COUNTEREXAMPLES ON GENERALIZED METRIC SPACES

Masami Sakai

Received January 25, 2006; revised April 7, 2006

Abstract

In this paper, we give counterexamples of some questions on generalized metric spaces. First we show that there exists an open sequence-covering map of a countable g-second countable space onto the sequential fan S_{ω}. This is a counterexample for a question posed by Y. Tanaka. Second we show that there exists a regular Fréchet space Y satisfying the following conditions: (1) Y has a point-countable $c s$ network and k-network of closed subsets; (2) every first countable closed subset of Y is countable; (3) Y is not locally separable and does not have any star-countable k-network. This is a counterexample for questions posed by S. Lin.

1 Introduction We assume that all spaces are regular T_{1} and all maps are continuous onto. The letter \mathbb{N} is the set of natural numbers. Unexplained notions and terminology are the same as in [3]. We recall some definitions.

Definition 1.1 Let X be a space. For $x \in X$, let \mathcal{B}_{x} be a family of subsets of X. Then $\mathcal{B}=\bigcup\left\{\mathcal{B}_{x}: x \in X\right\}$ is called a weak-base for X [1] if it satisfies (1) every element of \mathcal{B}_{x} contains x, (2) for $B_{0}, B_{1} \in \mathcal{B}_{x}$, there exists $B \in \mathcal{B}_{x}$ such that $B \subset B_{0} \cap B_{1}$ and (3) $G \subset X$ is open iff for each $x \in G$ there exists $B \in \mathcal{B}_{x}$ with $B \subset G$. A space X is called g-first countable [12] if it has a weak-base $\mathcal{B}=\bigcup\left\{\mathcal{B}_{x}: x \in X\right\}$ such that each \mathcal{B}_{x} is countable. A space with a countable weak-base is called g-second countable [12].

Obviously both a first countable space and a g-second countable space are g-first countable. The sequential fan S_{ω} is the space obtained by identifying the limits of countably many convergent sequences. A space is first countable iff it is g-first countable and Fréchet [1]. Hence S_{ω} is not g-first countable.

Definition 1.2 Let $f: X \rightarrow Y$ be a map. Then f is called sequence-covering [11] if whenever $\left\{y_{n}\right\}_{n \in \omega}$ is a sequence in Y converging to $y \in Y$, there exists a sequence $\left\{x_{n}\right\}_{n \in \omega}$ in X converging to a point $x \in f^{-1}(y)$ such that $x_{n} \in f^{-1}\left(y_{n}\right)$. And f is called 1-sequencecovering [5] if for each $y \in Y$, there exists a point $x_{y} \in f^{-1}(y)$ such that whenever $\left\{y_{n}\right\}_{n \in \mathbb{N}}$ is a sequence in Y converging to a point $y \in Y$, there exists a sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ in X converging to the point x_{y} with $x_{n} \in f^{-1}\left(y_{n}\right)$.

In [13, Question $2.19(2)$], Y. Tanaka posed the following question.
Question 1.3 Let $f: X \rightarrow Y$ be an open map. If X is g-first countable, then so is Y ?
It is well known that first countability is preserved by an open map. S. Lin pointed out [7] that, if a sequential space Y is a 1-sequence-covering image of a g-first countable space, then Y is g-first countable.

[^0]Definition 1.4 Let \mathcal{A} be a family of subsets of a set X. \mathcal{A} is said to be point-countable if each point of X is contained in at most countably many elements of \mathcal{A}. \mathcal{A} is said to be star-countable if each element of \mathcal{A} intersects with at most countably many elements of \mathcal{A}.

Definition 1.5 Let \mathcal{P} be a family of subsets of a space X. Then \mathcal{P} is called a cs-network if for any sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ converging to a point $x \in X$ and any neighborhood U of x, there exist $P \in \mathcal{P}$ and $m \in \mathbb{N}$ such that $\left\{x, x_{n}: n \geq m\right\} \subset P \subset U$. \mathcal{P} is called a cs*-network if for any sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ converging to a point $x \in X$ and any neighborhood U of x, there exist $P \in \mathcal{P}$ and a subsequence $\left\{x_{n_{j}}\right\}_{j \in \mathbb{N}}$ of $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ such that $\left\{x, x_{n_{j}}: j \in \mathbb{N}\right\} \subset P \subset U$. \mathcal{P} is called a k-network if for any compact set $K \subset X$ and an open set U with $K \subset U$, there exists a finite subfamily $\mathcal{P}^{\prime} \subset \mathcal{P}$ such that $K \subset \bigcup \mathcal{P}^{\prime} \subset U$.

Every $c s$-network is a $c s^{*}$-network.
In the book [6, Question 5.1.20, Question 5.2.10], S. Lin posed the following questions on a point-countable cover.

Question 1.6 Let X be a regular Fréchet space with a point-countable cs*-network. Is X locally separable if each first countable closed subspace of X is locally separable?

Question 1.7 Let X be a regular Fréchet space with a point-countable k-network. Does X have a star-countable k-network if each first countable closed subspace of X is locally separable?

In this paper, we present counterexamples for these questions posed by Y. Tanaka and S. Lin.

2 Counterexamples

Example 2.1 We show that there exists an open sequence-covering map φ of a countable g-second countable space X onto the sequential fan S_{ω}. Let $\mathcal{B}=\left\{B_{k}\right\}_{k \in \mathbb{N}}$ be a countable open base of the real line. For each $k \in \mathbb{N}$, we can take a subset $C_{k} \subset B_{k}$ such that $\left|C_{k}\right|=\omega$ and $C_{k} \cap C_{k^{\prime}}=\emptyset$ for distinct $k, k^{\prime} \in \mathbb{N}$. We put $C_{k}=\left\{x_{k, l}\right\}_{l \in \mathbb{N}}$ and $C=\bigcup_{k \in \mathbb{N}} C_{k}$. Note that every non-empty open set of C contains some C_{k}. For each $k, l \in \mathbb{N}$, let $S_{k, l}$ be a convergent sequence homeomorphic to the usual convergent sequence $S=\{0\} \cup\{1 / n: n \in \mathbb{N}\}$. We put

$$
S_{k, l}=\left\{y_{k, l}\right\} \cup\left\{y_{k, l}(m, n): 1 \leq m \leq l, n \in \mathbb{N}\right\}
$$

where $y_{k, l}$ is the limit point of $S_{k, l}$.
Consider the topological sum $C \oplus\left(\oplus\left\{S_{k, l}: k, l \in \mathbb{N}\right\}\right)$. Let X be the space obtained by identifying $x_{k, l}$ and $y_{k, l}$ for each $k, l \in \mathbb{N}$. Note that a subset U of X is open in X iff $U \cap C$ is open in C and for every $x_{k, l} \in U,\left|S_{k, l}-U\right|<\omega$. Obviously X is a countable Hausdorff space. We observe that X is 0-dimensional. Let U be an open set of X and let $x_{k, l} \in U$. For a clopen set B of C satisfying $x_{k, l} \in B \subset U \cap C$, the set

$$
V=\left(B \cup\left(\bigcup\left\{S_{i, j}: i, j \in \mathbb{N}, x_{i, j} \in B\right\}\right)\right) \cap U
$$

is a clopen set in X such that $x_{k, l} \in V \subset U$. Thus X is 0-dimensional, in particular it is completely regular.

Next we observe that X is g-second countable. For each $k, l, j \in \mathbb{N}$, we put

$$
S_{k, l}^{j}=\left\{y_{k, l}\right\} \cup\left\{y_{k, l}(m, n): 1 \leq m \leq l, n \geq j\right\}
$$

Let $x \in X$. If x is an isolated point in X, let $\mathcal{G}_{x}=\{\{x\}\}$. If $x=x_{k, l}$, let $\mathcal{G}_{x}=\left\{\left(B_{j} \cap C\right) \cup\right.$ $\left.S_{k, l}^{j}: x_{k, l} \in B_{j} \in \mathcal{B}\right\}$. Then $\mathcal{G}=\bigcup_{x \in X} \mathcal{G}_{x}$ is countable and it is not difficult to show that \mathcal{G} is a weak base for X. Thus X is g-second countable.

By the observations above, X is a countable completely regular space which is g-second countable.

We put $S_{\omega}=\{\infty\} \cup\{(m, n): m, n \in \mathbb{N}\}$. Each point $(m, n) \in S_{\omega}$ is isolated. A basic open neighborhood of ∞ is of the form $V(f)=\{\infty\} \cup\{(m, n): n \geq f(m)\}$, where $f: \mathbb{N} \rightarrow \mathbb{N}$ is a function. We define a map of X onto S_{ω} as follows:

$$
\varphi(x)=\left\{\begin{array}{cl}
\infty & \text { if } x=x_{k, l} \\
(m, n) & \text { if } x=y_{k, l}(m, n)
\end{array}\right.
$$

Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be a function. By the definition of $\varphi,\left|S_{k, l}-\varphi^{-1}(V(f))\right|<\omega$ for every $k, l \in \mathbb{N}$. Hence $\varphi^{-1}(V(f))$ is open in X. Thus φ is continuous.

We show that φ is an open map. Let U be an open set of X. If $U \cap C=\emptyset$, then $\varphi(U)$ is obviously open. If $U \cap C \neq \emptyset$, then there exists $k \in \mathbb{N}$ such that $C_{k}=\left\{x_{k, l}\right\}_{l \in \mathbb{N}} \subset U \cap C$. For each $l \in \mathbb{N}$, let

$$
\widetilde{S}_{k, l}=\left\{x_{k, l}\right\} \cup\left\{y_{k, l}(l, n): n \in \mathbb{N}\right\}
$$

Then note $\varphi\left(\widetilde{S}_{k, l}\right)=\{\infty\} \cup\{(l, n): n \in \mathbb{N}\}$. Hence $\left|\widetilde{S}_{k, l}-U\right|<\omega$ for each $l \in \mathbb{N}$. This implies $\varphi(U) \supset V(f)$ for some function f. Thus φ is open.

Finally we see that φ is sequence-covering. Let $K \subset S_{\omega}$ be a convergent sequence with the limit ∞. Then there exists $l \in \mathbb{N}$ such that

$$
K \subset\{\infty\} \cup\{(m, n): m \leq l, n \in \mathbb{N}\}
$$

Since $S_{k, l}(k \in \mathbb{N})$ is homeomorphic to $\{\infty\} \cup\{(m, n): m \leq l, n \in \mathbb{N}\}$ by the map φ, there exists a convergent sequence $K^{\prime} \subset S_{k, l}$ satisfying $\varphi\left(K^{\prime}\right)=K$. Thus φ is sequence-covering.

Remark 2.2 Every open map of a first countable space is sequence-covering [11]. But not every open map of a g-first countable space is sequence-covering [10, Example 3.2]. In [10, Question 3.3], the author asked whether every open map of a g-metrizable space is sequencecovering. As an application of Example 2.1, we can see that the question is negative. Every g-second countable space is g-metrizable. Recall the notations in Example 2.1 and let

$$
X^{\prime}=C \cup\left(\bigcup\left\{\widetilde{S}_{k, l}: k, l \in \mathbb{N}\right\}\right) \subset X
$$

Since X^{\prime} is closed in X, it is also g-second countable. Consider the restricted map $\varphi^{\prime}=$ $\varphi \mid X^{\prime}: X^{\prime} \rightarrow S_{\omega}$. By the same argument as in Example 2.1, the map φ^{\prime} is open. Consider the convergent sequence $K=\{\infty\} \cup\{(m, n): m=1,2, n \in \mathbb{N}\}$ in S_{ω}. Then it is not difficult to check that there exists no convergent sequence K^{\prime} in X^{\prime} satisfying $\varphi^{\prime}\left(K^{\prime}\right)=K$. Hence φ^{\prime} is not sequence-covering.

Example 2.3 Let P be a Bernstein set of the unit interval $I=[0,1]$. In other words, P is an uncountable set which contains no uncountable closed set of I. Let X be the space obtained from I by isolating the points of P. Obviously X has a point-countable base. Note that every open set of X containing $X-P$ is co-countable, hence X is Lindelöf. The space X was considered in [4, Example 9.4].

Let Y be the quotient space obtained from X by collapsing the set $X-P$ to the one-point ∞. Obviously Y is regular and Fréchet. Let f be the natural map of X onto Y. Since f is a closed map and X is Lindelöf, f is compact-covering [8]. Let K be a compact subset of
Y. Take a compact subset K^{\prime} of X with $f\left(K^{\prime}\right)=K$. Since K^{\prime} is a compact space with a point-countable base, it is metrizable [2]. Hence $K^{\prime} \cap P$ is countable. Therefore a compact subset of Y is a finite set or a sequence converging to ∞.

Now we observe that Y has a point-countable cs-network of closed subsets. Let \mathcal{B} be a countable base of the unit interval I which is closed under the finite union. Note that every element of \mathcal{B} intersects with $I-P$. Let

$$
\mathcal{P}=\{\{f(p)\}: p \in P\} \bigcup\{f(B): B \in \mathcal{B}\} .
$$

Obviously \mathcal{P} is a point-countable closed family in Y. Let $\left\{y_{n}\right\}_{n \in \mathbb{N}}$ be a sequence in Y converging to ∞ and let U be an open set containing $\{\infty\} \cup\left\{y_{n}\right\}_{n \in \mathbb{N}}$. Since f is compactcovering, there exist a sequence $\left\{p_{n}\right\}_{n \in \mathbb{N}} \subset P$ and a set $K \subset X-P$ such that $\left\{p_{n}\right\}_{n \in \mathbb{N}} \cup K$ is compact and $f\left(p_{n}\right)=y_{n}$. Since K is compact, there exist $B \in \mathcal{B}$ and $k \in \mathbb{N}$ such that $K \cup\left\{p_{n}\right\}_{n \geq k} \subset B \subset f^{-1}(U)$. Thus $\{\infty\} \cup\left\{y_{n}\right\}_{n \geq k} \subset f(B) \subset U$. Moreover \mathcal{P} is a k-network for Y, because a compact subset of Y is a finite set or a sequence converging to ∞.

Let A be a first countable closed subset of Y. If $\infty \notin A$, then A is countable, because A is closed. Assume $\infty \in A$. Since ∞ is a G_{δ}-point in A, there exists a G_{δ}-set G in Y such that $G \cap A=\{\infty\}$. Since P is a Bernstein set, $Y-G$ is countable. Hence A is countable. Thus every first countable closed subset of Y is countable.

Since every neighborhood of ∞ contains uncountably many isolated points, it is not separable. Hence Y is not locally separable. It is known in [9, Corollary 2.4] that every k-space with a star-countable k-network is a σ-space, in particular every point is a G_{δ}-set. But the point ∞ is not a G_{δ}-set in Y. Therefore Y has no star-countable k-network.

Acknowledgement: The author would like to thank Shou Lin for informing the author of the questions. The author would like to also thank the referee for careful reading of the paper.

References

[1] A. V. Arhangel'skii, Mappings and spaces, Russian Math. Surveys 21(1966), 115-162.
[2] D. Burke, E. Michael, On certain point-countable covers, Pacific J. Math. 64(1976), 79-92.
[3] R. Engelking, General Topology, Helderman Verlag Berlin, 1989.
[4] G. Gruenhage, E. Michael, Y. Tanaka, Spaces determined by point-countable covers, Pacific J. Math. 113(1984), 303-332.
[5] S. Lin, Sequence-covering s-mappings, Adv. Math.(China) 25(1996), 548-551.
[6] S. Lin, Point-countable coverings and sequence-covering mappings, (Chinese) China Science Press, 2002.
[7] S. Lin, personal communication.
[8] E. Michael, A note on closed maps and compact sets, Israel J. Math. 2(1964), 173-176.
[9] M. Sakai, On spaces with a star-countable k-network, Houston J. Math. 23(1997), 45-56.
[10] M. Sakai, Weak-open maps and sequence-covering maps, submitted.
[11] F. Siwiec, Sequence-covering and countably bi-quotient mappings, General Topology Appl. 1(1971), 143-154.
[12] F. Siwiec, On defining a space by a weak base, Pacific J. Math. 52(1974), 233-245.
[13] Y. Tanaka, Closed maps and symmetric spaces, Questions \& Answers in Gen. Topology 11(1993), 215-233.

Department of Mathematics, Kanagawa University, Yokohama 221-8686, Japan
E-mail : sakaim01@kanagawa-u.ac.jp

[^0]: 2000 Mathematics Subject Classification. Primary 54A20, 54B15, 54C10.
 Key words and phrases. weak base; open map; sequence-covering map; g-first countable; Fréchet; pointcountable; star-countable; cs-network; cs*-network; k-network.

