KADISON'S SCHWARZ INEQUALITY AND FURUTA'S THEOREM

Masatoshi Fujii, Masahiro Nakamura and Yuki Seo*

Received March 16, 2006

Abstract. We make an interpretation of n-terms arithmetic-harmonic mean inequality via Kadison's Schwarz inequality. It is inspired by a skillful proof of it due to T.Furuta. Certain allied topics are also discussed.

1. Introduction. The arithmetic-harmonic mean inequality says that

$$
\begin{equation*}
\frac{1}{n} \sum_{i=1}^{n} A_{i} \geq\left(\frac{1}{n} \sum_{i=1}^{n} A_{i}^{-1}\right)^{-1} \tag{1}
\end{equation*}
$$

holds for positive operators $A_{1}, \cdots, A_{n}>0$, i.e Recently, Furuta [3] showed one-line proof of the harmonic-arithmetic operator mean inequality with weight $\lambda=\left(\lambda_{i}\right)$:

Theorem 1. Let A_{i} be positive invertible operators on a Hilbert space H for $i=1,2, \cdots, n$ and let $\lambda=\left(\lambda_{i}\right)$ be a weight, i.e., $\lambda_{i}>0$ and $\sum_{i=1}^{n} \lambda_{i}=1$. Then

$$
\begin{equation*}
A=\sum_{i=1}^{n} \lambda_{i} A_{i} \geq H=\left(\sum_{i=1}^{n} \lambda_{i} A_{i}^{-1}\right)^{-1} \geq 0 \tag{2}
\end{equation*}
$$

As a matter of fact, he proposed the following beautiful equality:

$$
\begin{equation*}
A-H=\sum_{i=1}^{n}\left(1-H A_{i}^{-1}\right) \lambda_{i} A_{i}\left(1-A_{i}^{-1} H\right) \tag{3}
\end{equation*}
$$

Moreover, based on this, he gave a short proof of the following reverse inequality

$$
\begin{equation*}
\frac{(M+m)^{2}}{4 M m}\left(\sum_{i=1}^{n} \lambda_{i} A_{i}^{-1}\right)^{-1} \geq \sum_{i=1}^{n} \lambda_{i} A_{i} \tag{4}
\end{equation*}
$$

if $0<m \leq A_{i} \leq M$ for $i=1,2, \cdots, n$
On the other hand, Izumino privately informed us that the Anderson-Morley-Trapp formula

$$
\frac{A+B}{2}-\left(\frac{A^{-1}+B^{-1}}{2}\right)^{-1}=\frac{1}{2}(A-B)(A+B)^{-1}(A-B)
$$

is available to a proof of (1) in the case of $n=2$.
By the way, Bhagwat and Subramanian [1] presented a proof of (1). So we follow them to prove the weighted version (2) of (1): Put $A=\sum_{i=1}^{n} \lambda_{i} A_{i}$ and $H=\left(\sum_{i=1}^{n} \lambda_{i} A_{i}^{-1}\right)^{-1}$ and moreover

$$
S_{i}=\left(H^{-1}-A_{i}^{-1}\right)\left(\lambda_{i} A_{i}\right)\left(H^{-1}-A_{i}^{-1}\right) \text { for } i=1, \cdots, n
$$

2000 Mathematics Subject Classification. 47A63, 47A64 and 47B15.
Key words and phrases. Kadison's Schwarz inequality, Kantorovich inequality, noncommutative Kantorovich inequality and operator geometric mean.

Then $R=\sum S_{i} \geq 0$ and so

$$
A-H=H R H \geq 0
$$

Incidentally, we note that it connects with (3). Actually, we have

$$
\begin{aligned}
A-H & =H R H=\sum_{i=1}^{n} H S_{i} H \\
& =\sum_{i=1}^{n} H\left(H^{-1}-A_{i}^{-1}\right)\left(\lambda_{i} A_{i}\right)\left(H^{-1}-A_{i}^{-1}\right) H \\
& =\sum_{i=1}^{n}\left(1-H A_{i}^{-1}\right) \lambda_{i} A_{i}\left(1-A_{i}^{-1} H\right)
\end{aligned}
$$

2. Kadison's Schwarz inequality. We here apply an operator-valued inner product in $B(H) \times \cdots \times B(H)$, where $B(H)$ is the algebra of all operators acting on a Hilbert space H :

$$
\left\langle\left(A_{1}, \cdots, A_{n}\right),\left(B_{1}, \cdots, B_{n}\right)\right\rangle=\sum_{i=1}^{n} B_{i}^{*} A_{i}
$$

In particular, for given a weight $\lambda=\left(\lambda_{i}\right)$, we define

$$
\begin{equation*}
\Phi\left(A_{1} \oplus \cdots \oplus A_{n}\right)=\left\langle\left(A_{1}, \cdots, A_{n}\right),\left(\lambda_{1}, \cdots, \lambda_{n}\right)\right\rangle=\sum_{i=1}^{n} \lambda_{i} A_{i} \tag{5}
\end{equation*}
$$

Then Φ is a unital positive linear map on $\sum_{i=1}^{n} \oplus B(H)$.
We now cite Kadison's Schwarz inequality, see [4, Theorem 1.17]:
Theorem K. Let Φ be a unital positive linear map of $B(H)$ into $B(K)$. Then

$$
\begin{equation*}
\Phi\left(A^{2}\right) \geq \Phi(A)^{2} \tag{6}
\end{equation*}
$$

for all selfadjoint operators $A \in B(H)$ and

$$
\begin{equation*}
\Phi\left(A^{-1}\right) \geq \Phi(A)^{-1} \tag{7}
\end{equation*}
$$

for all positive invertible $A \in B(H)$.
If Φ is as in (5), then Theorem K implies the following inequalities, in which the second one shows the arithmetic-harmonic mean inequality (2).

Theorem 2. Let $\lambda=\left(\lambda_{i}\right)$ be as in Theorem 1. Then

$$
\begin{equation*}
\sum_{i=1}^{n} \lambda_{i} A_{i}^{2} \geq\left(\sum_{i=1}^{n} \lambda_{i} A_{i}\right)^{2} \tag{8}
\end{equation*}
$$

for all selfadjoint operators $A \in B(H)$ and and

$$
\begin{equation*}
\sum_{i=1}^{n} \lambda_{i} A_{i}^{-1} \geq\left(\sum_{i=1}^{n} \lambda_{i} A_{i}\right)^{-1} \tag{9}
\end{equation*}
$$

for all positive invertible $A \in B(H)$.
3. Integral expression. Let $F(t)$ be a selfadjoint operator-valued continuous function defined on an interval I in \mathbb{R} and μ a probability measure on I. Then we take a simple funtion $G(t)=\sum_{i=1}^{n} \alpha_{i} \chi_{I(i)}(t)$ which approximates $F(t)$, where $\{I(i) ; i=1, \cdots, n\}$ is a decomposition of I and $\alpha_{i}=\mu(I(i))$ for $i=1, \cdots, n$. Applying (8) in Theorem 2, we have

$$
\begin{equation*}
\sum_{i=1}^{n} \alpha_{i} A_{i}^{2} \geq\left(\sum_{i=1}^{n} \alpha_{i} A_{i}\right)^{2} \tag{10}
\end{equation*}
$$

In other words,

$$
\left(\int_{I} G(t) d \mu(t)\right)^{2} \leq \int_{I} G(t)^{2} d \mu(t)
$$

By taking the limit, we have the following integral inequalities.

Theorem 3. Let $F(t)$ and μ be as in above. Then

$$
\begin{equation*}
\left(\int_{I} F(t) d \mu(t)\right)^{2} \leq \int_{I} F(t)^{2} d \mu(t) \tag{11}
\end{equation*}
$$

In particular, if $F(t)$ is positive and invertible for all $t \in I$, then

$$
\begin{equation*}
\left(\int_{I} F(t) d \mu(t)\right)^{-1} \leq \int_{I} F(t)^{-1} d \mu(t) \tag{12}
\end{equation*}
$$

The second inequality is obtained by a similar way.
4. Generalized Kantorovich inequality. It is well-known that the celebrated Kantorovich inequality is a reverse of Schwarz inequality, cf. [4, Theorem 1.23]: If A satisfies $0<m \leq A \leq M$, then

$$
\begin{equation*}
\phi(A) \phi\left(A^{-1}\right) \leq \frac{(M+m)^{2}}{4 M m} \tag{13}
\end{equation*}
$$

holds for all states ϕ of $B(H)$.
The following theorem is obtained as a reverse of (12):
Theorem 4. Let $F(t)$ and μ be as in above and $0<m \leq F(t) \leq M$ for all $t \in I$. Then

$$
\begin{equation*}
\phi\left(\int_{I} F(t) d \mu(t)\right) \phi\left(\int_{I} F(t)^{-1} d \mu(t)\right) \leq \frac{(M+m)^{2}}{4 M m} \tag{14}
\end{equation*}
$$

holds for all states ϕ of $B(H)$.
We here note that a state ϕ is not replaced by a positive linear map Φ because $\Phi(X)$ and $\Phi(Y)$ don't commute in general, but it follows from [4, Theorem 1.32 (iv)] that

$$
\begin{equation*}
\int_{I} F(t)^{-1} d \mu(t) \leq \frac{(M+m)^{2}}{4 M m}\left(\int_{I} F(t) d \mu(t)\right)^{-1} \tag{15}
\end{equation*}
$$

On the other hand, the following theorem is another noncommutative version of the Kantorovich inequality [4, Theorem 1.26]:

If A satisfies $0<m \leq A \leq M$, then

$$
\begin{equation*}
\Phi(A) \sharp \Phi\left(A^{-1}\right) \leq \frac{M+m}{2 \sqrt{M m}} \tag{16}
\end{equation*}
$$

holds for all unital positive linear map Φ of $B(H)$ to a unital C^{*}-algebra. Here \sharp is the geometric mean in the sense of Kubo-Ando [5].

As a consequence, we have an integral version of a theorem due to Nakamoto and Nakamura [6].

Theorem 5. Let $F(t)$ be as in Theorem 4. Then

$$
\int_{I} F(t) d \mu(t) \sharp \int_{I} F(t)^{-1} d \mu(t) \leq \frac{M+m}{2 \sqrt{M m}} .
$$

5. Another extension of Kadison's Schwarz inequality. At this end, we extend (5) by replacing weights to positive linear maps. That is, we take a family of positive linear maps $\Phi_{1}, \cdots, \Phi_{n}$ such that

$$
\Phi_{1}+\cdots+\Phi_{n}=1, \text { the identity map. }
$$

and (5) is extended to

$$
\begin{equation*}
\Phi\left(A_{1} \oplus \cdots \oplus A_{n}\right)=\left\langle\left(A_{1}, \cdots, A_{n}\right),\left(\Phi_{1}, \cdots, \Phi_{n}\right)\right\rangle=\sum_{i=1}^{n} \Phi_{i}\left(A_{i}\right) \tag{17}
\end{equation*}
$$

Then we have the following theorem as Theorem 2:

Theorem 6. Let Φ be as in (17). Then

$$
\begin{equation*}
\sum_{i=1}^{n} \Phi_{i}\left(A_{i}^{2}\right) \geq\left(\sum_{i=1}^{n} \Phi_{i}\left(A_{i}\right)\right)^{2} \tag{18}
\end{equation*}
$$

holds for selfadjoint operators A_{i} and

$$
\begin{equation*}
\sum_{i=1}^{n} \Phi_{i}\left(A_{i}^{-1}\right) \geq\left(\sum_{i=1}^{n} \Phi_{i}\left(A_{i}\right)\right)^{-1} \tag{19}
\end{equation*}
$$

holds for positive invertible operators A_{i}.

Theorem 6 has the following difference reverse inequality of Theorem 6 :

Theorem 7. Let Φ be as in (17). Then

$$
\begin{equation*}
(0 \leq) \sum_{i=1}^{n} \Phi_{i}\left(A_{i}\right)-\left(\sum_{i=1}^{n} \Phi_{i}\left(A_{i}^{-1}\right)\right)^{-1} \leq(\sqrt{M}-\sqrt{m})^{2} \tag{20}
\end{equation*}
$$

holds for positive invertible operators A_{i} with $0<m \leq A_{i} \leq M$ for $i=1, \cdots, n$.

Proof. Put $A=\sum_{i=1}^{n} \Phi_{i}\left(A_{i}\right)$ and $H=\left(\sum_{i=1}^{n} \Phi_{i}\left(A_{i}^{-1}\right)\right)^{-1}$. Since

$$
\left(M-A_{i}\right)\left(1 / m-A_{i}^{-1}\right) \geq 0
$$

and so

$$
M+m \geq M m A_{i}^{-1}+A_{i}
$$

for $i=1, \cdots, n$, it follows that

$$
M+m \geq M m \sum_{i=1}^{n} \Phi_{i}\left(A_{i}^{-1}\right)+\sum_{i=1}^{n} \Phi_{i}\left(A_{i}\right)=M+m-M m H^{-1}-H
$$

Hence we have

$$
\begin{aligned}
& A-H \leq M+m-M m H^{-1}-H \\
& =(\sqrt{M}-\sqrt{m})^{2}-\left(\sqrt{M m} H^{-\frac{1}{2}}-H^{\frac{1}{2}}\right)^{2} \leq(\sqrt{M}-\sqrt{m})^{2}
\end{aligned}
$$

as desired.
Finally we mention that we need the Bochner-Stieljes integral to the integral form of Theorems 6 and 7, which remains in a future paper

References

[1] K.V.Bhagwat and R.Subramanian, Inequalities between means of positive operators, Math. Proc. Camb. Phil. Soc., 83 (1978), 393-401.
[2] J.I.Fujii, M.Nakamura, J.E.Pečarić and Y.Seo, Bounds for the ratio and difference between parallel sum and series via Mond-J.E.Pečarić method, preprint.
[3] T.Furuta, Short proof that the arithmetic mean is greater than the harmonic mean and its reverse inequality, Math. Inequal. Appl., 8(2005), 751.
[4] T.Furuta, J.Mićić, J.E.Pečarić and Y.Seo, Mond-Pec̆arić Method in Operator Inequalities, Monographs in Inequalities 1, Element, Zagreb, 2005.
[5] F.Kubo and T.Ando, Means of positive linear operators, Math. Ann., 246(1980), 205-224.
[6] R.Nakamoto and M.Nakamura, Operator mean and Kantorovich inequality, Math. Japon., 44 (1996), 495-498.

Department of Mathematics, Osaka Kyoiku University, Asahigaoka, Kashiwara, Osaka 582-8582, Japan.

Email : mfujii@@cc.osaka-kyoiku.ac.jp
*) Tennoji Branch, Senior Highschool, Osaka Kyoiku University, Tennoji, Osaka 543-0054, Japan

Email : yukis@@cc.osaka-kyoiku.ac.jp

