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��������� A class of immigration superprocesses with dependent spatial motion for deter-
ministic immigration rate is considered, and we discuss a convergence problem for the rescaled
processes. When the immigration rate converges to a non-vanishing deterministic one, then
we can prove that under a suitable scaling, the rescaled immigration superprocesses associated
with SDSM converge to a class of immigration superprocesses associated with coalescing spa-
tial motion in the sense of probability distribution on the space of measure-valued continuous
paths. This scaled limit not only provides with a new class of superprocesses but also gives a
new type of limit theorem.

1. Introduction

Let us begin with the story of a super-Brownian motion (SBM), which is a typical
example of measure-valued processes. Roughly speaking, starting from a family of branching
Brownian motions, via renormalization procedure (which is sometimes called short time high
density limit), the super-Brownian motion can be obtained, in fact, as a measure-valued
Markov process, see S. Watanabe [28]. It is often called a Dawson-Watanabe superprocess,
too. Various sorts of superprocesses have been studied by many probabilists, and in most
cases those superprocesses are obtained as a limit of branching particle systems under variety
of settings. For instance, a superprocess with dependent spatial motion (SDSM) is obtained
by short time high density limit from a family of interacting branching particle systems,
whose branching density depends on its particle location. Such an SDSM with interaction
parameter ρ and branching rate σ was originally constructed by H. Wang [27]. There is
a function c(x), one of those parameters that play an important role in determination of
the SDSM. When c(x) (�= 0) is bounded, then under a suitable scaling SDSMs converge to
super-Brownian motion, see Dawson-Li-Wang [2]. On the other hand, for the same SDSM
the situation has changed drastically when c(x) ≡ 0. Under the same scaling as in the
above model, SDSMs converge this time to a superprocess with coalescing spatial motion
(SCSM). This remarkable dichotomy was proved by Dawson-Li-Zhou [3].

Let us now consider a little bit more complicated model with interaction, in which a no-
tion of immigration is taken into account. For instance, such an immigration superprocess
associated with SDSM was constructed in Dawson-Li [1]. In [10] we discussed a problem of
rescaled limits for a certain class of superprocesses with deterministic immigration in the
case of parametrized immigration rate vanishing at infinity. More precisely, we showed that
when the immigration superprocess is given, then its rescaled process becomes again an
immigration superprocess of the same kind. Furthermore we proved that under a suitable
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scaling, the rescaled immigration superprocesses associated with SDSM converge to a su-
perprocess with coalescing spatial motion (SCSM) in the sense of probability distribution
on the space of measure-valued continuous paths. This article is devoted to a generalization
of the limit theorem obtained in [10]. As described in §7 (v) of [10], the purpose of this
paper is to discuss a convergence problem for rescaled superprocesses with deterministic
immigration of the above type, and also to clarify what kind of superprocess emerges as
a limiting process when the parametrized immigration rate does not vanish at infinity but
converges to some constant. As seen in the proof of the limit theorem in [10], it is expected
that some immigration superprocesses associated with coalescing spatial motion appear in
the limit. In other words, a new class of superprocesses arises naturally as a rescaled limit.
The construction of such a superprocess as well as the uniqueness are discussed in detail in
the companion paper [11]. Our goal is to prove the above-mentioned limit theorem. Our
result of this paper is not only a simple generalization of the main theorem in [10], but
provides also with a new type of limit theorem. Of course, we can consider a more com-
plicated situation where the deterministic immigration rate is replaced by a certain class
of function, which means that the immigration rate may depend on the particle location.
This challenging problem will be dealt with in the forthcoming paper [12].

After we submitted this paper, the related work done by Li-Wang-Xiong [29] has been
pointed out by the referee, where several types of scaling limit theorems of the SDSM were
established.

2. Notations and Preliminaries

Let MF (R) (resp. Ma(R)) be the space of all finite (resp. purely-atomic) measures on R

respectively, and we always consider the space MF (R) endowed with the topology of weak
convergence. We denote by C(R) the space of all bounded and continuous functions on
R, and C(R)+ denotes a subset of C(R) consisting of all positive menbers. The symbol
〈f, µ〉 denotes an integral

∫
fdµ of a measurable function f with respect to a measure µ.

For h ∈ C1(R) and both h, h′ ∈ L2(R), we define ρ(x) =
∫
h(y − x)h(y)dy for x ∈ R. For

a topological space E, let B(E) denote the totality of all bounded Borel functions on E,
and P(E) denotes the space of all probability measures on E. For F ∈ B(MF (R)), we
define δF (µ)/δµ(x) as the usual variational derivative of F with respect to µ ∈MF (R) for
x ∈ R, if the limit exists. Then δ2F (µ)/δµ(x)δµ(y) is the second variational derivative of
F . For simplicity we put CM (R+) = C([0,∞), MF (R)) for the space of all finite measure-
valued continuous paths on R+, and for the Skorokhod space we use DM (R+) = D([0,∞),
MF (R)). For the generator A, we say that an MF (R)-valued càdlàg process X = (Xt)t≥0

is a solution of the (A,Dom(A))-martingale problem, if there is a probability measure Pµ

∈ P(DM (R+)) on the space D([0,∞), MF (R)) such that Pµ(X0 = µ) = 1 and F (Xt) −
F (X0) − ∫ t

0 AF (Xs)ds, t ≥ 0, is a martingale under Pµ for each F ∈ Dom(A).

2.1. Superprocess with Dependent Spatial Motion

Let σ be a constant. We denote by D(L) the domain of the generator L, which is a
subset of the space B(MF (R)) of measurable functions on MF (R). More precisely, let D(L)
be the union of all functions F (µ) on MF (R) of the form F (µ) = Ff,{φi}(µ) = f(〈φ1, µ〉,
. . . , 〈φn, µ〉) for µ ∈ MF (R) with f ∈ C2(Rn) and {φi} ⊂ C2(R) and all functions of the
form F (µ) = Fm,f (µ) = 〈f, µm〉 for µ ∈ MF (R) with f ∈ C2(Rm) where µm is a tensor



A LIMIT THEOREM OF SUPERPROCESSES 579

product of measures µ⊗m. For any F ∈ D(L) we define

LF (µ) =
1
2

∫
R

ρ(0)
d2

dx2

δF (µ)
δµ(x)

µ(dx) +
1
2

∫
R

σ
δ2F (µ)
δµ(x)2

µ(dx)(1)

+
1
2

∫∫
R×R

ρ(x− y)
d2

dxdy

δ2F (µ)
δµ(x)δµ(y)

µ(dx)µ(dy).

Here the function ρ in the second line of (1) expresses interaction, and the second term in
the first line of (1) expresses the branching mechanism. An MF (R)-valued diffusion process
X = (Xt) is called a {ρ(0), ρ, σ}-superprocess with dependent spatial motion (or {ρ(0), ρ, σ}-
SDSM) if X solves the (L,D(L))-martingale problem, cf. [2] (see also [27]). Moreover,
according to Dawson-Li-Wang [2], the above martingale problem permits a unique solution
Pµ, and the system {Pµ;µ ∈MF (R)} defines a diffusion process. Actually it is proved that
{ρ(0), ρ, σ}-SDSM lies in the space Ma(R) for any initial state µ ∈MF (R).

Next we shall introduce the explicit representation of SDSM. Now let us consider a general
initial state µ ∈ MF (R) with 〈1, µ〉 > 0. Suppose that there are a time-space white noise
W (ds,dy) on [0,∞)×R based on the Lebesgue measure d� and a Poisson random measure
N(da,dw) on R×W0 with intensity µ(da)Qk(dw) on a complete probability space (Ω,F ,P),
where Qk is the excursion law of the β-branching diffusion, and W0 is a subset of paths
w ∈W = C([0,∞),R+) such that w(0) = w(t) = 0 for t ≥ τ0(w) = inf{s > 0;w(s) = 0} for
w ∈ W . For the details, see §2 of [1]. We also assume that {W (ds,dy)} and {N (da, dw)}
are independent. For any a ∈ R, let {x(a, t); t ≥ 0} be a unique solution of the equation

(2) x(t) = a+
∫ t

0

∫
R

h(y − x(s))W (ds, dy), t ≥ 0,

cf. Lemma 1.3 of [27, p.46] (see also Lemma 3.1 of [2, p.11]). In addition, enumeration of
the atoms of N(da, dw) into supp(N) is given by a sequence {(ai, wi); i = 1, 2, . . . } such
that τ0(wi+1) < τ0(wi) a.s. for all i ≥ 1 and τ0(wi) → 0 as i → ∞. For a fixed constant
β > 0 let ψ(a, t) = β−1

∫ t

0
σ(x(a, s))ds for t ≥ 0, a ∈ R, and we define w(a, t) = w(ψ(a, t))

for w ∈W0.

Theorem 1. (Dawson-Li [1, p.48]) Let {Xt; t ≥ 0} be defined by X0 = µ and

(3) Xt =
∞∑

i=1

wi(ai, t)δx(ai,t) =
∫

R

∫
W0

w(a, t)δx(a,t)N(da,dw), t > 0.

Then {Xt} relative to (Gt)t≥0 is an SDSM, where Gt is the σ-algebra generated by all P-
null sets and the families of random variables {W ([0, s] × B); 0 � s � t, B ∈ B(R)} and
{wi(ai, s); 0 � s � t, i = 1, 2, . . . } for t ≥ 0.

2.2. Superprocess with Coalescing Spatial Motion

An n-dimensional continuous process {(y1(t), . . . , yn(t)); t ≥ 0} is called an n-system of
coalescing Brownian motions (n-SCBM) with speed ρ(0) > 0 if each {yi(t); t ≥ 0} is a
Brownian motion with speed ρ(0) and, for i �= j, {|yi(t) − yj(t)|; t ≥ 0} is a Brownian
motion with speed 2ρ(0) stopped at the origin. The generator of the superprocess with
coalescing spatial motion (SCSM) is given by

LcF (µ) =
1
2

∫
R

ρ(0)
d2

dx2

δF (µ)
δµ(x)

µ(dx) +
1
2

∫
R

σ
δ2F (µ)
δµ(x)2

µ(dx)(4)

+
1
2

∫∫
∆

ρ(0)
d2

dxdy

δ2F (µ)
δµ(x)δµ(y)

µ(dx)µ(dy),
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where ρ(0) and σ are positive constants, and ∆ = {(x, x);x ∈ R}.
In what follows we consider the case of purely atomic initial state, namely, having a finite

number of atoms, for instance, µ0 =
∑n

i=1 ξiδai just for simplicity. Let {(ξ1(t), . . . , ξn(t)); t ≥
0} be a system of independent standard Feller branching diffusions with initial state
(ξ1, . . . , ξn) ∈ Rn

+. By setting ψσ
i (t) =

∫ t

0
σ(yi(s))ds and ξσ

i (t) = ξi(ψσ
i (t)), we define

(5) Xt =
n∑

i=1

ξσ
i (t)δyi(t), t ≥ 0,

which gives a continuousMF (R)-valued process. For a complete probability space (Ω,F ,P),
let Ht be the σ-algebra generated by the family of P-null sets in F and the family of random
variables {(y1(s), . . . , yn(s), ξσ

1 (s), . . . , ξσ
n(s)); 0 � s � t}. The process {Xt; t ≥ 0} defined

by (5) is a diffusion process relative to (Ht)t≥0 with state space Ma(R), cf. Theorem 3.1
of [3, p.682]. Let D(Lc) be the set of all functions of the form Fm,f (µ) = 〈f, µm〉 with
µ ∈ MF (R). Theorem 3.3 of [3, p.684] provides with the fact that {Xt; t ≥ 0} solves the
(Lc,D(Lc))-martingale problem, namely, for each Fm,f ∈ D(Lc),

(6) Fm,f (Xt) − Fm,f (X0) −
∫ t

0

LcFm,f (Xs)ds, ∀t ≥ 0

is a (Ht)-martingale.
The distribution of {Xt; t ≥ 0} can be characterized in terms of a dual process. Let

us consider a non-negative integer-valued càdlàg Markov process {Mt; t ≥ 0} which is well
known as Kingman’s coalescent process, [18]. For 1 � k � M0−1, τk denotes the k-th jump
time of {Mt; t ≥ 0} with τ0 = 0 and τM0 = ∞. Let {Γk} (1 � k � M0 − 1) be a sequence
of random operators from C(Rm) to C(Rm−1), satisfying

(7) P {Γk = Φij |M(τk−) = �} =
1

�(�− 1)
, 1 � i �= j � �.

Let C∗ denote the topological union of {C(Rm);m = 1, 2, . . . }, endowed with pointwise
convergence on each C(Rm). By making use of the transition semigroup (P (m)

t )t≥0 of the

m-SCBM, {Yt; t ≥ 0} taking values from C∗ is defined by Yt = P
(Mτk

)
t−τk

ΓkP
(Mτk−1 )

τk−τk−1
Γk−1

· · · P (Mτ1 )
τ2−τ1

Γ1P
(M0)
τ1 Y0 for τk � t < τk+1, 0 � k � M0 − 1. Clearly, {(Mt, Yt); t ≥ 0} is a

Markov process. We denote by Eσ
m,f the expectation related to (Mt, Yt) given M0 = m and

Y0 = f ∈ C(Rm). Let Qt(µ0, dν) denote the distribution of Xt on MF (R) given X0 = µ0

∈Ma(R).

Theorem 2. (Dawson-Li-Zhou [3, p.685]) If {Xt; t ≥ 0} is a continuous MF (R)-valued
process such that E[〈1,Xt〉m] is locally bounded in t ≥ 0 for each m ≥ 1 and {Xt} solves the
(Lc,D(Lc))-martingale problem with X0 = µ0, then

(8)
∫

MF (R)

〈f, νm〉Qt(µ0, dν) = Eσ
m,f

[
〈Yt, µ

Mt
0 〉 exp

{
1
2

∫ t

0

Ms(Ms − 1)ds
}]

for t ≥ 0, m ≥ 1 and f ∈ C(Rm). �
A Markov process on MF (R) with transition semigroup (Qt)t≥0 given by (8) is called a
superprocess with coalescing spatial motion with speed ρ(0), branching rate σ and initial
state µ0 ∈Ma(R), or shortly a {ρ(0), σ}-SCSM.
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Remark 1. It is obvious that {(y1(t), . . . , yn(t)); t ≥ 0} is an n-SCBM with speed ρ̃ if and
only if 〈yi, yj〉(t) = ρ̃ · (t−t∧τij) holds for 1 � i, j � n where τij = inf{t ≥ 0; yi(t) = yj(t)}.

Remark 2. The last term on the right-hand side of (4) shows that interactions in the
spatial motion only occur between particles located at the same positions.

2.3. Immigration Superprocess Associated with SDSM

Suppose that m ∈MF (R) satisfies 〈1,m〉 > 0 and q(·, ·) ≡ q is a constant. We define

(9) IF (µ) = LF (µ) +
∫

R

q
δF (µ)
δµ(x)

m(dx), µ ∈MF (R),

where q is an immigration rate and m is a reference measure related to the immigration.
We put D(I) = D(L). The (I,D(I))-martingale problem has a unique solution {Yt}. The
solution process is a diffusion, and this immigration SDSM started with any initial state
actually lives in the space Ma(R). Moreover, a continuousMF (R)-valued process {Yt; t ≥ 0}
is a solution of the (I,D(I))-martingale problem if and only if for each ϕ ∈ C2(R),

(10) Mt(ϕ) = 〈ϕ, Yt〉 − 〈ϕ, Y0〉 − q〈ϕ,m〉t−
∫ t

0

〈
ρ(0)
2
ϕ′′, Ys

〉
ds, t ≥ 0,

is a martingale with quadratic variation process

(11) 〈M(ϕ)〉t =
∫ t

0

〈σϕ2, Ys〉ds+
∫ t

0

ds
∫

R

〈h(z − ·)ϕ′, Ys〉2dz.

Next we treat the case with a general interactive immigration rate. The results below
are originally discussed in §5 of Dawson-Li [1]. Suppose that there are (i) a white noise
W (ds,dy) on [0,∞)×R based on d�; (ii) a sequence of independent σ-branching diffusions
{ξi(t); t ≥ 0} with ξi(0) ≥ 0 (i = 1, 2, . . . ); (iii) a Poisson random measure N(ds,da, du, dw)
on [0,∞) × R × [0,∞) ×W0 with intensity dsm(da)duQk(dw), on a complete probability
space (Ω,F ,P). In addition we assume that

∑∞
i=1 ξi(0) <∞ and that {W}, {ξi} and {N}

are independent of each other. For t ≥ 0 let Ĝt be the σ-algebra generated by all P-null
sets and the families of random variables {W ([0, s] × B), ξi(s); 0 � s � t, B ∈ B(R),
i = 1, 2, . . .} and {N (J × A); J ∈ B([0, s] × R × [0,∞)), A ∈ Bt−s(W0), 0 � s � t}. Let
q = q(µ, a) be a Borel function on MF (R) × R such that there are some constants K1 > 0
and K2(R) > 0 (for each R > 0 given) satisfying

〈q(µ, ·),m〉 � K1(1 + ‖µ‖) for µ ∈MF (R),

and 〈|q(µ, ·) − q(ν, ·)|,m〉 � K2(R)‖µ− ν‖
for µ and ν in MF (R) satisfying 〈1, µ〉 � R and 〈1, ν〉 � R, where the reference measure m
is a σ-finite Borel measure on R and ‖ · ‖ denotes the total variation (cf. [1, p.58]). Let us
consider a stochastic equation with purely atomic initial state. That is, for any sequence
{ai} ⊂ R, we consider the stochastic equation: for t ≥ 0,

(12) Yt =
∞∑

i=1

ξi(t)δx(0,ai,t) +
∫ t

0

∫
R

∫ q(Ys,a)

0

∫
W0

w(t− s)δx(s,a,t)N(ds,da, du, dw).

Then it follows that the equation (12) has a unique continuous solution {Yt; t ≥ 0}, which
is a diffusion process relative to (Ĝt), cf. Theorem 5.3 of [1, p.59]. Furthermore, for each
ϕ ∈ C2(R),

(13) Mt(ϕ) = 〈ϕ, Yt〉 − 〈ϕ, Y0〉 −
∫ t

0

〈
ρ(0)
2
ϕ′′, Ys

〉
ds−

∫ t

0

〈q(Ys, ·)ϕ,m〉ds, t ≥ 0,
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is a continuous martingale with respect to the filtration (Ĝt)t≥0 and its quadratic variation
process is given by

(14) 〈M(ϕ)〉t =
∫ t

0

〈σϕ2, Ys〉ds+
∫ t

0

ds
∫

R

〈h(z − ·)ϕ′, Ys〉2dz, t ≥ 0.

The solution of (12) can be regarded as immigration processes associated with the SDSM
with interactive immigration. Then the generator of the diffusion process {Yt; t ≥ 0} is given
by

(15) IF (ν) = LF (ν) +
∫

R

q(ν, x)
δF (ν)
δν(x)

m(dx), ν ∈MF (R),

where L is defined by (1) and q(·, ·) is the interactive immigration rate. We call this process
{Yt} an immigration superprocess associated with SDSM or simply a {ρ(0), ρ, σ, q,m}-IMS.

Remark 3. The Markov property of {Yt} was obtained from the uniqueness of solution
of (12). This application of the stochastic equation is essential since the uniqueness of
solution of the martingale problem given by (13) and (14) still remains open.

3. Main Results

We begin with introducing our object IMS model. Let Y = {Yt; t ≥ 0} be a
{ρ(0), ρ, σ, q,m}-immigration superprocess (IMS) in the sense of §2.3 with the purely atomic
initial state Y0 = µ =

∑∞
i=1 ξi(0)δai ∈Ma(R) for {ai}i ⊂ R. Here ρ is a C2-function defined

in the begining of §2, σ is a positive constant, q(·, ·) ≡ q ∈ R and m is a finite Borel measure
on R such that 0 < 〈1,m〉 < ∞. The generator of Y is given by (I,D(I)) of (9) in §2.3
with L of (1) in §2.1. We define Dom(I) = D(L). This Y solves the (I,D(I))-martingale
problem, and as we have seen in §2.3 this martingale problem is well-posed. Let Y (θ)

t

be an immigration superprocess with parameters {ρ(0), ρ, σθ, qθ,K1/θm} and initial state
Y

(θ)
0 = θ2K1/θµ. According to the scaling argument in §3.2 of [10], we put Y θ

t := θ−2KθY
(θ)
θ2t

with θ ≥ 1 for any t > 0, where Kθ is an operator on MF (R) defined by Kθµ(B) = µ({θx;
x ∈ B}) for any Borel set B in R. Then the rescaled process {Y θ

t ; t ≥ 0} has generator

IθF (ν) =
1
2
ρ(0)f ′(〈φ, ν〉)〈φ′′, ν〉(16)

+
1
2
f ′′(〈φ, ν〉)

∫∫
R2
ρθ(x− y)φ′(x)φ′(y)ν(dx)ν(dy)

+
1
2
σθf

′′(〈φ, ν〉)〈φ2, ν〉 + qθ · f ′(〈φ, ν〉)〈φ,m〉,

for F (ν) = f(〈φ, ν〉) ∈ Dom(I) with f, φ ∈ C2(R), where ρθ(x) = ρ(θx), {σθ} is a sequence
of positive numbers and {qθ} is a sequence of real numbers.

Theorem 3. The rescaled processes {Y θ
t ; t ≥ 0}θ lie in the family of {ρ(0), ρθ, σθ, qθ,

m}-IMS with initial state Y θ
0 = µ. Moreover, the (Iθ,Dom(Iθ))-martingale problem for

{Y θ
t } has a unique solution.

Proof. Just see Proposition 4 in §3.3 of [10]. q.e.d.

Suppose that q(µ, a) ≡ q(a) ∈ L1(R,m). Let Dq(a) denote the set {(s, a, u, w); s ≥ 0, a ∈ R,
0 � u � q(a), w ∈ W0}, and set Nq(a) := N � Dq(a). Then we denote by Ñq(a) the image
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of Nq(a) under the mapping : (s, a, u, w) → (s, a, w). Note that Ñq(a) is a Poisson measure
on [0,∞) ×R ×W0 with intensity ds · q(a)m(da)Qk(dw). When we replace ρ by ρθ, then
by definition the function h should also be replaced by the scaled function

√
θhθ. On this

account, the interacting flow {xθ(0, aθ
i , t)} for {aθ

i }θ ⊂ R for each i ∈ N is a unique solution
of (2) in §2.1 with a (resp. x, h) replaced by aθ

i (resp. xθ,
√
θhθ) respectively.

Theorem 4. For each θ ≥ 1 we have the following purely atomic representation:

(17) Y θ
t =

∞∑
i=1

ξθ
i (t)δxθ

i
+

∫ t

0

∫
R

∫
W0

w(t− s)δxθ∗Nθ(ds, da, dw), t ≥ 0

where we put ξθ
i (t) = ξi(σθt), xθ

i = xθ(0, aθ
i , t), x

θ
∗ = xθ(s, aθ, t) and Nθ = Ñqθ

for vrevity’s
sake.

Proof. See Proposition 5 in §3.3 of [10]. q.e.d.

We assume:

(A.1) ρ(x) → 0 (as |x| → ∞);
(A.2) For {σθ}θ ⊂ R+, σθ → (∃)σ0 ∈ R+ ( as θ → ∞);
(A.3) For {qθ}θ ⊂ R+, qθ → (∃)q0 ∈ R+ ( as θ → ∞);
(A.4) For the initial state,

µθ =
∞∑

i=1

ξi(0)δaθ
i
→ µ0 =

∞∑
i=1

ξi(0)δbi ∈Ma(R)

(as θ → ∞).

Lemma 5. For any η > 0 and each T > 0, we have the following estimate:

(18) P

(
sup

0�t�T
〈1, Y θ

t 〉 > η

)
� C0{〈1, m〉+ 〈1, µθ〉}

η
<∞

where C0 is some positive constant depending only on T and the parameter σθ.

Proof. It is the same as in the proof of Lemma 8 of [10]. So we shall omit the detail.
By the discussion similar to Lemma 4.1 of [1], N∗

q (ds,dw) is a Poisson random measure on
[0,∞)×W0 with intensity 〈1,m〉dsQk(dw), which is obtained by the image of Ñq(ds, da, dw)
under the mapping : (s, a, w) → (s, w). Notice that N∗

q is independent of Feller branching
diffusions {ξi(t); t ≥ 0} i ∈ N. We may take advantage of the pathwise expression (17) to
obtain

(19) 〈1, Y θ
t 〉 =

∞∑
i=1

ξθ
i (t) +

∫ t

0

∫
W0

w(t− s)N∗
qθ

(ds, dw), t ≥ 0.

While, by Theorem 4.1 of Pitman-Yor [24, p.442], 〈1, Y θ
t 〉 is a diffusion process with gen-

erator 1
2σθx(d2/dx2) + 〈1,m〉(d/dx). Hence, the standard theory of diffusion processes

[17] yields to that V θ
t := 〈1, Y θ

t 〉 satisfies a stochastic differential equation (SDE) : dV θ
t =√

σθV θ
t dBt + 〈1,m〉dt with V θ

0 = 〈1, µθ〉 < ∞, where {Bt} is a one-dimensional standard
Brownian motion. The general theory of SDEs guarantees the existence of unique solution
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V θ
t . So that, by employing the Markov inequality an easy calculation together with Doob’s

martingale inequality leads to

P

(
sup

0�t�T
|V θ

t | > η

)
� 2
η

E

{
sup

t
|V θ

0 + 〈1,m〉t|
}

+
4
η2

E

∣∣∣∣∣
∫ T

0

√
σθV θ

s dBs

∣∣∣∣∣
2

� C0

η
{〈1, m〉 + 〈1, µθ〉},(20)

because we made use of Itô’s isometry for the stochastic integral term and the Fubini
theorem. This completes the proof. q.e.d.

Theorem 6. The family {Y θ
t ; t ≥ 0}, θ ≥ 1 is tight in the space CM (R+).

Proof. Once one gets the fundamental estimate like (18) in Lemma 5, it is a routine
work to verify the tightness. For the detail, see the proof of Proposition 7 in §4 of [10].
Note that MF (R) is a complete separable metric space by a metric that induces the weak
topology. By virtue of Theorem 9.1 of Ethier-Kurtz [14], we have only to check the compact
containment condition. Let R̂ := R ∪ {∂} be the one-point compactification, which we are
going to use so as to avoid the difficulty arising from the non-compactness of the space R.
Then it follows immediately from Lemma 5 that

(21) inf
θ

P

{
sup

0�t�T
〈1, Y θ

t 〉 � η

}
≥ 1 − C0

η
{〈1, m〉+ 〈1, µθ〉}

for ∀η > 0 and each T > 0. Consequently, the tightness of distributions of {Y θ
t ; t ≥ 0} in

C([0,∞),MF (R̂)) has been attributed to that of {F ◦Y θ
t } in C([0,∞), R̂) for each F in the

dense subset H of C(MF (R)) in the topology of uniform convergence on compact sets. If
we apply Itô’s formula to the function F (Y θ

t ) = Ff,{φi}(Y
θ
t ) = f(〈φ1, Y

θ
t 〉, . . . , 〈φn, Y

θ
t 〉)

by paying attention to the fact that the relation

(22) d〈φ, Y θ
t 〉 = {ρ(0)〈φ′′/2, Y θ

t 〉 + qθ〈φ,m〉}dt+ dMθ
t (φ)

from (10) reveals the process 〈φ, Y θ
t 〉’s being an Itô process, then a direct computation

implies that

(23) Ff,{φi}(Y
θ
t ) − Ff,{φi}(Y

θ
0 ) −

∫ t

0

IθFf,{φi}(Y
θ
s )ds

is a (Ĝt)-martingale under the probability measure Pµθ
for which valid is the martingale

characterization (in Proposition 5 of [10]) of {ρ(0), ρθ, σθ}-SDSM with deterministic immi-
gration qθ and reference measure m. Therefore, by Ethier-Kurtz’ criterion (cf. Theorem
9.4 of [14]), {Ff,{φi}(Y

θ
t )}θ is relatively compact for each Ff,{φi} ∈ Dom(Iθ). After all, the

tightness of {Y θ
t } in C([0,∞),MF (R̂)) follows. Since the process Y θ

t lives indeed in MF (R),
the distributions Qθ of {Y θ

t } is tight in CM (R+). This finishes the proof. q.e.d.

The generator A is given by

(24) AF (µ) = LcF (µ) +
∫

R

q
δF (µ)
δµ(x)

m(dx)

for F ∈ Dom(A), where Lc is given by (4) in §2.2, the branching rate σ is a positive
constant and q is a deterministic immigration rate. A continuous MF (R)-valued process
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X = {Xt; t ≥ 0} is said to be {ρ(0), σ, q,m}-immigration superprocess associated with
coalescing spatial motion, or shortly {ρ(0), σ, q,m}-IM-SCSM, if {Xt; t ≥ 0} solves the
(A,Dom(A))-martingale problem. Now we are in a position to state the principal result in
this paper, say, the limit theorem for rescaled immigration superprocesses.

Theorem 7. Assume (A.1) – (A.4). For {ρ(0), ρ, σθ, qθ,K1/θm}-immigration superpro-
cess Y (θ) = {Y (θ)

t ; t ≥ 0}, put Y θ
t := θ−2KθY

(θ)
θ2t for θ ≥ 1. Then we have the followings:

(a) There exists a proper version Ŷ θ
t of Y θ

t converges a.s. as θ → ∞ to a process Xt having
the purely atomic representation

(25)
∞∑

i=1

ξi(σ0t)δyi(0,bi,t) +
∫ t

0

∫
R

∫
W0

w(t − s)δy(s,b,t)Ñq0(ds, db, dw)

for each t ≥ 0, where {yi(0, bi, t)} is a coalescing Brownian motion started at point bi for
each i ∈ N, and y(s, b, t) denotes Harris’ stochastic flow [16] of coalescing Brownian motion
with y(s, b, s) = b.
(b) The conditional distribution of {ρ(0), ρθ, σθ, qθ,m}-immigration superprocess
Y θ = {Y θ

t ; t ≥ 0} given Y θ
0 = µθ converges as θ → ∞ to that of {ρ(0), σ0, q0,m}-immigration

superprocess associated with coalescing spatial motion X = {Xt; t ≥ 0} with initial state µ0

in (A.4).
(c) The generator of the limiting process X = {Xt} is given by

I∞F (ν) =
1
2

∫
R

ρ(0)
d2

dx2

δF (ν)
δν(x)

ν(dx)(26)

+
1
2

∫∫
∆

ρ(0)
d2

dxdy

δ2F (ν)
δν(x)δν(y)

ν(dx)ν(dy)

+
1
2

∫
R

σ0
δ2F (ν)
δν(x)2

ν(dx) +
∫

R

q0
δF (ν)
δν(x)

m(dx).

The proof of this main theorem will be given in the succeeding section.

4. Proof of the Limit Theorem

Since the family of rescaled processes {Y θ
t ; t ≥ 0}θ is tight in CM (R+) from Theorem

6, we can extract a convergent subsequence of distributions of {Y θ
t }. Choose any sequence

{θk}k ⊂ {θ ≥ 1} such that the distributions {Q ◦ (Y θk· )−1}k converge as k → ∞ to some
probability measure Qµ0 ∈ P(CM (R+)) on some complete probability space (Ω,F ,P). By
virtue of Skorokhod’s representation theorem (cf. Theorem 1.4 of [13, p.274]), we can
construct {Y k

t ; t ≥ 0} and {Y 0
t ; t ≥ 0} on a new proper probability space (Ω̂, F̂ , P̂) in such

a way that (i) (identical distribution) L({Y θk· }) = L({Y k· }); (ii) the limiting process {Y 0· }
has the distribution Qµ0 ; (iii) {Y k

· } converges almost surely as k → ∞ to {Y 0
· } in the space

CM (R). Because {Y θk
t } is a unique solution of the IMS martingale problem, it is obvious

from (i) that {Y k
t } solves the (Iθk

,Dom(Iθk
))-martingale problem. That is to say:

Lemma 8. For each k,

(27) F (Y k
t ) − F (Y k

0 ) −
∫ t

0

Iθk
F (Y k

s )ds, t > 0

is a continuous martingale relative to (Ĝt)t≥0.
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Our first concern is to show that generator Iθk
of the form (16) in §3 converges to the

generator I∞ of (26). Note that for F (µ) = f(〈φ,µ〉) with f, φ ∈ C2(R) and µ ∈ MF (R),
the generator I∞ has the form

I∞F (µ) =
1
2
ρ(0)f ′(〈φ,µ〉)〈φ′′, µ〉(28)

+
1
2
f ′′(〈φ,µ〉)

∫∫
∆

ρ(0)φ′(x)φ′(y)µ(dx)µ(dy)

+
1
2
σ0 · f ′′(〈φ,µ〉)〈φ2, µ〉 + qθ · f ′(〈φ,µ〉)〈φ,m〉.

Since for ∀φ ∈ C2(R) and each T > 0 we have

sup
0�t�T

|〈φ, Y k
t 〉 − 〈φ, Y 0

t 〉| → 0 a.s. as k → ∞,

it is obvious that as k → ∞, F (Y k
t ) → F (Y 0

t ) a.s. uniformly in t on compact sets and
F (Y k

0 ) → F (Y 0
0 ) a.s. for any F ∈ Dom(Iθ) = Dom(I).

Lemma 9. For any t > 0 we have

(29) lim
k→∞

∫ t

0

E
∣∣σθk

f ′′(〈φ, Y k
s 〉)〈φ2, Y k

s 〉 − σ0f
′′(〈φ, Y 0

s 〉)〈φ2, Y 0
s 〉

∣∣ds = 0.

Proof. We readily get

|σθk
f ′′(〈φ, Y k

t 〉)〈φ2, Y k
t 〉 − σ0f

′′(〈φ, Y 0
t 〉)〈φ2, Y 0

t 〉|

� σθk
|f ′′(φ, Y k

t 〉) − f ′′(〈φ, Y 0
t 〉)| · |〈φ2, Y k

t 〉|
+ σθk

|f ′′(〈φ, Y 0
t 〉)| · |〈φ2, Y k

t 〉 − 〈φ2, Y 0
t 〉|

+ |σθk
− σ0| · |f ′′(〈φ, Y 0

t 〉) · 〈φ2, Y 0
t 〉|

=: Ak
1(t) +Ak

2(t) +Ak
3(t).

Because of almost sure convergence of Y k
t , we can deduce from continuity of the function

that as k → ∞,∫ t

0

E{Ak
1(s)}ds � tσθk

E
{‖f ′′(〈φ, Y k

· 〉) − f ′′(〈φ, Y 0
· 〉)‖∞‖〈φ2, Y k

· 〉‖∞
} → 0,

by employing the Fubini theorem and the Lebesgue convergence theorem. As for the second
and third terms Ak

i (t) (i = 2, 3), it goes almost similarly by the same reasons. q.e.d.

Lemma 10. For any t > 0 we have

(30) lim
k→∞

∫ t

0

E
∣∣{qθk

f ′(〈φ, Y k
s 〉) − q0f

′(〈φ, Y 0
s 〉)}〈φ,m〉∣∣ = 0.

Proof. Since |〈φ,m〉| � ‖φ‖ · |〈1,m〉| < ∞, it is sufficient to show the vanishing result
only for the term Ξ(k, s) := |qθk

f ′(〈φ, Y k
s 〉) − q0f

′(〈φ, Y 0
s 〉)|. In fact,

Ξ(k, s) � qθk
|f ′(〈φ, Y k

s 〉) − f ′(〈φ, Y 0
s 〉)| + |qθk

− q0| · |f ′(〈φ, Y 0
s 〉)|

=: Bk
1 (s) +Bk

2 .
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We may apply the Fubini and Lebesgue theorems to obtain limk

∫ t

0
E{Bk

1 (s)}ds = 0. On
the other hand, the convergence

∫ t

0 E{Bk
2}ds→ 0 yields simply from (A.3). q.e.d.

Then we can show the following key proposition. The proof will be given in Section 5.

Proposition 11. For t > 0 we have

lim
k→∞

∫ t

0

E

∣∣∣∣ f ′′(〈φ, Y k
s 〉)

∫∫
R2
ρθk

(x− y)φ′(x)φ′(y)Y k
s (dx)Y k

s (dy)

(31)

− ρ(0)
2
f ′′(〈φ, Y 0

s 〉)
∫∫

∆

φ′(x)φ′(y)Y 0
s (dx)Y 0

s (dy)
∣∣∣∣ds = 0.

Proposition 12. For any t > 0 we have

(32) lim
k→∞

∫ t

0

E
∣∣Iθk

F (Y k
s ) − I∞F (Y 0

s )
∣∣ ds = 0.

Proof. The assertion follows directly from Lemmas 9 and 10 and Proposition 11. q.e.d.

Theorem 13. For F ∈ Dom(I∞) = Dom(I),

(33) F (Y 0
t ) − F (Y 0

0 ) −
∫ t

0

I∞F (Y 0
s )ds, t ≥ 0

is a martingale.

Proof. By approximation procedure it suffices to verify (33) only for the function F (µ) =
f(〈φ,µ〉) with f, φ ∈ C2(R). Suppose that a collection of functions {Φi}n

i=1 forms a subset
of C(MF (R)). Let ∆̃ = {tk} be a partition of times such that 0 � tk < tk+1 for any k up
to n+ 1. By using the Fubini theorem and the Lebesgue theorem it is easy to see from the
remark stated between Lemma 8 and Lemma 9, together with Proposition 12, that

(34) E

{(
F (Y 0

tn+1
) − F (Y 0

tn
) −

∫ tn+1

tn

I∞F (Y 0
s )ds

)
·

n∏
i=1

Φi(Y 0
ti

)

}

= E{F (Y 0
tn+1

)Φ∗
n(Y 0)} − E{F (Y 0

tn
)Φ∗

n(Y 0)} −
∫ tn+1

tn

E{I∞F (Y 0
s )Φ∗

n(Y 0)}ds

= lim
k→∞

E{F (Y k
tn+1

)Φ∗
n(Y k)} − lim

k→∞
E{F (Y k

tn
)Φ∗

n(Y k)}

− lim
k→∞

∫ tn+1

tn

E{Iθk
F (Y k

s ) · Φ∗
n(Y k)}ds

= lim
k→∞

E

{(
F (Y k

tn+1
) − F (Y k

tn
) −

∫ tn+1

tn

Iθk
F (Y k

s )ds
)
·

n∏
i=1

Φi(Y k
ti

)

}
= 0,

where we put Φ∗
n(Y �) =

∏n
i=1 Φi(Y �

ti
), (� = k or 0) for simplicity. Here the last equality of

(34) yields from Lemma 8 because {Y k
t } solves the (Iθk

, Dom(Iθk
))-martingale problem.
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Moreover, repeating the same argument we observe that (34) remains valid even for any
collection {Φi}, any n ∈ N and any partition ∆̃. This obviously implies (33). q.e.d.

Theorem 14. The (I∞,Dom(I∞))-martingale problem has a unique solution for the
case of purely atomic initial state. Note that Dom(I∞) = Dom(Iθ) = Dom(I) = D(L).

Proof. The proof of the uniqueness goes in part similarly as in the proof of Theorem 4.4
of Dawson-Li [1]. For the details, see the companion paper [11]. Hence we omit it here.
q.e.d.

So that, the following is an immediate result from Theorem 14.

Theorem 15. The process X = {Xt; t ≥ 0} given by (25) is a solution of the
(I∞,Dom(I∞))-martingale problem.

Furthermore we can show:

Lemma 16. Under the assumptions (A.1) – (A.4) the processes {Y θk
t ; t ≥ 0}k of (17) in

Theorem 4 converge almost surely as k → ∞ to the process {Y 0
t ; t ≥ 0} of the form (25).

Proof. Essentially it is due to the convergence in distribution of interacting Brownian
motions towards the coalescing Brownian motion. q.e.d.

By Theorem 13, clearly the process {Y 0
t ; t ≥ 0} becomes a solution of the

(I∞, Dom(I∞))-martingale problem. In addition, Theorems 14 and 15 insist that under
the purely atomic initial state µ0 ∈Ma(R), the distribution of the solution process of (I∞,
Dom(I∞))-martingale problem is unique, and the limiting process {Y 0

t } possesses a purely
atomic representation of the form (25), which is nothing but a {ρ(0), σ0, q0,m}-superprocess
associated with coalescing spatial motion. Since we have P ◦ {Y θk

t }−1 (with initial state
µθ) ⇒ Qk

µ0
(as k → ∞), in fact it turns out to be that Qk

µ0
= Qµ0 for any subsequence

{k}. Therefore, by virtue of Theorem 13, the (Iθ, Dom(Iθ))-martingale problem induces
the (I∞, Dom(I∞))-martingale problem. This finishes the proof of (b) of Theorem 7. q.e.d.

5. Proof of Key Proposition

This section is devoted to the proof of Proposition 11. First of all, note that the assertion
of Proposition 11 is equivalent to :

Proposition 17. For t > 0 we have

lim
k→∞

E

∣∣∣∣
∫ t

0

dsf ′′(〈φ, Y k
s 〉)

∫∫
R2
ρθk

(x− y)φ′(x)φ′(y)Y k
s (dx)Y k

s (dy)(35)

−
∫ t

0

dsf ′′(〈φ, Y 0
s 〉)

∫∫
∆

ρ(0)φ′(x)φ′(y)Y 0
s (dx)Y 0

s (dy)
∣∣∣∣ = 0.

For simplicity we put ρk = ρθk
, D2 = R2, f ′′[Y ∗

s ] = f ′′(〈φ, Y ∗
s 〉), dY ∗

x = Y ∗
s (dx) with ∗ = k

or 0. Because we readily get

∣∣∣∣
∫ t

0

dsf ′′[Y k
s ]

∫∫
D2

ρk(x− y)φ′(x)φ′(y)dY k
x dY k

y

−
∫ t

0

δs f ′′[Y 0
s ]

∫∫
D2

ρk(x− y)φ′(x)φ′(y)dY k
x dY k

y

∣∣∣∣
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� ‖f ′′[Y k
· ] − f ′′[Y 0

· ]‖∞ ·
∫ t

0

∣∣∣∣
∫∫

D2

ρk(x− y)φ′(x)φ′(y)dY k
x dY k

y

∣∣∣∣ ds

→ 0 (as k → ∞),

and also because

(36) lim
k→∞

E

∣∣∣∣∣
∫ t

0

ds
∫∫

R2\∆

ρθk
(x− y)φ′(x)φ′(y)Y k

s (dx)Y k
s (dy)

∣∣∣∣∣ = 0

for any t > 0, by a simple reduction, in order to verify the assertion (35) it suffices to show
the following:

Lemma 18. For t > 0

lim
k→∞

E

∣∣∣∣
∫ t

0

d
∫∫

∆

ρ(0)φ′(x)φ′(y)Y k
s (dx)Y k

s (dy)(37)

−
∫ t

0

ds
∫∫

∆

ρ(0)φ′(x)φ′(y)Y 0
s (dx)Y 0

s (dy)
∣∣∣∣ = 0.

Recall here useful purely atomic representations: namely,

Y k
t =

∞∑
i=1

ξk
i (t)δxk

i
+

∫ t

0

∫
R

∫
W0

w(t − s)δxk∗Nk(ds, da, dw)(38)

=: Y k,1
t + Y k,2

t (or= Y 1
t + Y 2

t ),

and as almost sure limit of Y k
t (see Lemma 16)

Y 0
t =

∞∑
i=1

ξi(σ0t)δyi(0,bi,t) +
∫ t

0

∫
R

∫
W0

w(t− s)δy(s,b,t)Ñq0(ds,db, dw),(39)

=: Z1
t + Z2

t ,

where we put ξk
i (t) = ξi(σθk

t), xk
i = xθk(0, aθk

i , t), x
k
∗ = xθk(s, aθk , t), Nk := Ñqθk

, δyi

= δyi(0,bi,t), δy = δy(s,b,t) and N0 = Ñq0 . In addition, we put η(x, y) = ηρ,φ(x, y) =
ρ(0)φ′(x)φ′(y) for simplicity. Then we have∫∫

∆

η(x, y)dY k
x dY k

y =
∫∫

∆

η(x, y)(Y 1
s + Y 2

s )(dx) · (Y 1
s + Y 2

s )(dy)

=
∫∫

∆

η(x, y)Y 1
s (dx)Y 1

s (dy) +
∫∫

∆

η(x, y)Y 2
s (dx)Y 1

s (dy)

+
∫∫

∆

η(x, y)Y 1
s (dx)Y 2

s (dy) +
∫∫

∆

η(x, y)Y 2
s (dx)Y 2

s (dy),

and the second integral term in (37) has also similar decomposition as described above. The
integral term

∫∫
∆ ηdY 1

x dY 1
y is exactly the same case as discussed in [10], and the assertion

(40) lim
k

E

∣∣∣∣
∫ t

0

ds
∫∫

∆

ηdY 1
x dY 1

y −
∫ t

0

ds
∫∫

∆

ηdZ1
xdZ1

y

∣∣∣∣ = 0
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holds for t > 0 (see Eq.(105) of Lemma 18 in §6.2 of [10]). Moreover, essentially, the cases
Y 2

x Y
1
y and Y 1

x Y
2
y are the symmetrically same. So only two cases I12 : Y 1

x Y
2
y and I22 :

Y 2
x Y

2
y should be discussed. In consequence, what really we have to show is the following

two lemmas.

Lemma 19. (I12-type estimate) For t > 0 we have

(41) lim
k→∞

E

∣∣∣∣
∫ t

0

ds
∫∫

∆

η(x, y)dY 1
x dY 2

y −
∫ t

0

ds
∫∫

∆

η(x, y)dZ1
xdZ2

y

∣∣∣∣ = 0.

Lemma 20. (I22-type estimate) For t > 0 we have

(42) lim
k→∞

E

∣∣∣∣
∫ t

0

ds
∫∫

∆

η(x, y)dY 2
x dY 2

y −
∫ t

0

ds
∫∫

∆

η(x, y)dZ2
xdZ2

y

∣∣∣∣ = 0.

Proof of Lemma 19. Basically the followings are essential key points when considering
the convergence of I12-type : [*1] ”the law of m-sytem of interacting Brownian motions
starting at point (ak

1 , . . . , ak
m) with ak

i = aθk

i converges as k → ∞ to the law of m-SCBM
started at (b1, . . . , bm) under the condition (A.1) if ak

i → bi for each i”, e.g. see Theorem
2.4 of [3]. Especially it is easy to see that [*2] ”δxk

i
⇒ δyi (as k → ∞) for each i”; and

also [*3] ”Nθk
⇒ Ñq0 (as k → ∞)”. Hence, for a proper random measurable integrand

H , we have [*4] ”
∫ ∫∫

HdNθk
→ ∫ ∫∫

HdÑq0 (as k → ∞) over the integral region D∗ =
[0, t] × R ×W0”.

Lemma 21. For any t > 0 we have

(43)
∫ ∫∫

D∗
Hδxk∗dNθk

→
∫ ∫∫

D∗
HδydÑq0 , a.s. as k → ∞.

Proof of Lemma 21. Here we use some abbreviated notation: e.g.
∫
H · N instead of∫ ∫∫

D∗
HdN . Then we readily obtain

|
∫

(Hδxk∗) ·Nθk
−

∫
(Hδy) · Ñq0 |

� |
∫

(Hδxk∗) ·Nθk
−

∫
(Hδxk∗) · Ñq0 | + |

∫
(Hδxk∗ ) · Ñq0 −

∫
(Hδy) · Ñq0 |

� |
∫

(Hδxk∗) · (Nθk
− Ñq0)| + |

∫
{H(δxk∗ − δy)} · Ñq0 |

=: J1 + J2.

Essentially, J1 → 0 yields from [*3] together with the discussion similar to the proof of
Lemma 17 in §6.2 of [10], and J2 → 0 follows from [*2] and the Lebesgue type theorem.
q.e.d.

To go back to the proof of Lemma 19, we have immediately

∣∣∣∣
∫ t

0

ds
∫∫

∆

η(x, y)dY 1
x dY 2

y −
∫ t

0

ds
∫∫

∆

η(x, y)dZ1
xdZ2

y

∣∣∣∣
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�
∣∣∣∣
∫ t

0

ds
∫∫

∆

ηdY 1
x dY 2

y −
∫ t

0

ds
∫∫

∆

ηdY 1
x dZ2

y

∣∣∣∣
+

∣∣∣∣
∫ t

0

ds
∫∫

∆

ηdY 1
x dZ2

y −
∫ t

0

ds
∫∫

∆

ηdZ1
xdZ2

y

∣∣∣∣
=: J1 + J2.

As to J1, because we have

J1 �
∫ t

0

ds
∫∫

∆

dY 1
x

∣∣∣∣
∫

(wδxk∗ ) ·Nθk
−

∫
(wδy) · Ñq0

∣∣∣∣ ,
the assertion limk E{J1} = 0 follows from Lemma 21 and the same discussion as in Lemma
17 of [10]. While, clearly the Fubini theorem and [*2] together with (A.1), (A.2) and (A.4)
yields to limk E{J2} = 0 because

E{J2} = E

∣∣∣∣
∫ t

0

ds
∫∫

∆

η

{∫
(wδy) · Ñq0

}
d(Y 1

x − Z1
x)

∣∣∣∣
� t · ‖η‖ sup

s�t
E

∣∣∣∣
∫
w · Ñq0

∣∣∣∣ · sup
s�t

E‖|(Y 1 − Z1) ⊗ δy(dx,dy)‖|∆

and the almost sure convergnce Y 1
x → Z1

x with the total variation ‖| · ‖|∆. This completes
the proof of Lemma 19. q.e.d.

Proof of Lemma 20. We readily get

∣∣∣∣
∫ t

0

ds
∫∫

∆

ηdY 2
x dY 2

y −
∫ t

0

ds
∫∫

∆

ηdZ2
xdZ2

y

∣∣∣∣

�
∣∣∣∣
∫ t

0

ds
∫∫

∆

ηdY 2
x dY 2

y −
∫ t

0

ds
∫∫

∆

ηdZ2
xdY 2

y

∣∣∣∣
+

∣∣∣∣
∫ t

0

ds
∫∫

∆

ηdZ2
xdY 2

y −
∫ t

0

∫∫
∆

ηdZ2
xdZ2

y

∣∣∣∣
=: K1 +K2.

As to K1, since we have

K1 �
∣∣∣∣
∫ t

0

ds
∫∫

∆

ηdY 2
y

{∫
(wδxk∗) ·Nθk

−
∫

(wδy) · Ñq0

}∣∣∣∣ ,
the assertion limk E{K1} = 0 follows immediately from the Lebesgue type theorem and
Lemma 21 together with the discussion similar to Lemma 17 of [10]. While, because

K2 �
∣∣∣∣
∫ t

0

ds
∫∫

∆

ηdZ2
x

{∫
(wδxk∗ ) ·Nθk

−
∫

(wδy) · Ñq0

}∣∣∣∣ ,
a simple application of Lemma 21 will take care of the convergence limk E{K2} = 0. q.e.d.

Summing up, the key assertion Proposition 11 has been proved.
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