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Abstract. In this paper, we give counterexamples of some questions on generalized
metric spaces. First we show that there exists an open sequence-covering map of a
countable g-second countable space onto the sequential fan Sω. This is a counterex-
ample for a question posed by Y. Tanaka. Second we show that there exists a regular
Fréchet space Y satisfying the following conditions: (1) Y has a point-countable cs-
network and k-network of closed subsets; (2) every first countable closed subset of
Y is countable; (3) Y is not locally separable and does not have any star-countable
k-network. This is a counterexample for questions posed by S. Lin.

1 Introduction We assume that all spaces are regular T1 and all maps are continuous
onto. The letter N is the set of natural numbers. Unexplained notions and terminology are
the same as in [3]. We recall some definitions.

Definition 1.1 Let X be a space. For x ∈ X, let Bx be a family of subsets of X. Then
B =

⋃{Bx : x ∈ X} is called a weak-base for X [1] if it satisfies (1) every element of Bx

contains x, (2) for B0, B1 ∈ Bx, there exists B ∈ Bx such that B ⊂ B0∩B1 and (3) G ⊂ X
is open iff for each x ∈ G there exists B ∈ Bx with B ⊂ G. A space X is called g-first
countable [12] if it has a weak-base B =

⋃{Bx : x ∈ X} such that each Bx is countable. A
space with a countable weak-base is called g-second countable [12].

Obviously both a first countable space and a g-second countable space are g-first count-
able. The sequential fan Sω is the space obtained by identifying the limits of countably
many convergent sequences. A space is first countable iff it is g-first countable and Fréchet
[1]. Hence Sω is not g-first countable.

Definition 1.2 Let f : X → Y be a map. Then f is called sequence-covering [11] if
whenever {yn}n∈ω is a sequence in Y converging to y ∈ Y , there exists a sequence {xn}n∈ω

in X converging to a point x ∈ f−1(y) such that xn ∈ f−1(yn). And f is called 1-sequence-
covering [5] if for each y ∈ Y , there exists a point xy ∈ f−1(y) such that whenever {yn}n∈N

is a sequence in Y converging to a point y ∈ Y , there exists a sequence {xn}n∈N in X
converging to the point xy with xn ∈ f−1(yn).

In [13, Question 2.19(2)], Y. Tanaka posed the following question.

Question 1.3 Let f : X → Y be an open map. If X is g-first countable, then so is Y ?

It is well known that first countability is preserved by an open map. S. Lin pointed out
[7] that, if a sequential space Y is a 1-sequence-covering image of a g-first countable space,
then Y is g-first countable.

2000 Mathematics Subject Classification. Primary 54A20, 54B15, 54C10.
Key words and phrases. weak base; open map; sequence-covering map; g-first countable; Fréchet; point-
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Definition 1.4 Let A be a family of subsets of a set X. A is said to be point-countable
if each point of X is contained in at most countably many elements of A. A is said to be
star-countable if each element of A intersects with at most countably many elements of A.

Definition 1.5 Let P be a family of subsets of a space X. Then P is called a cs-network if
for any sequence {xn}n∈N converging to a point x ∈ X and any neighborhood U of x, there
exist P ∈ P and m ∈ N such that {x, xn : n ≥ m} ⊂ P ⊂ U . P is called a cs∗-network if
for any sequence {xn}n∈N converging to a point x ∈ X and any neighborhood U of x, there
exist P ∈ P and a subsequence {xnj}j∈N of {xn}n∈N such that {x, xnj : j ∈ N} ⊂ P ⊂ U .
P is called a k-network if for any compact set K ⊂ X and an open set U with K ⊂ U , there
exists a finite subfamily P ′ ⊂ P such that K ⊂ ⋃P ′ ⊂ U .

Every cs-network is a cs∗-network.
In the book [6, Question 5.1.20, Question 5.2.10], S. Lin posed the following questions

on a point-countable cover.

Question 1.6 Let X be a regular Fréchet space with a point-countable cs∗-network. Is X
locally separable if each first countable closed subspace of X is locally separable ?

Question 1.7 Let X be a regular Fréchet space with a point-countable k-network. Does
X have a star-countable k-network if each first countable closed subspace of X is locally
separable ?

In this paper, we present counterexamples for these questions posed by Y. Tanaka and
S. Lin.

2 Counterexamples

Example 2.1 We show that there exists an open sequence-covering map ϕ of a countable
g-second countable space X onto the sequential fan Sω. Let B = {Bk}k∈N be a countable
open base of the real line. For each k ∈ N, we can take a subset Ck ⊂ Bk such that |Ck| = ω
and Ck∩Ck′ = ∅ for distinct k, k′ ∈ N. We put Ck = {xk,l}l∈N and C =

⋃
k∈N

Ck. Note that
every non-empty open set of C contains some Ck. For each k, l ∈ N, let Sk,l be a convergent
sequence homeomorphic to the usual convergent sequence S = {0} ∪ {1/n : n ∈ N}. We put

Sk,l = {yk,l} ∪ {yk,l(m,n) : 1 ≤ m ≤ l, n ∈ N},

where yk,l is the limit point of Sk,l.
Consider the topological sum C ⊕ (⊕{Sk,l : k, l ∈ N}). Let X be the space obtained by

identifying xk,l and yk,l for each k, l ∈ N. Note that a subset U of X is open in X iff U ∩C
is open in C and for every xk,l ∈ U , |Sk,l − U | < ω. Obviously X is a countable Hausdorff
space. We observe that X is 0-dimensional. Let U be an open set of X and let xk,l ∈ U .
For a clopen set B of C satisfying xk,l ∈ B ⊂ U ∩ C, the set

V = (B ∪ (
⋃

{Si,j : i, j ∈ N, xi,j ∈ B})) ∩ U

is a clopen set in X such that xk,l ∈ V ⊂ U . Thus X is 0-dimensional, in particular it is
completely regular.

Next we observe that X is g-second countable. For each k, l, j ∈ N, we put

Sj
k,l = {yk,l} ∪ {yk,l(m,n) : 1 ≤ m ≤ l, n ≥ j}.
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Let x ∈ X. If x is an isolated point in X, let Gx = {{x}}. If x = xk,l, let Gx = {(Bj ∩C)∪
Sj

k,l : xk,l ∈ Bj ∈ B}. Then G =
⋃

x∈X Gx is countable and it is not difficult to show that G
is a weak base for X. Thus X is g-second countable.

By the observations above, X is a countable completely regular space which is g-second
countable.

We put Sω = {∞} ∪ {(m, n) : m, n ∈ N}. Each point (m,n) ∈ Sω is isolated. A basic
open neighborhood of ∞ is of the form V (f) = {∞}∪{(m, n) : n ≥ f(m)}, where f : N → N

is a function. We define a map of X onto Sω as follows:

ϕ(x) =
{ ∞ if x = xk,l

(m,n) if x = yk,l(m,n).

Let f : N → N be a function. By the definition of ϕ, |Sk,l − ϕ−1(V (f))| < ω for every
k, l ∈ N. Hence ϕ−1(V (f)) is open in X. Thus ϕ is continuous.

We show that ϕ is an open map. Let U be an open set of X. If U ∩ C = ∅, then ϕ(U)
is obviously open. If U ∩C �= ∅, then there exists k ∈ N such that Ck = {xk,l}l∈N ⊂ U ∩ C.
For each l ∈ N, let

S̃k,l = {xk,l} ∪ {yk,l(l, n) : n ∈ N}.

Then note ϕ(S̃k,l) = {∞} ∪ {(l, n) : n ∈ N}. Hence |S̃k,l − U | < ω for each l ∈ N. This
implies ϕ(U) ⊃ V (f) for some function f . Thus ϕ is open.

Finally we see that ϕ is sequence-covering. Let K ⊂ Sω be a convergent sequence with
the limit ∞. Then there exists l ∈ N such that

K ⊂ {∞} ∪ {(m, n) : m ≤ l, n ∈ N}.
Since Sk,l (k ∈ N) is homeomorphic to {∞} ∪ {(m, n) : m ≤ l, n ∈ N} by the map ϕ, there
exists a convergent sequence K ′ ⊂ Sk,l satisfying ϕ(K ′) = K. Thus ϕ is sequence-covering.

Remark 2.2 Every open map of a first countable space is sequence-covering [11]. But not
every open map of a g-first countable space is sequence-covering [10, Example 3.2]. In [10,
Question 3.3], the author asked whether every open map of a g-metrizable space is sequence-
covering. As an application of Example 2.1, we can see that the question is negative. Every
g-second countable space is g-metrizable. Recall the notations in Example 2.1 and let

X ′ = C ∪ (
⋃

{S̃k,l : k, l ∈ N}) ⊂ X.

Since X ′ is closed in X, it is also g-second countable. Consider the restricted map ϕ′ =
ϕ|X ′ : X ′ → Sω. By the same argument as in Example 2.1, the map ϕ′ is open. Consider
the convergent sequence K = {∞}∪{(m, n) : m = 1, 2, n ∈ N} in Sω. Then it is not difficult
to check that there exists no convergent sequence K ′ in X ′ satisfying ϕ′(K ′) = K. Hence
ϕ′ is not sequence-covering.

Example 2.3 Let P be a Bernstein set of the unit interval I = [0, 1]. In other words, P
is an uncountable set which contains no uncountable closed set of I. Let X be the space
obtained from I by isolating the points of P . Obviously X has a point-countable base. Note
that every open set of X containing X −P is co-countable, hence X is Lindelöf. The space
X was considered in [4, Example 9.4].

Let Y be the quotient space obtained from X by collapsing the set X−P to the one-point
∞. Obviously Y is regular and Fréchet. Let f be the natural map of X onto Y . Since f is
a closed map and X is Lindelöf, f is compact-covering [8]. Let K be a compact subset of
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Y . Take a compact subset K ′ of X with f(K ′) = K. Since K ′ is a compact space with a
point-countable base, it is metrizable [2]. Hence K ′ ∩ P is countable. Therefore a compact
subset of Y is a finite set or a sequence converging to ∞.

Now we observe that Y has a point-countable cs-network of closed subsets. Let B be a
countable base of the unit interval I which is closed under the finite union. Note that every
element of B intersects with I − P . Let

P = {{f (p)} : p ∈ P}
⋃

{f (B) : B ∈ B}.
Obviously P is a point-countable closed family in Y . Let {yn}n∈N be a sequence in Y
converging to ∞ and let U be an open set containing {∞} ∪ {yn}n∈N. Since f is compact-
covering, there exist a sequence {pn}n∈N ⊂ P and a set K ⊂ X −P such that {pn}n∈N ∪K
is compact and f(pn) = yn. Since K is compact, there exist B ∈ B and k ∈ N such that
K∪{pn}n≥k ⊂ B ⊂ f−1(U). Thus {∞}∪{yn}n≥k ⊂ f(B) ⊂ U . Moreover P is a k-network
for Y , because a compact subset of Y is a finite set or a sequence converging to ∞.

Let A be a first countable closed subset of Y . If ∞ /∈ A, then A is countable, because A
is closed. Assume ∞ ∈ A. Since ∞ is a Gδ-point in A, there exists a Gδ-set G in Y such
that G ∩ A = {∞}. Since P is a Bernstein set, Y − G is countable. Hence A is countable.
Thus every first countable closed subset of Y is countable.

Since every neighborhood of ∞ contains uncountably many isolated points, it is not
separable. Hence Y is not locally separable. It is known in [9, Corollary 2.4] that every
k-space with a star-countable k-network is a σ-space, in particular every point is a Gδ-set.
But the point ∞ is not a Gδ-set in Y . Therefore Y has no star-countable k-network.
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