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Abstract. Two equivalent linear codes have the same weight enumerator but the
converse does not hold. We investigate which code is unique up to equivalence in
view of the weight enumerator. The main purpose of this paper is to investigate the
weight enumerators associated to the only one equivalent class of linear codes and to
construct these codes. Furthermore, we construct non-equivalent linear codes with the
same weight enumerator and give the generator matrices of these codes.

1 Introduction and Preliminary. If we know the weight enumerator of a given linear
code, then we obtain many information of the code from it, that is, we note the dimension,
length, minimum distance of the code, the sum of all weights and the weight enumerator
of its dual code, etc. Finding the weight enumerators of linear codes is a very important
and interesting problem. Every polynomial can not be a weight enumerator of some code.
Though a polynomial is the weight enumerator of some code, we don’t know how many codes
have the same polynomial as their weight enumerators. Actually, any two equivalent codes
always have the same weight enumerator but the converse does not hold. We are interested
in finding the linear codes with same weight enumerator, and investigate equivalence of
these codes.

A q-ary [n, k] linear code is a linear subspace of Fq
n over the finite field Fq of length n,

dimension k. A linear code is non-degenerate if there is no always-zero coordinate position.
The weight w(x) means the number of non-zero positions of a vector x in Fq

n. The support
of x means the set of non-zero coordinate positions in x and is denoted by Supp(x), i.e.,
Supp(x) = {i | xi �= 0}, where x = (x1, . . . , xn). Then |Supp(x)| = w(x). For x =
(x1, . . . , xn) and y = (y1, . . . , yn) in Fq

n, we define the intersection of x and y by x ∩ y =
(x1y1, . . . , xnyn). Then Supp(x ∩ y) = Supp(x) ∩ Supp(y). For any subset S of Fq

n, we
also define its support by Supp(S) = {i | xi �= 0 for some x ∈ S}.

For a q-ary linear code C, let

C⊥ = {x ∈ Fq
n | x · c = 0 for all c ∈ C}

be called the dual code of C.
Two [n, k]q codes C1 and C2 are called equivalent if there are generator matrices G1 and

G2 of C1 and C2, respectively, such that G2 may be obtained from G1 by a sequence of
elementary column operations of the following types: (i) transposition of two columns and
(ii) multiplication of a column by a non-zero scalar.

For an [n, k]q code C, let Ar denote the number of codewords in C of weight r. The
numbers A0, A1, . . . , An are referred to as the weight distribution of C, and the formal sum

WC(s) =
n∑

i=0

Ais
i
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is called the weight enumerator of C.
The following theorem relates the weight enumerator of a linear code C to the weight

enumerator of its dual code C⊥.

Theorem 1.1 ([4]) (The MacWilliams Identity for Linear Codes) Let C be a q-ary
linear code of length n, C⊥ its dual and

WC(s) =
n∑

i=0

Ais
i, WC⊥(s) =

n∑
i=0

Ai
⊥si,

the weight enumerators of C and C⊥, respectively. Then

WC⊥(s) =
1
|C| (1 + (q − 1)s)n

WC

(
1 − s

1 + (q − 1)s

)
.

Let Ci be an [ni, ki]q linear code with a generator matrix Gi for i = 1, 2. Then we have
a code C1 ⊕ C2 by direct sum,

C1 ⊕ C2 = {(x,y) | x ∈ C1,y ∈ C2}.

Note that C1⊕C2 is an [n1+n2, k1+k2]q linear code with a generator matrix
(

G1 0
0 G2

)
,

and the weight enumerator of C1 ⊕ C2 is

WC1⊕C2 = WC1(s)WC2(s).

Theorem 1.2 ([1]) Let C be a non-degenerate [n, k]q linear code. Then

n =
1

qk − qk−1

∑
x∈C

w(x).

Let P
k−1 be the (k−1)-dimensional projective space over the finite field Fq. A 0-cycle X

means a formal sum of points in P
k−1, that is X =

∑
miPi where mi’s are integers and Pi’s

are points in P
k−1. Two 0-cycles X =

∑
miPi and X ′ are said to be projectively equivalent

if there exists a projective transformation F : P
k−1 → P

k−1 such that
∑

miF (Pi) = X ′.
For a non-degenerate linear code C, each column of a generator matrix G of C can be

regarded as a point in P
k−1. The formal sum of all columns of G as points in P

k−1 is
called a 0-cycle of the code C, denoted by XC . If one chooses another generator matrix G′

of the same code C, then two 0-cycles of C corresponding to G and G′, respectively, are
projectively equivalent. Note that two codes are equivalent if and only if their 0-cycles are
projectively equivalent.

Theorem 1.3 ([2]) Let {P0, P1, . . . , Pn+1} and {Q0, Q1, . . . , Qn+1} be two sets of (n + 2)
points of P

n. If any (n + 1) points in each sets span the whole space P
n, then there exists

a unique projective transformation F : P
n → P

n such that F (Pj) = Qj for 0 ≤ j ≤ n + 1.

From now on, we assume that every code is non-degenerate.
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2 The weight enumerators of 2-dimensional codes. In this section, we give some
results for 2-dimensional linear codes with the same weight enumerator.

Example 2.1 We find weight enumerators of all linear codes of dimension 2 over F2 or F3.
(1) Any 2-dimensional binary linear code C corresponds to the 0-cycle

XC = m1

(
0
1

)
+ m2

(
1
0

)
+ m3

(
1
1

)
,

for some non-negative integers m1, m2 and m3 among which at least two are non-zero. Then
we have WC(s) = 1 + sm1+m2 + sm1+m3 + sm2+m3 .
(2) Any 2-dimensional ternary linear code C corresponds to the 0-cycle

XC = m1

(
0
1

)
+ m2

(
1
0

)
+ m3

(
1
1

)
+ m4

(
1
2

)
,

for some non-negative integers m1, m2, m3 and m4 among which at least two are non-zero.
Then we have WC(s) = 1 + 2sm1+m2+m3 + 2sm1+m2+m4 + 2sm1+m3+m4 + 2sm2+m3+m4 .

Lemma 2.2 Let C1 and C2 be q-ary [n, k] linear codes.

(1) Suppose that XC1 =
∑k+1

i=1 miPi and XC2 =
∑k+1

i=1 miQi, where mi ≥ 1 for i = 1, . . . , k+
1, and that any k points in each set {P1, P2, . . . , Pk+1} and {Q1, Q2, . . . , Qk+1} span the
whole space P

k−1, then C1 and C2 are equivalent.

(2) Suppose that XC1 =
∑k

i=1 miPi and XC2 =
∑k

i=1 miQi, where mi ≥ 1 for i = 1, . . . , k,
then C1 and C2 are equivalent.

Proof. (1) By Theorem 1.3, there is a projective transformation F : P
k−1 → P

k−1 such that
F (Pi) = Qi for all i = 1, . . . , k + 1. Thus there exists a non-singular matrix A = (aij)k×k

such that AG1 = G2, which means that G2 is obtained from G1 by a sequence of column
operations. Recall that any non-singular matrix is expressed as a product of elementary
matrices. Thus C1 and C2 are equivalent.
(2) Let

G1 = (P1, . . . , P1︸ ︷︷ ︸
m1 times

, . . . , Pk, . . . , Pk︸ ︷︷ ︸
mk times

)k×n and

G2 = (Q1, . . . , Q1︸ ︷︷ ︸
m1 times

, . . . , Qk, . . . , Qk︸ ︷︷ ︸
mk times

)k×n.

Then the codes C1 and C2 are equivalent to codes generated by G1 and G2, respectively.
Since {P1, . . . , Pk} and {Q1, . . . , Qk} span P

k−1, respectively, by Theorem 1.3, there is a
projective transformation F : P

k−1 → P
k−1 such that F (Pi) = Qi for all i = 1, 2, . . . , k.

Thus there exists a non-singular matrix A = (aij)k×k such that AG1 = G2, which means
that G2 is obtained from G1 by a sequence of column operations. Thus C1 and C2 are
equivalent. �

The following theorem is the converse of Example 2.1.

Theorem 2.3 Any two 2-dimensional linear codes over F2 or F3 with the same weight
enumerator are equivalent.
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Proof. Let C1 and C2 be 2-dimensional linear codes over F2 or F3 with the same weight
enumerator.
(i) For binary case, we let

XC1 = m1

(
0
1

)
+ m2

(
1
0

)
+ m3

(
1
1

)
, XC2 = n1

(
0
1

)
+ n2

(
1
0

)
+ n3

(
1
1

)
,

for some non-negative integers mi and ni. By Lemma 2.2 (1), we may assume that 0 ≤
m1 ≤ m2 ≤ m3 and 0 ≤ n1 ≤ n2 ≤ n3. Then, from Example 2.1, we have

WC1(s) = 1 + sm1+m2 + sm1+m3 + sm2+m3 ,

WC2(s) = 1 + sn1+n2 + sn1+n3 + sn2+n3 .

Since WC1(s) = WC2(s), we get

m1 + m2 = n1 + n2, m1 + m3 = n1 + n3, m2 + m3 = n2 + n3.

Thus mi = ni for i = 1, 2, 3. By Lemma 2.2, C1 and C2 are equivalent.
(ii) For ternary case, we let

XC1 = m1

(
0
1

)
+ m2

(
1
0

)
+ m3

(
1
1

)
+ m4

(
1
2

)
,

XC2 = n1

(
0
1

)
+ n2

(
1
0

)
+ n3

(
1
1

)
+ n4

(
1
2

)
,

for some non-negative integers mi and ni. By Theorem 1.3, for any subsets {P1, P2, P3} and
{Q1, Q2, Q3} in P

1, there exists a projective transformation satisfying Pi → Qi, i = 1, 2, 3.
This means that any bijection from P

1 to P
1 is a projective transformation, since the

projective line P
1 over F3 has only 4 points. Thus we may assume that 0 ≤ m1 ≤ m2 ≤

m3 ≤ m4 and 0 ≤ n1 ≤ n2 ≤ n3 ≤ n4. Then, from Example 2.1, we have

WC1(s) = 1 + 2sm1+m2+m3 + 2sm1+m2+m4 + 2sm1+m3+m4 + 2sm2+m3+m4 ,

WC2(s) = 1 + 2sn1+n2+n3 + 2sn1+n2+n4 + 2sn1+n3+n4 + 2sn2+n3+n4 .

Since WC1(s) = WC2(s), we get

m1 + m2 + m3 = n1 + n2 + n3, m1 + m2 + m4 = n1 + n2 + n4,

m1 + m3 + m4 = n1 + n3 + n4, m2 + m3 + m4 = n2 + n3 + n4.

From this linear system of equations, we obtain mi = ni for i = 1, 2, 3, 4. Similarly above,
we can take a projective transformation F : P

1(F3) → P
1(F3) such that F (Pi) = Qi and

mi = ni for i = 1, 2, 3, 4. Therefore C1 and C2 are equivalent. �

The next example shows that Theorem 2.3 can not be extended to the case q ≥ 4.

Example 2.4 ([3]) For q ≥ 4, let Ci be a code with a generator matrix

Gi =
(

0 0 0 0 1 1 1 1 1 1
1 1 1 1 0 0 0 1 1 αi

)
for i = 1, 2,

where αi ∈ Fq \ {0, 1}. Then WC1(s) = WC2(s) but C1 and C2 are not equivalent when
α1 �= α2.
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3 The weight enumerators associated to the only one equivalent class of codes.
The main purpose of this section is to investigate the weight enumerators associated to the
only one equivalent class of linear codes and to construct these codes.

From now on, by abuse of notation, we also write the notation WB(s), even if B is any
subset of Fq

n. Let In be an n ×⊎n identity matrix. For vectors x1, . . . ,xn, 〈x1, . . . ,xn〉
denotes the linear span of x1, . . . ,xn, and a vector (1, 1, . . . , 1) is simply denoted by 1 . . . 1.

Lemma 3.1 Suppose that C is a q-ary [n, k] linear code and {x1, x2, . . . ,xk} is a basis of
C. If deg WC(s) = n =

∑k
i=1 w(xi), then C is equivalent to the code

〈 1 . . . 1︸ ︷︷ ︸
w(x1)times

〉 ⊕ 〈 1 . . . 1︸ ︷︷ ︸
w(x2)times

〉 ⊕ · · · ⊕ 〈 1 . . . 1︸ ︷︷ ︸
w(xk)times

〉,

and we have WC(s) =
∏k

i=1(1 + (q − 1)sw(xi)).

Proof. Since deg WC(s) = n, there is a codeword c of weight n. Let c = a1x1 + a2x2 +
· · · + akxk for some a1, a2, . . . , ak ∈ Fq. Since

n = w(c) = w(
k∑

i=1

aixi) ≤
k∑

i=1

w(aixi) ≤
k∑

i=1

w(xi) = n,

all ai’s are non-zero and Supp(xi)∩ Supp(xj) = ∅ for 1 ≤ i < j ≤ k. Hence C is equivalent
to the code

〈 1 . . . 1︸ ︷︷ ︸
w(x1)times

〉 ⊕ 〈 1 . . . 1︸ ︷︷ ︸
w(x2)times

〉 ⊕ · · · ⊕ 〈 1 . . . 1︸ ︷︷ ︸
w(xk)times

〉.

Obviously, we obtain

WC(s) = (1 + (q − 1)sw(x1))(1 + (q − 1)sw(x2)) . . . (1 + (q − 1)sw(xk)).

�

Theorem 3.2 Let C be a q-ary linear code with

WC(s) = (1 + (q − 1)sa)k.

If a is odd or q �= 2, then C is equivalent to the code generated by (Ik . . . Ik︸ ︷︷ ︸
a times

).

Proof. Since WC(s) = (1 + (q − 1)sa)k, by using Theorem 1.2, we can compute that the
length of C is ka. Hence C is a [ka, k] linear code. We divide the proof into two cases.
Case 1. Suppose q �= 2.
For k = 1, the assertion is true. Now, we assume k ≥ 2. Let A = {x ∈ C | w(x) = a}.
Then we have |A| = k(q − 1). We claim that for any two elements x and y in A,

x ∈ 〈y〉 or Supp(x) ∩ Supp(y) = ∅.

Suppose that x �∈ 〈y〉 and Supp(x) ∩ Supp(y) �= ∅. We set r = |Supp(x) ∩ Supp(y)|,
0 < r < a. On the other hand, from WC(s), we note that there is an element z of weight
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ka in C. By applying a sequence of column operations to the code C, we may assume that
z has the 1 in the ka columns, i.e., z = 1 . . . 1︸ ︷︷ ︸

ka times

. So we may let as follows:

z = 1, . . . , 1, 1, . . . , 1, 1, . . . , 1, 1, . . . , 1
x = b1, . . . , ba−r, ba−r+1, . . . , ba, 0, . . . , 0, 0, . . . , 0
y = 0, . . . , 0, c1, . . . , cr, cr+1, . . . , ca, 0, . . . , 0

Then (k−1)a ≤ w(−b1z+x),w(−c1z+y) < ka. Thus w(−b1z+x) = (k−1)a = w(−c1z+y)
which implies that b1 = b2 = · · · = ba and c1 = c2 = · · · = ca. Since 0 < w(αx + βy) < 2a
for any α, β ∈ Fq with (α, β) �= (0, 0), w(αx + βy) = a. Thus a = w(x− c−1

1 b1y) = 2a− 2r
and a = w(x + γy) = 2a − r for some γ ∈ Fq \ {0,−c−1

1 b1}. This is a contradiction. Thus
we proved the claim. Therefore we conclude that there exist k vectors in A whose supports
are mutually disjoint, and hence these k vectors form a basis of the code C. By Lemma 3.1,
C is equivalent to the code generated by (Ik . . . Ik︸ ︷︷ ︸

a times

).

Case 2. Suppose that q = 2 and a is odd.
Consider A = {x ∈ C | w(x) = a}. Then we have |A| = k. It suffices to show that A is a
basis of C. For any x and y in A with x �= y, we get 0 < w(x + y) ≤ 2a. From WC(s), we
have w(x + y) = a or 2a. If w(x + y) = a, then 2w(x ∩ y) = a. Since a is odd, this is a
contradiction. Thus w(x + y) = 2a and w(x ∩ y) = 0, i.e.,

Supp(x) ∩ Supp(y) = ∅.
Therefore, any two elements in A have mutually disjoint supports. Thus A is a basis of C.
By Lemma 3.1, the proof is complete. �

Remark 3.3 We will show in Theorem 4.1 that if q = 2 and a(≥ 2) is even, there exist at
least two non-equivalent codes.

Theorem 3.4 Suppose C is a q-ary linear code with

WC(s) =
k∏

i=1

(1 + (q − 1)sai),

where
∑i−1

j=1 aj < ai for any i = 2, . . . , k. Then C is equivalent to the code 〈 1 . . . 1︸ ︷︷ ︸
a1 times

〉 ⊕

〈 1 . . . 1︸ ︷︷ ︸
a2 times

〉 ⊕ · · · ⊕ 〈 1 . . . 1︸ ︷︷ ︸
ak times

〉.

Proof. For each i = 1, . . . , k, take a vector xi ∈ C with w(xi) = ai. Since
∑i−1

j=1 aj < ai,
we can prove easily that xi /∈ 〈x1, . . . ,xi−1〉 for each i. Thus {x1, . . . ,xk} is a basis of C.
By Lemma 3.1, C is equivalent to the code 〈1 . . . 1︸ ︷︷ ︸

a1times

〉 ⊕ 〈 1 . . . 1︸ ︷︷ ︸
a2 times

〉 ⊕ · · · ⊕ 〈 1 . . . 1︸ ︷︷ ︸
ak times

〉. �

The following corollary is a special case of Theorem 3.4.

Corollary 3.5 Suppose C is a binary linear code with

WC(s) =
k−1∏
i=0

(1 + s2i

) = 1 + s + s2 + s3 + s4 + · · · + s2k−1.
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Then C is equivalent to the code

〈1〉 ⊕ 〈11〉 ⊕ 〈1111〉 ⊕ · · · ⊕ 〈 1 . . . 1︸ ︷︷ ︸
2k−1times

〉.

The next example shows that the condition
∑i−1

j=1 aj < ai for all i = 2, . . . , k in Theorem
3.4 is necessary.

Example 3.6 Let XC1 = 3
(

1
0
0

)
+ 4
(

0
1
0

)
+ 5
(

0
0
1

)
and XC2 =

(
1
0
0

)
+ 2
(

0
1
0

)
+ 3
(

0
0
1

)
+ 6
(

1
1
1

)
.

Then
WC1(s) = (1 + s3)(1 + s4)(1 + s5) = WC2(s),

and obviously, C1 and C2 are not equivalent.

Theorem 3.7 Suppose C is a q-ary [n, k] linear code and C1 is a (k − 1)-dimensional
subcode of C. If WC(s) = g(s)WC1(s), then g(s) = 1 + (q − 1)sa for some positive integer
a and there exists x in C \ C1 of weight a such that Supp(C1) ∩ Supp(x) = ∅.

Proof. Let {x1,x2, . . . ,xk−1} be a basis of C1 and x be a codeword of the minimum weight
a in C \ C1. Then

C = 〈x1,x2, . . . ,xk−1,x〉 =
⋃

α∈Fq

(αx + C1).

Let A = C \ C1. Since x has the minimum weight a in A, let WA(s) = sa(b + sh(s)), for
some b �= 0 and a polynomial h(s). Since WC(s) = WC1(s)+WA(s) = g(s)WC1(s), we have
WA(s) is a multiple of WC1(s). Since

gcd(WC1(s), s
a) = 1,

we have b + sh(s) is a multiple of WC1(s), that is, b + sh(s) = WC1(s)f(s) for some f(s),
deg f(s) ≥ 0. Thus g(s) = 1 + saf(s) and deg g(s) ≥ a. On the other hand, since C1 is a
subcode and αx + C1 = αx + αC1 for any α �= 0, we get WA(s) = (q − 1)Wx+C1(s). Since
deg WA(s) = deg Wx+C1(s) ≤ w(x) + deg WC1(s) = a + deg WC1(s) and

deg g(s) + deg WC1(s) = deg WC(s) = deg(WC1(s) + WA(s))
= max{deg WC1(s),deg WA(s)} ≤ a + deg WC1(s),

we get deg g(s) ≤ a. Therefore, deg g(s) = a, hence g(s) = 1 + usa. Since dimC1 = k − 1,
we have g(1) = q. Thus u = q − 1 and g(s) = 1 + (q − 1)sa.

Since WC(s) = WC1(s) + WA(s) = WC1(s) + (q − 1)Wx+C1(s) and WC(s) = (1 + (q −
1)sa)WC1(s) = WC1(s) + (q − 1)saWC1(s), we have Wx+C1(s) = saWC1(s). Now we will
show that w(x + y) = w(x) + w(y) for any y ∈ C1. Suppose that there is a codeword
y ∈ C1 such that w(x + y) �= w(x) + w(y). Take c ∈ C1 of maximum weight l such that
w(x+c) �= w(x)+w(c), that is, Supp(c)∩Supp(x) �= ∅. Let u ∈ C1 with w(u+x) = l+a.
If w(u) > l, then w(u + x) = w(u) + w(x) > l + a by the definition of l. If w(u) < l, then
w(u + x) ≤ w(u) + w(x) < l + a. Hence w(u) = l and {u ∈ C1 | w(u + x) = l + a} ⊆
{u ∈ C1 | w(u) = l}. Since |{u ∈ C1 | w(u + x) = l + a}| = |{u ∈ C1 | w(u) = l}| by
Wx+C1(s) = saWC1(s), we have {u ∈ C1 | w(u + x) = l + a} = {u ∈ C1 | w(u) = l}. Since
c ∈ {u ∈ C1 | w(u) = l} and c �∈ {u ∈ C1 | w(u + x) = l + a}, we have a contradiction.
Hence w(x+y) = w(x)+w(y) for any y ∈ C1. Therefore we have Supp(C1)∩Supp(x) = ∅.
�
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Remark 3.8 If we assume that g(s) has only non-negative coefficients, then we can prove
the above theorem easily as follows; Since WC(1) = g(1)WC1(1) and 1 = WC(0) = g(0)WC1(0) =
g(0), we get g(1) = q and g(0) = 1. Since all coefficients in the polynomials WC(s) and
WC1(s) except their constant terms are multiples of q − 1, so are those of g(s). Thus if
all coefficients of g(s) are non-negative, then g(s) must have only two non-zero terms, and
hence g(s) is of the form 1 + (q − 1)sa for some positive integer a.

Theorem 3.9 Suppose C is a q-ary [n, k] linear code with

WC(s) = (1 + (q − 1)sa)f(s), where a > 2 deg f(s).

Then C is equivalent to the code 〈1 . . . 1︸ ︷︷ ︸
a times

〉 ⊕ A′ for some code A′.

Proof. Note that WC(s) = f(s) + (q − 1)saf(s) and every term of f(s) is that of WC(s)
and hence every coefficient of f(s) is a non-negative integer. Let A and B be the following
two disjoint sets:

A = {x ∈ C | w(x) ≤ deg f(s)} = {x ∈ C | w(x) < a},
B = {x ∈ C | w(x) > deg f(s)} = {x ∈ C | w(x) ≥ a}.

Then C = A ∪ B. For any x1, x2 ∈ A, note that

w(x1 + x2) ≤ w(x1) + w(x2) ≤ 2 deg f(s) < a.

Hence x1 + x2 ∈ A. Thus A is a subcode of C and WA(s) = f(s). Note that f(1) = qk−1

and hence dimA = k − 1. Now the result follows from Theorem 3.7. �

Note that for q-ary [n, k] linear codes C1 and C2, if C1 and C2 are equivalent, then
C1

⊥ and C2
⊥ are also equivalent. Thus by Theorem 1.1, we also conclude that the weight

enumerators of the dual of the codes in previous theorems correspond to the only one
equivalent class of linear codes.

4 The weight enumerators with non-equivalent codes. Now, we construct non-
equivalent linear codes with the same weight enumerator and give the generator matrices
of these codes.

Theorem 4.1 There exist at least two non-equivalent binary linear codes with the same
weight enumerator (1 + sa)k, for any even a ≥ 2 and any integer k ≥ 3.

Proof. Let

A =

⎛
⎝1 0 0 0 0 1

0 1 0 0 0 1
0 0 1 1 1 1

⎞
⎠ ,

and let Ci be the code generated by Gi for i = 1, 2, where

G1 = (

a times︷ ︸︸ ︷
Ik, . . . , Ik) and G2 =

( a
2 times a times︷ ︸︸ ︷
A . . . A

︷ ︸︸ ︷
0 . . . 0

0 . . .0 I(k−3) . . . I(k−3)

)
.

Then WC1(s) = (1 + sa)k = WC2(s). For any distinct elements x1,x2 in C1 of weight a, we
have w(x1 + x2) = 2a, while there exist two distinct elements x′

1,x
′
2 in C2 of weight a such

that w(x′
1 + x′

2) = a. Thus C1 and C2 are not equivalent. �
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Theorem 4.2 Suppose C is a binary linear code with WC(s) = (1+s)(1+s2)(1+s4) . . . (1+
s2a−1

). Then the following hold:
(1) There exists only one code up to equivalence with the weight enumerator WC(s)r for
(i) r = 1, (ii) a = 1 or (iii) a = 2 and r = 2.
(2) There exist at least two non-equivalent codes with the weight enumerator WC(s)r for
(i) r = 2 and a ≥ 3 or (ii) r ≥ 3 and a ≥ 2.

Proof. (1) (i) If r = 1, then by Corollary 3.5, it is obvious. (ii) If a = 1, then the
corresponding code is the whole space F2

r. (iii) If a = 2 and r = 2, then the weight
enumerator is (1 + s)2(1 + s2)2 = 1 + 2s + · · · . Hence the code contains two unit vectors,
say, e1 and e2. Then C is equivalent to the code 〈e1〉 ⊕ 〈e2〉 ⊕ C′ for some C′ of dimension
2. Thus WC′ = (1 + s2)2. By Theorem 2.3, C′ is uniquely determined up to equivalence.
(2) (i) If r = 2 and a ≥ 3, then we have two codes as follows:

C1 = 〈I2〉 ⊕ 〈I2, I2〉 ⊕ 〈I2, I2, I2, I2〉 ⊕ D,

C2 = 〈I2〉 ⊕ 〈A〉 ⊕ D,

where

D =

⎧⎪⎨
⎪⎩

0, for a = 3,

〈I2, . . . , I2︸ ︷︷ ︸
23 times

〉 ⊕ · · · ⊕ 〈I2, . . . , I2︸ ︷︷ ︸
2a−1 times

〉, for a ≥ 4

and

A =

⎛
⎜⎜⎝

1 1 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 0 0 0 0 0
0 0 0 1 0 0 0 1 1 1 1 1

⎞
⎟⎟⎠ .

Here, for a matrix M , the notation 〈M〉 means the linear code with a generator matrix M .
Then WC1(s) = WC2(s) = WC(s)2. For any two elements x1 and x2 in C1 of weight 2 and
4, respectively, we have w(x1 + x2) = 6, while there exist two elements x′

1 and x′
2 in C2 of

weight 2 and 4, respectively, such that w(x′
1 +x′

2) = 4. Thus C1 and C2 are not equivalent.
(ii) If r ≥ 3 and a ≥ 2, then (1 + s2)3 is a factor of WC(s)r. By Theorem 4.1, it is obvious.
�

In the following theorem, we provide a class of polynomials in which every member is
the weight enumerator of at least two non-equivalent binary linear codes.

Theorem 4.3 There are at least two non-equivalent binary linear codes with the weight
enumerator

f(s) = 1 + sb1+b2 + sb1+b3 + sb2+b3 + sb1+b4 + sb2+b4 + sb3+b4 + sb1+b2+b3+b4 ,

where bi’s are any natural numbers satisfying b4 = b1 + b2 + b3.

Proof. We may assume b1 ≤ b2 ≤ b3. Let

P1 =
(

1
0
0

)
, P2 =

(
0
1
0

)
, P3 =

(
0
0
1

)
, P4 =

(
1
1
1

)
.

Let C1 be a code corresponding to the positive 0-cycle
∑4

i=1 biPi. Then we obtain WC1(s) =
f(s) by elementary calculation. Let C2 be a code corresponding to the positive 0-cycle
XC2 =

∑3
j=1 ajPj , where aj ≥ 1 for j = 1, 2, 3. Then

WC2(s) = 1 + sa1 + sa2 + sa3 + sa1+a2 + sa1+a3 + sa2+a3 + sa1+a2+a3 .
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Now, if we let a1 = b1 + b2, a2 = b1 + b3, and a3 = b2 + b3, then it is easy to show
WC1(s) = WC2(s). However, C1 and C2 are not equivalent, since the corresponding 0-cycles
are not projectively equivalent. �

Remark 4.4 Using Theorem 4.3, we can construct various polynomials which are weight
enumerators of two non-equivalent binary linear codes as follows:
Let f(s) be a polynomial appeared in Theorem 4.3 which is the common weight enumerator of
non-equivalent binary linear codes C1 and C2. Let g(s) be the weight enumerator of a binary
linear code C of any dimension. Then f(s)g(s) is the weight enumerator of non-equivalent
binary linear codes C1 ⊕ C and C2 ⊕ C
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