ON POWERS OF P-POSINORMAL OPERATORS

Mi Young Lee and Sang Hun Lee

Received October 18, 2005; revised January 3, 2006

Abstract

Let $p>0$. An operator $T \in \mathcal{L}(\mathcal{H})$ is said to be p-posinormal if $\left(T T^{*}\right)^{p} \leq$ $\mu\left(T^{*} T\right)^{p}$ for some $\mu>1$. In this paper, we prove that if T is p-posinormal then T^{n} is also p-posinormal for all positive integer n. Moreover, we prove that if $T=U|T|$ is p posinormal for $0<p<1$, the Aluthge transform $\tilde{T}=|T|^{\frac{1}{2}} U|T|^{\frac{1}{2}}$ is ($p+\frac{1}{2}$)-posinormal.

1. Introduction. Let \mathcal{H} be a separable complex Hilbert space and $\mathcal{L}(\mathcal{H})$ denote the algebra of all bounded linear operators acting on \mathcal{H}. An operator T can be decomposed into $T=U|T|$ where U is partial isometry and $|T|$ is the square root of $T^{*} T$ with $N(U)=N(|T|)$, and this kernel condition $N(U)=N(|T|)$ uniquely determines U and $|T|$ in the polar decomposition of T. In this paper, $T=U|T|$ denotes the polar decomposition satisfying the kernel condition $N(U)=N(|T|)$.

An operator $T \in \mathcal{L}(\mathcal{H})$ is positive, $T \geq 0$, if $(T x, x) \geq 0$ for all $x \in \mathcal{H}$, and posinormal if there exists a positive $P \in \mathcal{L}(\mathcal{H})$ such that $T T^{*}=T^{*} P T$. Here, P is called an interrupter of T. Let $p>0$. An operator $T \in \mathcal{L}(\mathcal{H})$ is said to be p-hyponormal if

$$
\left(T T^{*}\right)^{p} \leq\left(T^{*} T\right)^{p}
$$

and p-posinormal if

$$
\left(T T^{*}\right)^{p} \leq \mu\left(T^{*} T\right)^{p}
$$

for some $\mu>1$. It is clear that 1-hyponormal and 1-posinormal are hyponormal and posinormal, respectively. It is well known that a p-posinormal(resp. p-hyponormal) operator is a q-posinormal(resp. q-hyponormal) operator for $0<q \leq p$ by Löwner-Heinz Inequality. But the converse is not true in general(see [1], [3] and [8]).

Hyponormal and p-hyponormal operators have been studied many authors and it is known that hyponormal operators have many interesting properties similar to those normal operators $([1],[2],[6],[7]$ and [11]). In [10], Rhaly studied spectral properties of posinormal operators and gave many useful examples. In particular, Itoh [8] introduced p-posinormality and proved new characterizations of p-posinormal operators.

In this paper, we consider new properties as an extension of p-hyponormal operators using the generalized Aluthge transform. In this paper, we prove that if T is p-posinormal then T^{n} is also p-posinormal for all positive integer n. Moreover, we prove that if $T=U|T|$ is p-posinormal for $0<p<1$, the Aluthge transform $\tilde{T}=\left.|T|^{\frac{1}{2}} U\right|^{\frac{1}{2}}$ is $\left(p+\frac{1}{2}\right)$-posinormal. We should note that our main tool is Furuta Inequality.
2. Main results. The classes of p-hyponormal has been defined as an extension of hyponormal, and it has been studied by many authors([1],[2] and [6]). For an operator $T=U|T|$, defines \tilde{T} as follows:

$$
\tilde{T_{s, t}}=|T|^{s} U|T|^{t}
$$

2000 Mathematics Subject Classification. 47B20.
Key words and phrases. posinormal, p-hyponormal, p-posinormal, Aluthge transform.
for $s, t>0$ which is called the generalized Aluthge transform of T. Especially, $\tilde{T}=$ $|T|^{\frac{1}{2}} U|T|^{\frac{1}{2}}$ is called the Aluthge transform. The generalized Aluthge transform is very useful tool in the study of p-hyponormal oprerators. In this section we will study p-posinormal operators using their generalized Aluthge transform.

We have to state the order-preserving operator inequality because it is a base of our discussion in the below.
Furuta Inequality. [5] Let $A \geq B \geq 0$. Then for all $r>0$,
(1) $\left(B^{\frac{r}{2}} A^{p} B^{\frac{r}{2}}\right)^{\frac{1}{q}} \geq\left(B^{\frac{r}{2}} B^{p} B^{\frac{r}{2}}\right)^{\frac{1}{q}}$
(2) $\left(A^{\frac{r}{2}} A^{p} A^{\frac{r}{2}}\right)^{\frac{1}{q}} \geq\left(A^{\frac{r}{2}} B^{p} A^{\frac{r}{2}}\right)^{\frac{1}{q}}$
for $p \geq 0, q \geq 1$ with $(1+r) q \geq p+r$.
Theorem 1. Let $T=U|T|$ be the polar decomposition of a p-posinormal operator for $0<p \leq 1$. Then the following assertions hold:
(1) $\tilde{T}_{s, t}=\left.\left|T{ }^{s} U\right| T\right|^{t}$ is $\frac{p+\min \{s, t\}}{s+t}$-posinormal for $s, t>0$ such that $\max \{s, t\} \geq p$.
(2) $\tilde{T}_{s, t}$ is posinormal for $0<s, t \leq p$.

Proof. Suppose that

$$
\begin{equation*}
\left|T^{*}\right|^{2 p} \leq \mu|T|^{2 p} \tag{2.1}
\end{equation*}
$$

for some $\mu>1$.
(1) Let $A=\mu|T|^{2 p}$ and $B=\left|T^{*}\right|^{2 p}$. Then

$$
\begin{align*}
\left(\tilde{T}_{s, t}^{*} \tilde{T}_{s, t}\right)^{\frac{p+\min \{s, t\}}{s+t}} & =\left(|T|^{t} U^{*}|T|^{2 s} U|T|^{t}\right)^{\frac{p+\min \{s, t\}}{s+t}} \\
& =U^{*}\left(\left|T^{*}\right| t|T|^{t s}\left|T^{*}\right|^{t}\right)^{\frac{p+\min \{s, t\}}{s+t}} U \\
& =\mu^{-\frac{s}{p} \frac{p+\min \{s, t\}}{s+t}} U^{*}\left(B^{\frac{t}{2 p}} A^{\frac{s}{p}} B^{\frac{t}{2 p}}\right)^{\frac{p+\min \{s, t\}}{s+t}} U \tag{2.2}\\
& \geq \mu^{-\frac{s}{p} \frac{p+\min \{s, t\}}{s+t}} U^{*} B^{\frac{p+\min \{s, t\}}{p}} U \text { by Furuta Inequality } \\
& =\mu^{-\frac{s}{p} \frac{p+\min \{s, t\}}{s+t}}|T|^{2(p+\min \{s, t\})}
\end{align*}
$$

since $\frac{s+t}{p+\min \{s, t\}} \geq 1$ and $\left(1+\frac{t}{p}\right) \frac{s+t}{p+\min \{s, t\}} \geq \frac{s}{p}+\frac{t}{p}$. And

$$
\begin{align*}
\left(\tilde{T}_{s, t} \tilde{T}_{s, t}^{*}\right)^{\frac{p+\min \{s, t\}}{s+t}} & =\left(|T|^{s} U|T|^{2 t} U^{*}|T|^{s}\right)^{\frac{p+\min \{s, t\}}{s+t}} \\
& =\left(|T|^{s}\left|T^{*}\right|^{2 t}|T|^{s}\right)^{\frac{p+\min \{s, t\}}{s+t}} \\
& =\mu^{-\frac{s}{p} \frac{p+\min \{s, t\}}{s+t}}\left(A^{\frac{s}{2 p}} B^{\frac{t}{p}} A^{\frac{s}{2 p}}\right)^{\frac{p+\min \{s, t\}}{s+t}} \tag{2.3}\\
& \leq \mu^{\frac{t-s}{p} \frac{p+\min \{s, t\}}{s+t}} A^{\frac{p+\min \{s, t\}}{p}} \text { by Furuta Inequality } \\
& =\mu^{\frac{t-s}{p} \frac{p+\min \{s, t\}}{s+t}}|T|^{2(p+\min \{s, t\})}
\end{align*}
$$

since $\frac{s+t}{p+\min \{s, t\}} \geq 1$ and $\left(1+\frac{s}{p}\right) \frac{s+t}{p+\min \{s, t\}} \geq \frac{t}{p}+\frac{s}{p}$. From (2.2) and (2.3), we have

$$
\left(\tilde{T}_{s, t} \tilde{T}_{s, t}^{*}\right)^{\frac{p+\min \{s, t\}}{s+t}} \leq \mu^{\frac{t}{p} \frac{p+\min \{s, t\})}{s+t}}\left(\tilde{T}_{s, t} \tilde{T}_{s, t}^{*}\right)^{\frac{p+\min \{s, t\}}{s+t}}
$$

that is, $\tilde{T}_{s, t}$ is $\frac{p+\min \{s, t\}}{s+t}$-posinormal for $s, t>0$ such that $\max \{s, t\} \geq p$.
(2) Applying Löwner-Heinz Inequality to (2.1),

$$
\begin{equation*}
\left|T^{*}\right|^{2 s} \leq \mu^{\frac{s}{p}}|T|^{2 s} \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|T^{*}\right|^{2 t} \leq \mu^{\frac{t}{p}}|T|^{2 t} \tag{2.5}
\end{equation*}
$$

hold for any $0<s, t \leq p$. From (2.4) and (2.5), we have

$$
\begin{align*}
\tilde{T}_{s, t}^{*} \tilde{T}_{s, t} & =|T|^{t} U^{*}|T|^{2 s} U|T|^{t} \\
& \geq \mu^{-\frac{s}{p}}|T|^{t} U^{*}\left|T^{*}\right|^{2 s} U|T|^{t} \tag{2.6}\\
& =\mu^{-\frac{s}{p}}|T|^{2(s+t)}
\end{align*}
$$

and

$$
\begin{align*}
\tilde{T}_{s, t} \tilde{T}_{s, t}^{*} & =|T|^{s} U|T|^{2 t} U^{*}|T|^{s} \\
& \leq|T|^{s} \mu^{\frac{t}{p}}|T|^{2 t}|T|^{s} \tag{2.7}\\
& =\mu^{\frac{t}{p}}|T|^{2(s+t)}
\end{align*}
$$

So (2.6) and (2.7) ensure

$$
\tilde{T}_{s, t} \tilde{T}_{s, t}^{*} \leq \mu^{\frac{s+t}{p}} \tilde{T}_{s, t}^{*} \tilde{T}_{s, t}
$$

and hence $\tilde{T}_{s, t}$ is posinormal.
We note that Theorem 1 yeilds the next result by putting $s=t=\frac{1}{2}$.
Corollary 2. Let $T=U|T|$ be p-posinormal operator for $0<p<1$. Then
(1) $\tilde{T}=|T|^{\frac{1}{2}} U|T|^{\frac{1}{2}}$ is $\left(p+\frac{1}{2}\right)$-posinormal for $0<p<\frac{1}{2}$.
(2) \tilde{T} is posinormal for $\frac{1}{2} \leq p<1$.

Aluthge-Wang [2], Furuta-Yanagida [6] proved that if T is p-hyponormal, then T^{n} is $\frac{p}{n}$-hyponormal for all positive integers n, respectively. The next result is a version for p-posinormal operators of their result [6; Theorem 1] and Ito [7].

Theorem 3. Let T be a p-posinormal for some $0<p<1$, that is $\left(T T^{*}\right)^{p} \leq \mu^{2}\left(T^{*} T\right)^{p}$ for some $\mu>1$. Then
(1) $\left(T^{n *} T^{n}\right)^{\frac{p+1}{n}} \geq \mu^{-\frac{p+1}{p}(n-1)}\left(T^{*} T\right)^{p+1}$, and
(2) $\left(T T^{*}\right)^{p+1} \geq \mu^{-\frac{p+1}{p}(n-1)}\left(T^{n} T^{n *}\right)^{\frac{p+1}{n}}$
hold for all positive integer n.
Proof. Put

$$
A_{n}=\left(T^{n *} T^{n}\right)^{\frac{p}{n}}=\left|T^{n}\right|^{\frac{2 p}{n}}
$$

and

$$
B_{n}=\left(T^{n} T^{n *}\right)^{\frac{p}{n}}=\left|T^{n *}\right|^{\frac{2 p}{n}}
$$

for all positive integer n.
(1) We will use induction to establish the inequality

$$
\begin{equation*}
\left(T^{n *} T^{n}\right)^{\frac{p+1}{n}} \geq \mu^{-\frac{p+1}{p}(n-1)}\left(T^{*} T\right)^{p+1} \text { holds for } n=k \tag{2.8}
\end{equation*}
$$

(2.8) is clear for $n=1$. Assume that (2.8) holds for $k=n$. Since

$$
\begin{equation*}
A_{k}=\left(T^{* k} T^{k}\right)^{\frac{p}{k}} \geq \mu^{-(k-1)}\left(T^{*} T\right)^{p} \geq \mu^{-(k+1)} B_{1} \tag{2.9}
\end{equation*}
$$

it follows that

$$
\begin{align*}
\left(T^{k+1^{*}} T^{k+1}\right)^{\frac{p+1}{k+1}} & =\left(U^{*}\left|T^{*}\right| T^{k^{*}} T^{k}\left|T^{*}\right| U\right)^{\frac{p+1}{k+1}} \\
& =U^{*}\left(\left|T^{*}\right| T^{k^{*}} T^{k}\left|T^{*}\right|\right)^{\frac{p+1}{k+1}} U \\
& =U^{*}\left(B_{1}^{\frac{1}{2 p}} A_{k}^{\frac{k}{p}} B_{1}^{\frac{1}{2 p}}\right)^{\frac{p+1}{k+1}} U \tag{2.10}\\
& \geq \mu^{-\frac{k}{p} \frac{p+1}{k+1}(k+1)} U^{*}\left(B_{1}^{\frac{1}{2 p}} B_{1}^{\frac{k}{p}} B_{1}^{\frac{1}{2 p}}\right)^{\frac{p+1}{k+1}} U \text { by Furuta Inequality } \\
& =\mu^{-\frac{p+1}{p} k}\left(T^{*} T\right)^{p+1} .
\end{align*}
$$

Whence the proof of (1) is complete.
(2) Similarly to (1), (2) is clear for $n=1$. Assume that

$$
\left(T T^{*}\right)^{p+1} \geq \mu^{-\frac{p+1}{p}(k-1)}\left(T^{k} T^{k^{*}}\right)^{\frac{p+1}{k}}
$$

holds. Then

$$
\begin{equation*}
A_{1}=\left(T^{*} T\right)^{p} \geq \mu^{-2}\left(T T^{*}\right)^{p} \geq \mu^{-(k+1)}\left(T^{k} T^{k^{*}}\right)^{\frac{p}{k}}=\mu^{-(k+1)} B_{k} \tag{2.11}
\end{equation*}
$$

Hence we have

$$
\begin{align*}
\left(T^{k+1} T^{k+1^{*}}\right)^{\frac{p+1}{k+1}} & =U\left(|T| T^{k} T^{k^{*}}|T|\right)^{\frac{p+1}{k+1}} U^{*} \\
& =U\left(A_{1}^{\frac{1}{2 p}} B_{k}^{\frac{k}{p}} A_{1}^{\frac{1}{2 p}}\right)^{\frac{p+1}{k+1}} U^{*} \tag{2.12}\\
& \leq \mu^{\frac{k}{p} \frac{p+1}{k+1}(k+1)} U\left(A_{1}^{\frac{1}{2 p}} A_{1}^{\frac{k}{p}} A_{1}^{\frac{1}{2 p}}\right)^{\frac{p+1}{k+1}} U^{*} \text { by Furuta Inequality } \\
& =\mu^{\frac{p+1}{p} k}\left|T^{*}\right|^{2(p+1)}
\end{align*}
$$

So, $\left(T T^{*}\right)^{p+1} \geq \mu^{-\frac{p+1}{p} n}\left(T^{n} T^{n *}\right)^{\frac{p+1}{n+1}}$ holds for all positive integer n.
From Theorem 3, we have the next result.
Corollary 4. If T is p-posinormal, then T^{n} is $\frac{p}{n}$-posinormal for all positive integer n.
Proof. Let $\left(T T^{*}\right)^{p} \leq \mu^{2}\left(T^{*} T\right)^{p}$ for some $\mu>1$. Then, by Theorem 3,

$$
\left(T^{n *} T^{n}\right)^{\frac{p}{n}} \geq \mu^{\frac{p}{p+1}}\left(T^{*} T\right)^{p} \geq \mu^{\frac{p}{p+1}} \mu^{-2}\left(T T^{*}\right)^{p} \geq \mu^{-2 n}\left(T^{n} T^{n *}\right)^{\frac{p}{n}}
$$

So, T^{n} is $\frac{p}{n}$-posinormal.

References

[1] A.Aluthge, On p-hyponormal operators for $0<p<1$, Integral Equation Operator Theory 13 (1990), 307-315.
[2] A.Aluthge and D. Wang, Powers of p-hyponormal operators, J. of Ineq. Appl. 3 (1999), 279-284.
[3] H. Cha, K. Lee and J. Kim, Superclasses of posinormal operators, Int. Math. J. 2 (2002), 543-550.
[4] R.G. Douglas, On majorrization, factorization and range inclusion of operators on Hilbert spaces, Proc. Amer. Math. Soc. 17 (1966), 413-415.
[5] T. Furuta, $A \geq B \geq 0$ assures $\left(B^{r} B^{p} B^{r}\right)^{\frac{1}{q}} \geq B^{\frac{p+2 r}{q}}$ for $r \geq 0, p \geq 0, q \geq 1$ with $(1+2 r) q \geq$ $p+2 r$, Proc. Amer. Math. Soc. 101 (1987), 85-88.
[6] T. Furuta and M. Yanagida, On powers of p-hyponormal operators, Sci. Math. 2 (1999), 279-284.
[7] M. Ito, Generalizations of the results on powers of p-posinirmal operators, J. of Ineq. Appl. 6 (2001), 1-15.
[8] M. Itoh, Characterization of posinormal operators, Nihonkai Math. J. 11 (2000), 97-101.
[9] C.A. McCarthy, C_{ρ}, Israel Math. J. 5 (1967), 249-271.
[10] H.C. Rhaly, Jr., Posinormal operators, J. Math. Soc. Japan 46 (1994), 587-605.
[11] D. Xia, Spectral theory of hyponormal operators, Birkhäuser Verlag, Basel, 1983.
Department of Mathematics, College of Natural Science, Kyungpook National University, Taegu 702-701, Korea : mylee@mail.knu.ac.kr, sanghlee@mail.knu.ac.kr

