)
f(t)

)p]
log

f(t)
f(s)

= s

(
f(t)
f(s)

)p
[
1 − t

s

(
f(s)
f(t)

)2p
]

log
f(t)
f(s)

= s

(
f(t)
f(s)

)p [
1 − t/f (t)2p

s/f (s)2p

]
log

f(t)
f(s)

= s

(
f(t)
f(s)

)p

log
f(t)
f(s)

[
1 −

f⊥
[2p](t)

f⊥
[2p](s)

]
=

s

p
η

((
f(t)
f(s)

)p)[ f⊥
[2p](t)

f⊥
[2p](s)

− 1

]
≤ 0

where η(x) = −x log x is the entropy function. Thereby H(p) is monotone decreasing.

Remark 2. The condition p ≤ 1/2 cannot be deleted in the above theorem. In fact, if
f(x) = xt, then the above path is increasing for (t/2, 1]

4 Addendum. The proofs of Theorem 3 and 5 suggest us another principle to show
inequalities for Hadamard products. Here we show the following Fielder inequality and its
reverse one [10] (see also [8, Th.6.14]) in such ways, which is originally shown by Kijima’s
inequality in [9] (see also [8, Lem. 6.13]): If m ≤ A ≤ M , then

1 ≤ A ∗ A−1 ≤ (M2 + m2)
2mM

.

Let A =
∑

i tiEi be the spectral decomposition. Then we have the Fiedler inequality
since

A ∗ A−1 =
∑
i,j

ti
tj

Ei ∗ Ej =
∑

i

Ei ∗ Ei +
∑
i<j

(
ti
tj

+
tj
ti

)
Ei ∗ Ej

≥
∑

i

Ei ∗ Ei +
∑
i<j

2Ei ∗ Ej =
∑
i,j

Ei ∗ Ej = 1

by the arithmetic-geometric mean inequality:

ti

tj
+ tj

ti

2
≥
√

ti
tj

tj
ti

= 1.

For x > 0, we have

(∗) m/M ≤ x ≤ M/m implies x + 1/x ≤ M2 + m2

mM
.

In fact, we have the right hand of (*) as the minimum for k with x2 − kx + 1 ≤ 0 for
m/M ≤ x ≤ M/m. It holds if the following inequality assures:

(M/m)2 + 1 ≤ k(M/m), (m/M)2 + 1 ≤ k(m/M).
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It follows that

k2 ≥ ((M/m)2 + 1
) (

(m/M)2 + 1
)

=
(M2 + m 2)2

m2M2
,

which shows (∗). Now 1 ≤ (M2 + m2)/(2mM ) implies

A ∗ A−1 ≤
∑

i

Ei ∗ Ei +
∑
i<j

M2 + m2

mM
Ei ∗ Ej ≤

∑
i,j

M2 + m2

2mM
Ei ∗ Ej =

M2 + m2

2mM
.
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