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Abstract. We give exact formulae for tangent cones and regular normal cones to
feasible sets. We impose geometrical derivability on the sets used in constraint systems,
which is weaker than Clarke regularity. Necessary optimality conditions with regular
normal vectors can be stronger than those with general normal vectors. An example
of the situation is given.

1 Introduction For constrained optimization problems, tangent and normal vectors to
feasible sets play a crucial role to obtain necessary optimality conditions. Let us consider
the following problem: minimize f(x) subject to x ∈ D0, where D0 = {x ∈ X : F (x) = 0},
X , Y are Banach spaces and F : X → Y is a continuously Fréchet differentiable mapping.

Liusternik [14] showed that if x̄ is a local minimum and the regularity condition that
∇F (x̄) is surjective is satisfied, a multiplier rule holds; there exists y∗ ∈ Y ∗ such that
∇f(x̄) = ∇F (x̄)∗y∗, where ∇F (x̄)∗ is the adjoint operator of ∇F (x̄). This is a consequence
from the fact that (i) ∇f(x̄)u ≥ 0 for all tangent vectors u to D0 at x̄ (∇f(x̄) is orthogonal
to them in this case) and (ii) the whole of tangent vectors coincides with the kernel of
∇F (x̄). For a set C ⊂ X , a vector u ∈ X is said to be tangent to C at x̄ ∈ C if there exist
tn → +0 and cn ∈ C such that u = limn→∞ t−1

n (cn − x̄). The set TC(x̄) of all such vectors
forms a cone which is called the tangent cone to C at x̄. In the above case, TD0(x̄) happens
to be a subspace. Generally, representations of tangent vectors to feasible sets depend on
their structures.

We often encounter more complicated constraint systems, like ones with inequality con-
straints. Such systems can be written in the form D = {x ∈ A : F (x) ∈ B}, where A ⊂ X
and B ⊂ Y are closed sets [8], [12]. For x̄ ∈ D, we can represent a subset of TD(x̄) explicitly
if some regularity condition on a set-valued mapping associated with D is satisfied. It is
called metric regularity and corresponds to a stability property of the constraint system
under perturbations on the set B; see e.g. [7]. Metric regularity has its root in the Banach
open mapping theorem as Liusternik’s theorem does, and is equivalent to the Robinson’s
condition, 0 ∈ core[F (x̄)−∇F (x̄)(A− x̄)−B], which is also equivalent to the Mangasarian-
Fromovitz constraint qualification in certain cases [17], [1], [4].

We obtain a necessary condition for optimization problems on this set D by the fact
(i) and a representation of tangent vectors. More precisely we give a description of TD(x̄),
more information we have on local minima. So, full descriptions of TD(x̄) are desired and
have been obtained imposing some condition on the set A and B, which is called the Clarke
regularity and is automatically satisfied by convex sets [1]. However we can easily find sets
which are not Clarke regular as seen below.

In this paper, we obtain a full description of TD(x̄) under a milder assumption, geo-
metrical derivability of sets, instead of the Clarke regularity. There, we do not assume
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even differentiability of constraint operators. In addition, we give a sufficient condition for
metric regularity of a set-valued mapping associated with such nonsmooth constraints by
using tangent cones to A and B.

By the full description of tangent cones, we characterize the set of regular normal vectors
to D in the case that the spaces are finite dimensional and A, B are geometrically derivable.
It is smaller than the set of normal vectors in general sense if D is not Clarke regular.
Necessary optimality conditions with regular normal vectors are given, which can be stronger
than those with general normal vectors. We give an example of this situation.

2 Preliminaries Let X , Y be real Banach spaces, BX and BY the closed unit balls in
X and Y , respectively, C a closed subset of X and x̄ a point in it. In the following we use
t ↘ 0 and x

C→ x̄ to mean that t converges to 0 with t > 0 and x converges to x̄ with x ∈ C,
respectively. For a mapping S from X into 2Y , we define two kinds of limits by

y ∈ lim sup
x→x̄

S(x) ⇔ there exist xn → x̄, yn → y with yn ∈ S(xn);

y ∈ lim inf
x→x̄

S(x) ⇔ for all xn → x̄, there exists yn → y with yn ∈ S(xn).

Considering S(t) = t−1(C − x̄), we can see the tangent cone TC(x̄) to C at x̄ given in
the introduction is written by

TC(x̄) = lim sup
t↘0

C − x̄

t
.

We also define the derivable cone by

T̃C(x̄) = lim inf
t↘0

C − x̄

t
.

Similarly considering S(t, x) = t−1(C − x), the regular tangent cone is defined by

T̂C(x̄) = lim inf
t↘0

x
C→x̄

C − x

t
.

For detailed discussion on the definition, we refer the reader to [20]. We observe by the
definition that

T̂C(x̄) ⊂ T̃C(x̄) ⊂ TC(x̄).

We say C is geometrically derivable at x̄, when T̃C(x̄) = TC(x̄) and C is Clarke regular
(regular) at x̄, when T̂C(x̄) = TC(x̄). Obviously if C is regular at x̄, C is geometrically
derivable there. In addition every convex set is regular at all its points [2].

Note geometrical derivability is properly weaker than regularity. Consider X = R3 and
C = {(x, y, z) : x ≤ 0,−1 ≤ y ≤ 1, z = 0} ∪ {(x, y, z) : x ≥ 0,−1 ≤ y ≤ 1, z ≤ 0}. Then
each cone at ū = (0, 0, 0) is as follows:

TC(ū) = T̃C(ū) = {(x, y, z) : x ≤ 0, z = 0} ∪ {(x, y, z) : x ≥ 0, z ≤ 0};
T̂C(ū) = {(x, y, z) : z = 0}.

Since T̂C(x̄) 
= TC(x̄), this set is not regular but geometrically derivable at ū.
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We now define generalized derivatives of extended real valued functions. For a lower
semicontinuous function f : X → R̄ := [−∞,∞] and a point x̄ with −∞ < f(x̄) < ∞ , the
subderivative df(x̄) : X → R̄ is defined by

df(x̄)(w̄) = lim inf
τ↘0
w→w̄

f(x̄ + τw) − f(x̄)
τ

and the regular subderivative is

d̂f(x̄)(w̄) = lim
δ↘0

⎛⎜⎝lim sup
x

f→x̄
τ↘0

[
inf

‖w−w̄‖≤δ

f(x + τw) − f(x)
τ

]⎞⎟⎠ .

They have the following geometrical descriptions:

epi df(x̄) = Tepi f (x̄, f(x̄)),

epi d̂f(x̄) = T̂epi f (x̄, f(x̄)).

Detailed discussion is given in [18], [20].
We can define derivatives of set-valued mappings; see e.g. [20] . For a mapping S from

X into 2Y and (x̄, ȳ) ∈ gph S, the derivative DS(x̄|ȳ) of S at x̄ for ȳ is a mapping from X
into 2Y defined by

DS(x̄|ȳ)(w) = {v ∈ Y : (w, v) ∈ Tgph S(x̄, ȳ)},

the proto-derivative D̃S(x̄|ȳ) is

D̃S(x̄|ȳ)(w) = {v ∈ Y : (w, v) ∈ T̃gph S(x̄, ȳ)}

and the regular derivative D̂S(x̄|ȳ) is

D̂S(x̄|ȳ)(w) = {v ∈ Y : (w, v) ∈ T̂gph S(x̄, ȳ)}.
The proto-derivative was defined in [19]. If the proto-derivative coincides with the derivative
for all w ∈ X , we say S is proto-differentiable at x̄ for ȳ. When S is single-valued, we use
DS(x̄) for DS(x̄|S(x̄)). Other derivatives have the same notation.

In particular a function is proto-differentiable at x̄ and the derivative is single-valued if
that is locally Lipschitz and directionally differentiable at x̄;

lim
t↘0

F (x̄ + tw) − F (x̄)
t

= dF (x̄)(w)

exists for all w in X . Here we do not assume linearity of dF (x̄).

3 Tangent vectors to feasible sets We investigate the description of tangent cones to
feasible sets with operator constraint systems.

As explained in the introduction, Liusternik showed that in infinite dimensional spaces,
the tangent cone to a level set of an operator is equal to the kernel of the derivative at the
point if the derivative is surjective [14]. This is proved by using the Banach open mapping
theorem and an iterative procedure [6], [7], [21].

The Banach open mapping theorem guarantees that the following assertions are equiv-
alent for a bounded linear operator L from X into Y :
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(1) L is surjective;

(2) there exists k > 0 such that

d(x,L−1(y)) ≤ kd(y, Lx),

for any (x, y) ∈ X × Y ;

(3) there exists k > 0 such that

BY ⊂ L(kBX).

Their essential properties have been understood in many ways. In our discussion, metric
regularity is the key property. Here we also present an equivalent property which is a version
of open mapping theorems by Graves; see e.g. [6], [7], [20].

Definition. Let S be a mapping from X into 2Y and (x̄, ȳ) ∈ gph S.

(1) S is said to be metrically regular at x̄ for ȳ with constant k if there exists k > 0 such
that

d(x, S−1(y)) ≤ kd(y, S(x)),

for (x, y) close to (x̄, ȳ). The infimum of such k is called the rate of metric regularity
and denoted by reg S(x̄|ȳ);

(2) S is said to be linearly open at x̄ for ȳ with a rate k if there exist k > 0 and a
neighborhood O of ȳ such that

[S(x) + int tBY ] ∩ O ⊂ S(x + int ktBX),

for x close to x̄ and any t > 0.

The infimum of k in each definition is equal.

Note reg S(x̄|ȳ) is finite if and only if S is metrically regular at x̄ for ȳ. Suppose S is
single-valued. Then the first property means that the distance between x0 and the solution
set to S(x) = y0 can be estimated by looking at the gap between S(x0) and y0. Moreover the
rate is uniform around (x̄, ȳ). With the second, we can find a solution to S(x) = y0 whenever
y0 lies near ȳ and the solutions stay in a ball centered at x0 with radius proportional to the
distance between y0 and S(x0). Similarly the rate is uniform.

By using these properties, the Liusternik-Graves theorem can be stated as follows:

Theorem 1 ([6]). Let F be a mapping from X into Y which is strictly differentiable at
x̄ ∈ X with the derivative ∇F (x̄). Then

reg F (x̄|F (x̄)) = reg∇F (x̄)(0|0).

Thus F is metrically regular at x̄ for F (x̄) if and only if DF (x̄) is surjective.

If the derivative is surjective at x̄, then reg F (x̄|F (x̄)) is finite, by the Banach open
mapping theorem and the theorem above. In this case metrical regularity of F is assured
and plays the role of an inverse function theorem. Linear openness, an equivalent property,
represents an open mapping theorem for nonlinear mappings. In addition the surjectivity
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of the derivative is a minimum requirement for them. For detailed discussion we refer the
reader to [5], [6], [7], [15], [20].

Let F be an operator from X into Y and A ⊂ X , B ⊂ Y closed sets. We consider the
following mathematical programming:

minimize f(x) subject to x ∈ D,

where

D = {x ∈ A : F (x) ∈ B}.(1)

We construct a set-valued mapping S to study properties of D by

S(x) =

{
F (x) − B, x ∈ A,

∅, x /∈ A.
(2)

Then D = S−1(0). If 0 ∈ S(x̄) and S is metrically regular at x̄ for 0, there exists k > 0
such that

d(x, S−1(u)) ≤ kd(F (x), B + u),

whenever x ∈ A and (x, u) close to (x̄, 0).
Several sufficient conditions for this property have been obtained. If S is strictly differ-

entiable and A, B are convex, the constraint qualification by Robinson [17] is a necessary
and sufficient condition.

Theorem 2 ([4], [17]). Suppose F is a strictly differentiable mapping at x̄ ∈ D with the
derivative ∇F (x̄), where A, B are closed convex sets and D, S are defined in (1), (2). Then
0 ∈ core[∇F (x̄)(A − x̄) − (B − F (x̄))] if and only if S is metrically regular at x̄ for 0.

The condition above is reduced to the surjectivity of ∇F (x̄), if A = X and B = {F (x̄)}.
In this section, we assume F is locally Lipschitz. If X is reflexive and B is epi-Lipschitzian,
Jourani and Thibault [11] gave a sufficient condition using Fréchet subdifferentials. Other
sufficient conditions are investigated, for example in [1], [6], [7], [9], [15].

Here we give a sufficient condition with regular tangent cones. The proof uses Theorem
2.3. in [11] and in this paper, Fréchet subdifferentials in infinite dimensional spaces appear
only here and their constructions need a lot of discussions. So, we refer the reader to [11],
[16] for the definition and give only a simple proof. We mention that reflexivity of the spaces
is necessary to ensure that some calculus rules of Fréchet subdifferentials hold. For a set
D ⊂ X and x̄ ∈ D, we say D is epi-Lipschitz at x̄ if there exist u ∈ X and δ > 0 such that

D ∩ (x̄ + δBX) + t(u + δBX) ⊂ D

for all t ∈ (0, δ); see [20]. The polar C◦ to a cone C ⊂ X is a weak∗ closed convex cone in
X∗ defined by x∗ ∈ C◦ ⇔ 〈x∗, c〉 ≤ 0 for all c ∈ C.

Proposition 3. Let A ⊂ X, B ⊂ Y be closed sets, D, S defined in (1), (2) and x̄ ∈ D.
Suppose X, Y are reflexive, F is locally Lipschitz around x̄, B is epi-Lipschitz at F (x̄).
Then the condition that

D̂F (x̄)T̂A(x̄) − T̂B(F (x̄)) = Y

is sufficient for metric regularity of S at x̄ for 0.
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Proof. We are to show if y∗ ∈ ∂d(F (x̄), B) and 0 ∈ D∗F (x̄)(y∗) + K∂d(x̄, A), we have
y∗ = 0. Here ∂ means the Fréchet subdifferential and D∗ means the coderivative generated
by the Fréchet normal cone and K is a Lipschitz constant of F around x̄. Now for all
y ∈ Y , there exist w ∈ T̂A(x̄), b ∈ T̂B(F (x̄)) and v ∈ D̂F (x̄)(w) such that y = v− b. By the
definition of the derivative, this means (w, y + b) ∈ T̂gph F (x̄, F (x̄)). Let y∗ ∈ ∂d(F (x̄), B)
with 0 ∈ D∗F (x̄)(y∗)+K∂d(x̄, A). Since ∂d(F (x̄), B) ⊂ T̂B(F (x̄))◦ and ∂d(x̄, A) ⊂ T̂A(x̄)◦,
we have y∗ ∈ T̂B(F (x̄))◦ and 0 ∈ D∗F (x̄)(y∗)+x∗ for some x∗ ∈ T̂A(x̄)◦. Hence this implies
(−x∗,−y∗) ∈ T̂gph F ((x̄, F (x̄)))◦. Thus we have

0 ≤ 〈(x∗, y∗), (w, y + b)〉 = 〈x∗, w〉 + 〈y∗, y〉 + 〈y∗, b〉 ≤ 〈y∗, y〉.

Since y is arbitrary, we have y∗ = 0 and conclude S is metrically regular at x̄ for 0.

Liusternik used an inverse function theorem under surjectivity condition and derived a
formula for tangent cones to feasible sets with equality constraints and then obtained a
multiplier rule from polar relations. For more complicated sets, Borwein [1] obtained the
following full description of tangent cones:

Theorem 4 ([1]). Let A ⊂ X and B ⊂ Y closed sets and D, S defined in (1), (2) and
x̄ ∈ D. Suppose F is strictly differentiable at x̄ and S is metrically regular at x̄ for 0 and
A, B are Clarke regular at x̄ and F (x̄) respectively. Then D is Clarke regular at x̄ and

TD(x̄) = {w ∈ TA(x̄) : ∇F (x̄)w ∈ TB(F (x̄))}.

We now give a full description of tangent cones with geometrical derivability, which is
weaker than Clarke regularity. The proof is based on the argument in [1].

Theorem 5. Let A, B be closed sets and D, S be defined in (1), (2). Suppose F is locally
Lipschitz continuous at x̄ ∈ D. Then

TD(x̄) ⊂ {w ∈ TA(x̄) : D̃F (x̄)(w) ⊂ TB(F (x̄))}.

If S is metrically regular at x̄ for 0,

TD(x̄) ⊃ {w ∈ T̃A(x̄) : DF (x̄)(w) ⊂ T̃B(F (x̄))}.

Moreover if A and B are geometrically derivable at x̄ and F (x̄) respectively and F is proto-
differentiable at x̄, then D is geometrically derivable at x̄ and

TD(x̄) = {w ∈ TA(x̄) : DF (x̄)(w) ⊂ TB(F (x̄))}.

Proof. We show the first inclusion. Let w ∈ TD(x̄). We can find tn ↘ 0 and {cn} ⊂ D such
that t−1

n (cn − x̄) → w. Since cn also belongs to A, we have w ∈ TA(x̄). Let v ∈ D̃F (x̄)(w).
Then for above {tn} there exists {un} ⊂ X such that

(un, F (un)) − (x̄, F (x̄))
tn

→ (w, v).

Here we obtain

cn − un

tn
=

cn − x̄

tn
+

x̄ − un

tn
→ w − w = 0.
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Let l be a Lipschitz constant of F around x̄. Since cn and un converge to x̄,

‖F (cn) − F (x̄)
tn

− v‖ ≤ ‖F (cn) − F (un)
tn

‖ + ‖F (un) − F (x̄)
tn

− v‖

≤ l · ‖cn − un‖
tn

+ ‖F (un) − F (x̄)
tn

− v‖ → 0.

Since F (cn) ∈ B, this means v ∈ TB(F (x̄)).
Next we assume S is metrically regular at x̄ for 0. Let w satisfy that w ∈ T̃A(x̄) and

DF (x̄)(w) ⊂ T̃B(F (x̄)). For v ∈ DF (x̄)(w), the definition ensures the existence of tn ↘ 0
and {un} ⊂ X such that

(un, F (un)) − (x̄, F (x̄))
tn

→ (w, v).

Since w ∈ T̃A(x̄), there exists {an} ⊂ A such that t−1
n (an − x̄) → w. Here we have

t−1
n (un − an) → 0. In addition, since v ∈ T̃B(F (x̄)), there exists {bn} ⊂ B such that

t−1
n (bn − F (x̄)) → v, and hence t−1

n (bn − F (un)) → 0. Metric regularity of S implies that
for some k > 0 and a Lipschitz constant l of F ,

d(an, S−1(0)) ≤ kd(F (an), B) ≤ k‖F (an) − bn‖
≤ k‖F (an) − F (un)‖ + k‖F (un) − bn‖
< k(l + 1)‖an − un‖ + k‖F (un) − bn‖.

Thus we obtain {cn} ⊂ D such that

‖an − cn‖
tn

‖ < k(l + 1) · ‖an − un‖
tn

+ k · ‖F (un) − bn‖
tn

→ 0.

Therefore we have
cn − x̄

tn
=

cn − an

tn
+

an − x̄

tn
→ 0 + w.

This means w ∈ TD(x̄).
The equality is obvious. The geometrical derivability of D is shown in the same way as

the second inclusion.

Corollary 6. Let A, B be closed convex sets and D, S be defined in (1), (2). Suppose F
is locally Lipschitz continuous and directionally differentiable at x̄ ∈ D. If S is metrically
regular at x̄ for 0, then

TD(x̄) = {w ∈ TA(x̄) : dF (x̄)(w) ∈ TB(F (x̄))}.
Note that we have shown tangent relations for a nonsmooth operator. In [1], it is assumed
that F is strictly differentiable but A and B are merely closed. In addition the equality
relations are found in [4] if A, B are convex and F is strictly differentiable.

We now present a necessary condition for optimization problems with operator con-
straints. If a function f is locally Lipschitz, the regular derivatives are equal to Clarke
generalized derivatives [18]. Here we give a direct proof for a necessary condition using
regular derivatives for abstract constraint problems. We define the indicator function IC of
a set C by

IC(x) =

{
0, x ∈ C,

∞, x /∈ C.
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Proposition 7. Let C be a closed set in X, g be a locally Lipschitz function from X into
R. Suppose x̄ is a local minimum of g on C. Then

d̂g(x̄)(w) ≥ 0

for all w ∈ TC(x̄).

Proof. Let f = g + IC . Then f(x̄) is finite and we have df(x̄)(w) ≥ 0 for all w ∈ X , by
the analytical description of the subderivative. It is sufficient to show df(x̄)(w) ≤ d̂g(x̄)(w)
whenever w ∈ TC(x̄). This is equivalent to the assertion that if w ∈ TC(x̄),

(w, d̂g(x̄)(w)) ∈ epi df(x̄) = lim sup
t↘0

epi f − (x̄, f(x̄))
t

.

Since w ∈ TC(x̄), there exist tn ↘ 0 and {cn} ⊂ C such that t−1
n (cn − x̄) → w. For this tn,

there exists {(xn, αn)} ⊂ epi g such that

(xn, αn) − (x̄, g(x̄))
tn

→ (w, d̂g(x̄)(w)).

It is implied that cn → x̄ and xn → x̄. For these sequences, we have

cn − xn

tn
=

cn − x̄

tn
+

x̄ − xn

tn
→ w − w = 0.

Let l be a Lipschitz constant around x̄, then

g(cn) − αn ≤ g(cn) − g(xn) ≤ l‖cn − xn‖,

and hence g(cn) ≤ αn + l‖cn − xn‖. Let βn be the right hand side of the above inequality.
Since cn ∈ C, it follows that (cn, βn) ∈ epi f . In addition we have

βn − g(x̄)
tn

=
αn − g(x̄)

tn
+ l · ‖cn − xn‖

tn
→ d̂g(x̄)(w).

Therefore

(xn, βn) − (x̄, f(x̄))
tn

=
(xn, βn) − (x̄, g(x̄))

tn
→ (w, d̂g(x̄)(w)).

Corollary 8. Let A ⊂ X, B ⊂ Y be closed sets and D, S defined in (1) and (2). Suppose
f is a locally Lipschitz function from X into R, F is locally Lipschitz at x̄ ∈ D and S is
metrically regular at x̄ for 0. If x̄ is a local optimal for the following minimization problem:

minimize f(x) subject to x ∈ D.

Then

d̂f(x̄)(w) ≥ 0,

for all w ∈ T̃A(x̄) ∩ DF (x̄)−1T̃B(F (x̄)).
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4 Normal vectors to feasible sets In this section, we assume X and Y are Euclidean
spaces. For constructions of normal cones in infinite dimensional spaces, we refer the reader
to [7], [16]. Our notation follows [20].

Let C be a closed subset of X and x̄ ∈ C. The regular normal cone N̂C(x̄) to C at x̄ is

N̂C(x̄) =

⎧⎪⎨⎪⎩x∗ ∈ X : lim sup
x

C→x̄
x�=x̄

〈x∗, x − x̄〉
‖x − x̄‖ ≤ 0

⎫⎪⎬⎪⎭ .

The normal cone NC(x̄) to C at x̄ is defined by

NC(x̄) = lim sup
x

C→x̄

N̂C(x) = {x∗ ∈ X : ∃xk
C→ x̄, x∗

k → x∗ with x∗
k ∈ N̂C(xk)}.

These objects have nice relationships with tangent cones:

T̂C(x̄) = NC(x̄)◦, N̂C(x̄) = TC(x̄)◦.

In finite dimensional cases, it is known that ∇F (x̄)T̂A(x̄) − T̂B(F (x̄)) = Y is sufficient
for metric regularity of S defined in (2) if F is strictly differentiable mapping and A, B are
closed. Note that we do not need the epi-Lipschitz property of B here. For any set C, we
denote the closure of the convex hull of C by conv C.

Theorem 9. Let A ⊂ X, B ⊂ Y be closed sets and D defined in (1) and x̄ ∈ D. Suppose
A, B are geometrically derivable at x̄ and F (x̄) respectively, F is strictly differentiable at
x̄, ∇F (x̄)T̂A(x̄) − T̂B(F (x̄)) = Y and the condition conv[TA(x̄) ∩ ∇F (x̄)−1TB(F (x̄))] =
conv TA(x̄) ∩∇F (x̄)−1 conv TB(F (x̄)) holds. Then

N̂D(x̄) = {∇F (x̄)∗y∗ + z∗ : y∗ ∈ N̂B(F (x̄)), z∗ ∈ N̂A(x̄)}.
Proof. By Theorem 5, we have TD(x̄) = TA(x̄) ∩ ∇F (x̄)−1TB(F (x̄)). We know N̂D(x̄) =
TD(x̄)◦ = (conv TD(x̄))◦. N̂D(x̄) = (conv TA(x̄)∩∇F (x̄)−1 conv TB(F (x̄)))◦ = ∇F (x̄)∗ (conv TB(F (x̄)))◦+
(conv TA(x̄))◦. This gives the result.

The following corollary is exact sum rules for tangent and regular normal cones, which have
been given in the case that the sets are assumed to be Clarke regular; see e.g. [20] .

Corollary 10. Let C = C1 ∩ C2 for closed sets C1, C2 ⊂ X and x̄ ∈ C. Suppose C1, C2

are geometrically derivable at x̄ and T̂C1(x̄) − T̂C2(x̄) = X. Then we have

TC(x̄) = TC1(x̄) ∩ TC2(x̄),

moreover if conv[TC1(x̄) ∩ TC2(x̄)] = conv TC1(x̄) ∩ conv TC2(x̄),

N̂C(x̄) = N̂C1(x̄) + N̂C2(x̄).

Proof. We obtain the results immediately by substituting F in Theorem 5 and Theorem 9
with the identity mapping.

Remark. Let X = R2, C1 = {(x, y) : x ≥ 0, 0 ≤ y ≤ x}, C2 = {(x, y) : x ≥ 0, 1/4x ≤
y ≤ 1/2x} ∪ {(x, y) : x ≤ 0, y = 1/2x} and ū = (0, 0). Then T̂C1(ū) = C1, T̂C2(ū) =
{(x, y) : x ≥ 0, y = 1/2x}, and hence T̂C1(ū) − T̂C2(ū) = R2 but the condition on the
convex hulls is not satisfied. Now we have N̂C1(ū) = {(x, y) : x ≤ 0, y ≤ −x}, N̂C2(ū) =
{(x, y) : x ≤ 0, y = −2x} and N̂C1∩C2(ū) = {(x, y) : y + 4x ≤ 0, y + 2x ≤ 0}. However
N̂C1∩C2(ū) � N̂C1(ū) + N̂C2(ū).
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Corollary 11. Let A ⊂ X, B ⊂ Y be closed sets and D, defined in (1) and x̄ ∈ D. Suppose
f is a function from X into R which is strictly differentiable at x̄, A, B are geometrically
derivable at x̄ and F (x̄) respectively and F is strictly differentiable at x̄. If x̄ is a local
optimal for the following minimization problem:

minimize f(x) subject to x ∈ D

and ∇F (x̄)T̂A(x̄) − T̂B(F (x̄)) = Y and conv[TA(x̄) ∪ ∇F (x̄)−1TB(x̄)] = conv TA(x̄) ∪
∇F (x̄)−1 conv TB(F (x̄)), we have

−∇F (x̄) ∈ {∇F (x̄)∗y∗ + z∗ : y∗ ∈ N̂B(F (x̄)), z∗ ∈ N̂A(x̄)}.
General normal cones are often used to obtain necessary optimality conditions. However

regular normal vectors can give us more precise information on local minima. For example,
we consider the following minimization problem:

minimize f(x, y, z) = x4 − 2x2 + x + z

subject to F (x, y, z) = (y, z(x + z)) ∈ [−1, 1] × {0};
(x, y, z) ∈ {(x, y, z) : −1

2
≤ x ≤ 0, z = 0}

∪ {(x, y, z) : x ≥ 0, z ≤ 0}.
The feasible set D is equal to {(x, y, z) : x ≥ 0,−1 ≤ y ≤ 1, z = −x} ∪ {(x, y, z) : x ≥
−1/2,−1 ≤ y ≤ 1, z = 0}. Now we have ∇f(x, y, z) = (4x3 − 4x + 1, 2y, 1) and

ND(0, 0, 0) = {t(0, 0, 1) : t ∈ R} ∪ {t(1, 0, 1) : t ∈ R};
N̂D(0, 0, 0) = {t(0, 0, 1) : t ≥ 0}.

Then it can be seen that

−∇f(0, 0, 0) = (−1, 0,−1) ∈ ND(0, 0, 0).

However −∇f(0, 0, 0) /∈ N̂D(0, 0, 0) and thus (0, 0, 0) is not a local minimum.
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