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Abstract. Inclusion of refractoriness in a diffusion model for single neuron activity
is the object of the present paper. An asymptotic analysis of the random process
modeling the number of firings and the distribution of interspike intervals is performed
under the approximation of exponentially distributed firings. In the cases of constant,
uniform, exponential, Erlang, truncated normal and hyperexponential durations of
refractory periods, asymptotic simple expressions are obtained and some numerical
evaluations are performed.

1 Introduction and Background
Since the classical paper by Gerstein and Mandelbrot [7], numerous attempts have been
made to formulate stochastic models for single neuron activity capable of reproducing fea-
tures of the behavior exhibited by neural cells under spontaneous or stimulated conditions
(see, for instance, [15], [18], [19] and the bibliography quoted therein). In particular, a quan-
titative description of the behavior of the neuron membrane potential as an instantaneous
return process has been the object of various investigations (cf. [8], [10], [11], [17]) under
the assumption that after each firing, instantly the membrane potential is either reset to a
unique fixed value or to a value characterized by an assigned probability density function
(pdf).

As is well-known, when mathematically modeling a complex system, in order to develop
a feeling, or, better, to obtain quantitative information on its behavior without facing over-
whelming difficulties, it is common practice to perform a careful selection of the available
parameters and to retain only those that are believed to play an essential role, while dis-
regarding those whose effects should be taken into account in successive refinements. This
is probably the reason why the neuronal “dead time” or “refractoriness” has seldom been
looked at as a relevant parameters in the large mass of theoretical works dealing with models
of neuronal activity. However, such a practice can be justified, in first approximation, only
when dealing with input conditions leading to low firing rates. Exceptions are a few works
(see [1]∼[5], [12], [13], [20]) inspired by the very early approaches of [16] and [22].

A first difficulty one faces when trying to embed refractoriness in a neuronal model is
how to define quantitatively such a quantity. One may look exclusively at the “absolute”
refractoriness, namely to the time interval (lasting about 1 ms) following a spike during
which the neuron is unable to fire again whatever stimulus is acting on it; or one may
focus attention on “relative” refractoriness (a time interval following the firing that may
last as long as 100 ms, often including both positive and negative after-potential); or one
may try to take into account that firing, especially in sensory neurons, is a consequence not
only of the intensity of the acting stimulus, but also of its duration, so that in such cases
refractoriness is not an intrinsic property of the neuron but also a function of its input.
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To overcome these preliminary difficulties, hereafter we shall refrain from making any
specific assumption on the mechanisms that are ultimately responsible for generating re-
fractoriness, and attack the problem in a totally different way. Indeed, we shall assume
that each firing is accompanied by a refractory period whose duration is a random variable,
and assume that the sequence of refractory periods associated to the sequence of firings is
modeled by a sequence of independent and identically distributed (iid) random variables
characterized by a preassigned pdf. For each such specified pdf the neuronal output will
be determined, and some numerical computations will be performed to pinpoint similarities
and differences implied by the types of considered random variables.

It should be mentioned that recently in [1], [2] and [3] the presence of refractoriness has
been included in the mathematical characterization of the membrane potential by using
an instantaneous return process based on diffusion models of single neuron activity, under
the assumption that the firing threshold acts as a ‘partially transparent’ elastic barrier,
whose behavior is intermediate between total absorption and total reflection. In [5] and
[20] a diffusion process was, instead, invoked to describe the time course of the membrane
potential and refractoriness was modeled as a sequence of iid random variables having a
preassigned pdf, right along the lines indicated in the foregoing. A return process was again
constructed, by means of which the distribution of the number of firings up to an assigned
time could be determined.

Following this latter approach, let us now denote by {X(t), t ≥ 0} a regular, time-
homogeneous diffusion process defined over an interval I = (r1, r2) and characterized by
drift and infinitesimal variance A1(x) and A2(x), respectively, that we assume to satisfy
Feller condition [6]. Let h(x) and k(x) denote scale function and speed density of X(t):

h(x) = exp
{
−2

∫ x A1(z)
A2(z)

dz

}
, k(x) =

2
A2(x)h(x)

and denote by

H(r1, y] =
∫ y

r1

h(z) dz, K(r1, y] =
∫ y

r1

k(z) dz

scale and the speed measures, respectively.
As is well-known, the first passage time (FPT) of X(t) through S (S ∈ I), with X(0) =

x < S, is defined as follows:

Tx = inf
t≥0

{t : X(t) ≥ S}, X(0) = x < S.(1.1)

Then,

g(S, t | x) =
∂

∂t
P (Tx < t), x < S(1.2)

is the FPT pdf of X(t) through S conditional upon X(0) = x.
In the neuronal modeling context the state S represents the neuron firing threshold, the

FPT through S the firing time and g(S, t | x) the firing time pdf. In the sequel we assume
that one of the following cases holds:

(i) r1 is a natural nonattracting boundary and K(r1, y] < +∞

(ii) r1 is either a reflecting boundary or an entrance boundary.
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Under such assumptions, for x < S the first passage probability P (S | x) from x to S is
unity and the moments FPT are finite and given by (cf. [21]):

tn(S | x) :=
∫ +∞

0

tn g(S, t | x) dt = n

∫ S

x

h(z) dz
∫ z

r1

k(u) tn−1(S | u) du
(n = 1, 2, . . . ),(1.3)

with t0(S | x) ≡ P (S | x) = 1.

Figure 1: An hypothetical sample path of Z(t). Circles indicate the firing times, and squares the
ends of refractory periods. The instantaneous reset value has been denoted by η.

The return process {Z(t), t ≥ 0} in (r1, S) is constructed as follows. Starting at η ∈
(r1, S) at time zero, a firing takes place when X(t) attains the threshold S for the first time;
then, a refractory period of random duration occurs, after which Z(t) is instantaneously
reset to η. The subsequent evolution of the process goes on as described by X(t), until
S is again reached. A new firing then occurs, followed by the refractory period, and so
on (cf. Figure 1). The process {Z(t), t ≥ 0}, describing the time course of the membrane
potential, thus consists of recurrent cycles F0,R1,F1,R2,F2, . . . , each of random duration,
where the durations Fi of Fi (i = 0, 1, . . . ) and the durations of refractory periods Ri of
Ri (i = 1, 2, . . . ) are independently distributed random variables. Here, Fi (i = 0, 1, . . . )
describes the time interval elapsing between the i-th reset at η and the (i+1)-th FPT from
η to S, whereas Ri (i = 1, 2, . . . ) describes the duration of i-th refractory period. Since
X(t) is time-homogeneous, F0, F1, . . . can be assumed to be iid random variables, each with
pdf g(S, t | η) in which t denotes the time interval elapsing between a reset instant and the
instant of release of next firing. Furthermore, R1, R2, . . . are assumed to be iid random
variables, each with pdf ϕ(t) depending only on the duration of the refractory period.

We now aim at the description of the random process {M (t), t ≥ 0} representing the
number of firings released by the neuron up to time t. To this purpose, for η ∈ (r1, S), let

qk(t | η) = P{M (t) = k | Z(0) = η} (k = 0, 1, . . . )(1.4)

be the probability of occurrence of k firings up to time t. Since X(t) is time-homogeneous
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and the Ri’s are iid,

q0(t | η) = 1 −
∫ t

0

g(S, τ | η) dτ

q1(t | η) = g(S, t | η) ∗ ϕ(t) ∗
[
1 −

∫ t

0

g(S, τ | η) dτ
]

+g(S, t | η) ∗
[
1 −

∫ t

0

ϕ(τ) dτ
]
,

(1.5)

qk(t | η) =
[
g(S, t | η) ∗ ϕ(t)

](k) ∗
[
1 −

∫ t

0

g(S, τ | η) dτ
]

+g(S, t | η) ∗ [
ϕ(t) ∗ g(S, t | η)](k−1) ∗

[
1 −

∫ t

0

ϕ(τ) dτ
]

(k = 2, 3, . . . ),

where (∗) means convolution, exponent (r) indicates r-fold convolution, g(S, t | η) is the
FPT pdf of X(t) through S starting from X(0) = η < S and ϕ(t) is the pdf of the refractory
period.

It must be underlined that the present approach towards inclusion of refractoriness in
models for neuron activity differs in an essential way from the approach attempted in [16]
and from that successively pursued in [22]. Indeed, in both such contributions refractoriness
was treated within the context of point processes and never within a continuous processes
framework.

For k = 0, 1, 2, . . . , let now

πk(λ | η) :=
∫ +∞

0

e−λt qk(t | η) dt (λ > 0)(1.6)

be the Laplace transform of qk(t | η). Denoting by gλ(S | η) and by Φ(λ) the Laplace
transforms of g(S, t | η) and ϕ(t), respectively, from (1.5) we have:

π0(λ | η) =
1
λ

[
1 − gλ(S | η)

]
(1.7)

πk(λ | η) =
1
λ
gλ(S | η)

[
gλ(S | η)Φ(λ)

]k−1 [
1 − gλ(S | η)Φ(λ)

]
(k = 1, 2, . . . ).

Eqs. (1.7) will be seen to play an important role to explore the statistical characteristics of
the random variable that describes the number of firings. Indeed, let

E
{
[M(t)]r | η} :=

∑
k≥1

kr qk(t | η) (r = 1, 2, . . . )(1.8)

denote the r-th order moment of the number of firings released by the neuron up to time t,
and let

ψr(λ | η) :=
∫ +∞

0

e−λtE
{
[M(t)]r | η} dt =

∑
k≥1

kr πk(λ | η) (r = 1, 2, . . . )(1.9)

be its Laplace transform. Making use of (1.7), one has (cf. [20]):

ψ1(λ | η) =
gλ(S | η)

λ
[
1 − gλ(S | η)Φ(λ)

] , ψ2(λ | η) =
gλ(S | η)[1 + gλ(S | η)Φ(λ)

]
λ

[
1 − gλ(S | η)Φ(λ)

]2 ·(1.10)
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Let now I0, I1, I2, . . . be a sequence of random variables, with I0 representing the time
of occurrence of the first firing and Ik (k = 1, 2, . . . ) the duration of the time interval
elapsing between k-th and (k + 1)-th firing. Furthermore, let γk(t) denote the pdf’s of
Ik (k = 0, 1, . . . ). Therefore, I0 identifies with the FPT through threshold S starting at
initial state X(0) = η < S, so that γ0(t) ≡ g(S, t | η). Due to time-homogeneity of X(t)
and since R1, R2, . . . are iid, the interspike intervals (ISI) I1, I2, . . . are also iid random
variables having pdf (cf. [5])

γ(t) ≡ γk(t) =
∫ t

0

ϕ(ϑ) g(S, t − ϑ | η) dϑ (k = 1, 2, . . . ).(1.11)

Hence, if the firing pdf is known, the ISI pdf can be determined for any assigned distribution
of the refractory period. Note that, (1.11) is useful to evaluate ISI’s first three moments
and variance. Indeed,

E(I) = t1(S | η) + E(R),
E(I2) = t2(S | η) + 2E(R) t1(S | η) + E(R2),(1.12)
E(I3) = t3(S | η) + 3E(R) t2(S | η) + 3E(R2) t1(S | η) + E(R3),
Var(I) = Var(S | η) + Var(R),

where E(Rr) is the r-th order moment of refractory periods, and where tr(S | η) denotes
the r-th order moment of the FPT of X(t) through S conditional upon X(0) = η.

For the Wiener neuronal model, in [13] the probabilities of occurrence of multiple firings
up to time t are explicitly evaluated, and exact expressions for the first two moments of
the number of firings released by the neuron up to time t are given. Furthermore, ISI
pdf is determined for any preassigned pdf of the refractory period. Unfortunately, these
theoretical results cannot be immediately extended to other types of diffusion processes.
Indeed, for the evaluation of probabilities (1.5) and of ISI pdf (1.11), the explicit expression
of the firing pdf g(S, t | η) is required, which is known only in very particular cases.

Denoting now by Γ(λ) the Laplace transform of γ(t), from (1.11) one has

Γ(λ) :=
∫ +∞

0

e−λt γ(t) dt = gλ(S | η)Φ(λ),(1.13)

so that (1.10) lead one to

ψ1(λ | η) =
gλ(S | η)

λ
[
1 − Γ(λ)

] , ψ2(λ | η) =
gλ(S | η) [

1 + Γ(λ)
]

λ
[
1 − Γ(λ)

]2 ·(1.14)

Use of (1.14) is made in [12] to disclose the asymptotic behavior of mean and variance of
the number of firings released by the neuron up to time t. Indeed, under the assumption
that the first three moments of the refractory period are finite, it is proved there that the
following asymptotic expressions hold:

E
{
M(t) | η} � 1

E(I)
t+

1
2
E(I2)
E2(I)

− t1(S | η)
E(I)

,

(1.15)

Var
{
M(t) | η} � Var(I)

E3(I)
t+

5
4

[E(I2)]2

E4(I)
− 2

3
E(I3)
E3(I)

− 1
2
E(I2)
E2(I)

+
t1(S | η)
E(I)

+
t2(S | η)
E2(I)

− E(I2)
E3(I)

t1(S | η) − t21(S | η)
E2(I)

,
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where tn(S | η) and E(In) (n = 1, 2, 3) are given in (1.3) and (1.12), respectively. Hence,
for long times, mean and variance of the number of firings released by the neuron up to
time t are approximately linear functions of t whatever diffusion neuronal model including
arbitrary random refractory period is considered. Note that even though mean and variance
are linear in t, they do not qualify to be representative of a Poisson process since they are
not equal and, in addition, the dependence on t includes a constant, which does not occur
for Poisson processes.

In the sequel, an asymptotic analysis of the random process that models the number
of neuronal firings and of the ISI pdf will be performed under the assumption that the
firing pdf admits an exponential behavior, like as in the cases of Ornstein-Uhlenbeck and
Feller neuronal models (cf., for instance, [18]). In particular, in Section 2 the probabilities of
occurrence of multiple firings up to time t will be proved to be related to the probabilities of
occurrence of events for a Poisson process of parameter [t1(S | η)]−1. The first two moments
of the number of firings released by the neuron up to time t will also be explicitly obtained.
In Section 3, under the assumption of exponentially distributed firing times, we shall analyze
the asymptotic behaviors of the probability of occurrence of a single firing up to time t, of the
mean and variance of the number of firings up to time t and of ISI pdf. The cases of constant,
uniform, exponential, Erlang, truncated normal and hyperexponential distributions of the
refractory periods will be specifically considered in Sections 4∼9. Finally, in Section 10
some numerical evaluations will be presented for the probability of single firing occurrence
up to time t and for ISI pdf.

2 Exponential behavior of the firing pdf
If {X(t), t ≥ 0} possesses a steady state distribution, we expect that for firing thresholds
sufficiently far from the starting point, an exponential behavior of the firing pdf takes place
(cf. [9]), namely:

g(S, t | η) � 1
t1(S | η) exp

{
− t

t1(S | η)
}

(S � η).(2.1)

Under assumption (2.1), let us denote by {M̂(t), t ≥ 0} the random process representing
the number of firings released up to time t, by q̂k(t | η) (k = 0, 1, . . . ) the probability of
release of k firings up to time t and by π̂k(λ | η) its Laplace transform. Recalling (1.7), one
obtains:

π̂0(λ | η) =
t1(S | η)

1 + λ t1(S | η)
(2.2)

π̂k(λ | η) =
1
λ

1
1 + λ t1(S | η)

[ Φ(λ)
1 + λ t1(S | η)

]k−1 [
1 − Φ(λ)

1 + λ t1(S | η)
]

(k = 1, 2, . . . ),

that implies:∑
j≥k

π̂j(λ | η) =
1
λ

1
1 + λ t1(S | η)

[ Φ(λ)
1 + λ t1(S | η)

]k−1

(k = 1, 2, . . . ).(2.3)

Eq. (2.3) will be seen to play an important role in certain forthcoming calculations.
Under assumption (2.1), the following proposition shows that the probabilities of the

number of firings released up to time t can be expressed as function of the probabilities of
occurrence of multiple events in (0, t) for a particular Poisson process.
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Proposition 2.1 The probability function of {M̂(t), t ≥ 0} is given by

q̂0(t | η) = p0(t),(2.4)
q̂1(t | η) = 1 − p0(t) − ϕ(t) ∗ [

1 − p0(t) − p1(t)
]

(2.5)

= 1 − p0(t) − 1
t1(S | η) ϕ(t) ∗

∫ t

0

p1(τ) dτ,

q̂k(t | η) =
[
ϕ(t)

](k−1) ∗
∑
j≥k

pj(t) −
[
ϕ(t)

](k) ∗
∑

j≥k+1

pj(t)(2.6)

=
1

t1(S | η)
[[
ϕ(t)

](k−1) ∗
∫ t

0

pk−1(τ) dτ −
[
ϕ(t)

](k) ∗
∫ t

0

pk(τ) dτ
]

(k = 2, 3, . . . ),

where

pj(t) =
1
j!

[ t

t1(S | η)
]j

exp
{
− t

t1(S | η)
}

(j = 0, 1, . . . )(2.7)

is the probability of occurrence of j events in (0, t) for the Poisson process {N (t), t ≥ 0} of
parameter [t1(S | η)]−1.

Proof. Taking the inverse Laplace transform of the first of (2.2), identity (2.4) immedi-
ately follows. Furthermore, denoting by Pj(λ) the Laplace transform of pj(t) (j = 0, 1, . . . ),
from (2.7) one has:

∑
j≥k

Pj(λ) =
∫ +∞

0

e−λ t

[∑
j≥k

pj(t)

]
dt =

1

λ
[
1 + λ t1(S | η)]k

(k = 1, 2, . . . ).(2.8)

Hence, (2.3) can be written as:∑
j≥k

π̂j(λ | η) = [Φ(λ)]k−1
∑
j≥k

Pj(λ) (k = 1, 2, . . . ).(2.9)

Taking the inverse Laplace transform of (2.9) one then obtains:

∑
j≥k

q̂j(t | η) =

⎧⎪⎪⎨⎪⎪⎩
1 − p0(t), k = 1

[ϕ(t)](k−1) ∗
∑
j≥k

pj(t), k = 2, 3, . . . .
(2.10)

Making use of

q̂k(t | η) =
∑
j≥k

q̂j(t | η) −
∑

j≥k+1

q̂j(t | η) (k = 1, 2, . . . ),(2.11)

the first equalities in (2.5) and (2.6) then immediately follow. Furthermore, from the defi-
nition of incomplete gamma function (cf. [14] , p. 940, n. 8.352.1)

γ
(
j + 1, µ t

)
= µj+1

∫ t

0

τ j e−µ τ dτ = j!
[
1 − e−µ t

j∑
i=0

(µ t)i

i!

]
(j = 0, 1, . . . ),(2.12)



446 G. ESPOSITO, V. GIORNO, A.G. NOBILE, L.M. RICCIARDI AND C. VALERIO

and making use of (2.7) we have:

∑
j≥k

pj(t) = 1 −
k−1∑
j=0

pj(t) = 1 − exp
{
− t

t1(S | η)
} k−1∑

j=0

1
j!

[ t

t1(S | η)
]j

=
1

t1(S | η)
∫ t

0

pk−1(τ) dτ (k = 1, 2, . . . ).(2.13)

Hence, by virtue of (2.13), the last equalities in (2.5) and (2.6) finally follow.

The following remark shows that, under assumption (2.1), the probability of a single firing
up to time t is always greater than, or equal to, the probability of occurrence of a single
event in (0, t) for the Poisson process {N (t), t ≥ 0}.

Remark 2.1 For all t ≥ 0 one has:

q̂1(t | η) ≥ p1(t).(2.14)

Proof. ¿From (2.5) and (2.7) one obtains:

q̂1(t | η) − p1(t) = u(t) −
∫ t

0

ϕ(t− τ)u(τ) dτ,(2.15)

with

u(t) := 1 − p0(t) − p1(t) = 1 − exp
{
− t

t1(S | η)
}
− t

t1(S | η) exp
{
− t

t1(S | η)
}
.(2.16)

Since u(t) is bounded, monotonically increasing and nonnegative, and since ϕ(t) is nonneg-
ative for t > 0, one has:∫ t

0

ϕ(t− τ)u(τ) dτ ≤ u(t)
∫ t

0

ϕ(t− τ) dτ = u(t)
∫ t

0

ϕ(ϑ) dϑ ≤ u(t).

Hence, (2.15) leads immediately to (2.14).

Let now

E
{
[M̂(t)]r | η} :=

∑
k≥1

kr q̂k(t | η) (r = 1, 2, . . . )(2.17)

be the r-th order moment of the number of firings released up to time t for the process
{M̂(t), t ≥ 0}. Under assumption (2.1), the following proposition shows that the first two
moments of the number of firings released up to time t can be expressed as functions of the
probabilities (2.7) of the Poisson process {N (t), t ≥ 0}.
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Proposition 2.2 The first two moments of {M̂(t), t ≥ 0} are given by:

E
{
M̂(t) | η} = 1 − p0(t) +

∑
k≥2

{[
ϕ(t)

](k−1) ∗
∑
j≥k

pj(t)
}

= 1 − p0(t) +
1

t1(S | η)
∑
j≥1

{[
ϕ(t)

](j) ∗
∫ t

0

pj(τ) dτ
}
,

(2.18)

E
{
[M̂(t)]2 | η} = 1 − p0(t) +

∑
k≥2

(2 k − 1)
{[
ϕ(t)

](k−1) ∗
∑
j≥k

pj(t)
}

= 1 − p0(t) +
1

t1(S | η)
∑
j≥1

(2 j + 1)
{[
ϕ(t)

](j) ∗
∫ t

0

pj(τ) dτ
}
,

with pj(t) (j = 0, 1, . . . ) given by (2.7).

Proof. By virtue of (2.17) one has

E
{
M̂(t) | η} =

∑
k≥1

P
{
M̂(t) ≥ k | η}, E

{
[M̂(t)]2 | η} =

∑
k≥1

(2 k − 1)P
{
M̂(t) ≥ k | η},

so that, making use of (2.10) and (2.13), relations (2.18) immediately follow.

Under the assumption of exponential behavior of the firing pdf, we shall now focus
the attention on the sequence of random variables Î0, Î1, . . . , where Î0 identifies with the
FPT through the threshold S starting at initial state X(0) = η < S and Îk (k = 1, 2, . . . )
describes the duration of the interval elapsing between the k-th firing and the (k + 1)-th
firing. Hence, assuming that (2.1) holds, Î0 is exponentially distributed with mean t1(S | η),
whereas the pdf of Îk is:

γ̂(t) ≡ γ̂k(t) =
∫ t

0

ϕ(ϑ)
t1(S | η) exp

{
− t− ϑ

t1(S | η)
}
dϑ (k = 1, 2, . . . ).(2.19)

The first three moments and the variance of ISI’s Î1, Î2, . . . are then:

E(Î) = t1(S | η) + E(R),

E(Î 2) = 2 t21(S | η) + 2E(R) t1(S | η) + E(R2),(2.20)

E(Î 3) = 6 t31(S | η) + 6E(R) t21(S | η) + 3E(R2) t1(S | η) + E(R3),

Var(Î) = t21(S | η) + Var(R),

where E(Rr) denotes the r-th order moment of refractory periods and t1(S | η) is the mean
of the firing times. Since

Γ̂(λ) =
∫ +∞

0

e−λ t γ̂(t) dt =
Φ(λ)

1 + λ t1(S | η) ,(2.21)

is the Laplace transform of γ̂(t), denoting by

ψ̂r(λ | η) :=
∫ +∞

0

e−λ t E
{
[M̂(t)]r | η} dt (r = 1, 2, . . . ),
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the Laplace transform of (2.17), from (2.18) one obtains:

ψ̂1(λ | η) =
1

λ
[
1 + λ t1(S | η)] [

1 − Γ̂(λ)
] , ψ̂2(λ | η) =

1 + Γ̂(λ)

λ
[
1 + λ t1(S | η)][1 − Γ̂(λ)

]2 ·

(2.22)

In the sequel, for some types of refractoriness, use of (2.21) and (2.22) will be made to
evaluate ISI pdf and the first two moments of the number of firings released up to time t.

Note that if (2.1) holds, probabilities q̂k(t|η) (k = 0, 1, . . . ), moments E
{
[M̂(t)]r | η}

r = 1, 2, . . . and ISI density γ̂(t) can be viewed as asymptotic approximations of the corre-
sponding quantities determined in Section 1.

3 Asymptotic behaviors
Assuming that (2.1) holds, in this section we analyze the asymptotic behavior of q̂1(t | η),
E

{
M̂(t) | η}, Var

{
M̂(t) | η} and γ̂(t) for long times.

Proposition 3.1 If

lim
t→+∞ exp

{ t

t1(S | η)
} ∫ +∞

t

ϕ(τ) dτ < +∞,

(3.1)

ζr := lim
t→+∞

∫ t

0

τr ϕ(τ) exp
{ τ

t1(S | η)
}
dτ < +∞ (r = 0, 1)

then,

lim
t→+∞

q̂1(t | η)
p1(t)

= ζ0.(3.2)

Proof. ¿From (2.5) and (2.7) one has:

q̂1(t | η)
p1(t)

=
t1(S | η)

t
exp

{ t

t1(S | η)
} [

1 − p0(t) −
∫ t

0

ϕ(τ)
{

1 − p0(t− τ) − p1(t− τ)
}
dτ

]
=

∫ t

0

ϕ(τ) exp
{ τ

t1(S | η)
}
dτ +

t1(S | η)
t

[
exp

{ t

t1(S | η)
} ∫ +∞

t

ϕ(τ) dτ − 1

+
∫ t

0

(
1 − τ

t1(S | η)
)
ϕ(τ) exp

{ τ

t1(S | η)
}
dτ

]
,

so that, recalling (3.1), one obtains (3.2).

For {M̂(t), t ≥ 0}, the following proposition discloses the behavior for long times of
mean and variance of the number of firings released up to time t.

Proposition 3.2 For large t one has:

E
{
M̂(t) | η} � 1

E(Î)
t+

E(R2)

2 [E(Î)]2
,

(3.3)

Var
{
M̂(t) | η} � Var(Î)

[E(Î)]3
t+

1

[E(Î)]4

{
5
4

[E(R2)]2 +
3
2
t21(S | η)E(R2)

+E(R)E(R2) t1(S | η) − 1
2

[E(R)]2E(R2) − 2
3
E(R3)E(Î)

}
.
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Proof. It follows from (1.15) by noting that, under assumption (2.1), t2(S | η) � 2 t21(S |
η) and t3(S | η) � 6 t31(S | η).

Hence, for long times, mean and variance of {M̂(t), t ≥ 0} are linear functions of t whose
coefficients depend only on the mean firing time and on the first three moments of the
refractory period.

Proposition 3.3 If ζ0 < +∞, with ζ0 defined in (3.1), then

lim
t→+∞

[
exp

{ t

t1(S | η)
}
γ̂(t)

]
=

ζ0
t1(S | η) ·(3.4)

Proof. It follows immediately from (2.19).

Table 1 shows the pdf and its first three moments for the cases of constant, uniform,
exponential, Erlang, truncated normal and hyperexponential distributions of the refractory
period, all having mean 1/ξ. Setting α = ξ t1(S | η), we note that conditions (3.1) hold
if α > 0 in the constant, uniform and Gaussian cases, if α > 1 in the exponential case, if
α > 1/h in Erlang case and if α > max

{
[hp1]−1, [hp2]−1, . . . , [hph]−1

}
in hyperexponential

case. Hence, if these conditions on α are satisfied, from Propositions 3.1 it follows:

q̂1(t | η) � ζ0 t

t1(S | η) exp
{
− t

t1(S | η)
}

(t→ +∞)(3.5)

while from Proposition 3.3 one obtains:

γ̂(t) � ζ0
t1(S | η) exp

{
− t

t1(S | η)
}

(t→ +∞).(3.6)

For the same choices of the refractoriness pdf of Table 1, the explicit expression of ζ0 is
indicated in Table 2. Note that ζ0 depends only on α and always tends to 1 as α increases.

Making use of (3.3), for the same choices of the refractoriness pdf of Table 1, the asymp-
totic behaviors for long times of E

{
M̂(t) | η} and of Var

{
M̂(t) | η} are indicated in Table 3.

In particular, Table 3(a) refers to the mean. It shows that the coefficient of t/t1(S | η) is
always equal to α/(α + 1) and goes to 1 as α increases. Furthermore, the constant term
is always expressed in terms of α; it depends on the choice of the refractoriness pdf and
tends to vanish as α increases. Table 3(b) refers to the variance. It shows that both the
coefficient of t/t1(S | η) and the constant term are always expressed in terms of α and
depend on the refractoriness pdf. Furthermore, as α increases the coefficient of t/t1(S | η)
goes to 1 and the constant term tends to vanish. These considerations lead one to con-
jecture that only for large α, i.e. if t1(S | η) � E(R), the behavior of {M̂(t), t ≥ 0} can
be approximated by that of Poisson process {N (t), t ≥ 0}. Under the assumption of an
exponentially distributed firing density, hereafter we shall consider the cases of constant,
uniform, exponential, Erlang, truncated normal and hyperexponential distributions of the
refractory periods (cf. Table 1). Closed form expressions for the probabilities of occurrence
of multiple firings up to time t and for ISI pdf will be obtained.
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ϕ(t) E(R) E(R2) E(R3)

Constant δ
�
t − 1

ξ

� 1

ξ

1

ξ2

1

ξ3

Uniform

�������
ξ

2
, 0 < t <

2

ξ

0, otherwise

1

ξ

4

3 ξ2

2

ξ3

Exponential

��� ξ e−ξ t , t > 0

0, otherwise

1

ξ

2

ξ2

6

ξ3

Erlang

�������
(ξ h)h

(h − 1)!
th−1 e−ξ h t , t > 0

0, otherwise

1

ξ

h + 1

h ξ2

(h + 1)(h + 2)

h2 ξ3

(h = 1, 2, . . . )

Gaussian

�����
2 ξ

π
exp

�
− ξ2 t2

π

�
, t > 0

0, otherwise

1

ξ

π

2 ξ2

π

ξ3

Hyperexponential

���������
h ξ

h�
i=1

p2
i e−h pi ξ t, t > 0

0, otherwise.

1

ξ

2

(h ξ)2

h�
i=1

1

pi

6

(h ξ)3

h�
i=1

1

p2
i

(h = 1, 2, . . . , 0 < pi < 1
p1 + p2 + . . . + ph = 1)

Table 1: Density ϕ(t) of the duration of the refractory periods and first three moments.
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Constant e1/α (α > 0)

Uniform
α

2

�
e2/α − 1

�
(α > 0)

Exponential
α

α − 1
(α > 1)

Erlang

	
α h

α h − 1


h

(α > 1/h)

Gaussian exp
� π

4 α2

��
1 + Erf

�√π

2 α

��
(α > 0)

Hyperexponential
h�

i=1

α h p2
i

α h pi − 1
α > max



[hp1]

−1, [hp2]
−1, . . . , [hph]−1

�

Table 2: The limit ζ0 in (3.2) is listed for the same choices of the refractoriness pdf of Table 1.

4 Constant Refractory Period
We assume that the refractoriness pdf is given by:

ϕ(t) = δ
(
t− 1

ξ

)
(ξ > 0),(4.1)

where δ(t) denotes the Dirac delta-function.
In the presence of constant refractoriness, the following proposition shows that (2.5)

and (2.6) can be expressed as a linear combinations of probabilities of the Poisson process
{N (t), t ≥ 0}.

Proposition 4.1 Under assumption (4.1), relation (2.4) holds and

q̂1(t | η) = 1 − p0(t) −H

(
t− 1

ξ

) ∑
j≥2

pj

(
t− 1

ξ

)
,

(4.2)

q̂k(t | η) = H

(
t− k − 1

ξ

) ∑
j≥k

pj

(
t− k − 1

ξ

)
−H

(
t− k

ξ

) ∑
j≥k+1

pj

(
t− k

ξ

)
(k = 2, 3, . . . ),

where pj(t) (j = 0, 1, . . . ) is given in (2.7) and where

H(t) =
{

0, t ≤ 0
1, t > 0(4.3)

denotes the Heaviside unit step function.
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(a) Asymptotic behavior of E

�M(t) | η

�

Constant
α

α + 1

t

t1(S | η)
+

1

2 (α + 1)2

Uniform
α

α + 1

t

t1(S | η)
+

2

3 (α + 1)2

Exponential
α

α + 1

t

t1(S | η)
+

1

(α + 1)2

Erlang
α

α + 1

t

t1(S | η)
+

h + 1

2 h (α + 1)2

Gaussian
α

α + 1

t

t1(S | η)
+

π

4 (α + 1)2

Hyperexponential
α

α + 1

t

t1(S | η)
+

1

h2 (α + 1)2

h�
i=1

1

pi

(b) Asymptotic behavior of Var

�M(t) | η

�

Constant
α3

(α + 1)3
t

t1(S | η)
+

1

(α + 1)4

	
3 α2

2
+

α

3
+

1

12




Uniform
α

(α + 1)3

�
α2 +

1

3

� t

t1(S | η)
+

2

(α + 1)4

	
α2 +

1

9




Exponential
α

(α + 1)3

�
α2 + 1

� t

t1(S | η)
+

α

(α + 1)4

�
3 α − 2

�

Erlang
α

(α + 1)3

�
α2 +

1

h

� t

t1(S | η)
+

1

(α + 1)4

�
3 (h + 1)α2

2 h
+

(h + 1) (h − 4)α

3 h2
+

h2 − 1

12 h2

�

Gaussian
α

(α + 1)3

�
α2 +

π

2
− 1

� t

t1(S | η)
+

π

(α + 1)4

�3 α2

4
− α

6
+

5 π

16
− 11

12

�

Hyperexponential
α

(α + 1)3

�
α2 +

1

h2

	
2

h�
i=1

1

pi
− h2


�
t

t1(S | η)
+

1

(α + 1)4

�
3 α2

h2

h�
i=1

1

pi

+
α

h3

�
h

h�
i=1

1

pi
− 2

h�
i=1

1

p2
i

�
+

1

h4

�
5

	 h�
i=1

1

pi


2

− h2
h�

i=1

1

pi
− 4 h

h�
i=1

1

p2
i

��

Table 3: Asymptotic behavior of E
��M(t) | η

�
in (a) and of Var

��M(t) | η
�

in (b) for the same

choices of the refractoriness pdf’s of Table 1.
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Proof. The Laplace transform of (4.1) is

Φ(λ) = e−λ/ξ,(4.4)

so that [Φ(λ)]k = e−λ k/ξ (k = 1, 2, . . . ) is (cf. [14], p. 1144, n. 27) the Laplace transform of

[ϕ(t)](k) = δ

(
t− k

ξ

)
(k = 1, 2, . . . ).(4.5)

Making use of (4.5), one has:[
ϕ(t)

](k) ∗
∫ t

0

pk(τ) dτ =
∫ t

0

dτ δ

(
τ − k

ξ

) ∫ t−τ

0

pk(ϑ) dϑ

= H

(
t− k

ξ

) ∫ t−k/ξ

0

pk(ϑ) dϑ

= t1(S | η) H
(
t− k

ξ

) ∑
j≥k+1

pj

(
t− k

ξ

)
(k = 1, 2, . . . ),(4.6)

where the last equality follows from (2.13). Hence, by virtue of (4.6), Equations (2.5) and
(2.6) lead to (4.2).

Note that Proposition 4.1 in particular yields the results obtained in [16] and [22] con-
cerning the output probability function for a non-linear switching element with finite dead
time τ = 1/ξ subject to a Poisson distributed sequence of impulses. Indeed, assuming
that its net input in (0, t) consists of a sequence of over-threshold pulses whose occurrence
times are Poisson distributed with parameter [t1(S | η)]−1, Proposition 4.1 gives the output
probability function. In particular, from the first of (4.2) one has:

q̂1(t | η) =

⎧⎪⎨⎪⎩
1 − p0(t) , 0 ≤ t ≤ 1/ξ

p0

(
t− 1

ξ

)
+ p1

(
t− 1

ξ

)
− p0(t), t > 1/ξ.

(4.7)

Setting

t∗1(S | η) :=
1
ξ

+ t1(S | η) exp
{
− 1
ξ t1(S | η)

}
,(4.8)

we note that q̂1(t | η) is monotonic increasing for t < t∗1(S | η) and monotonic decreasing
for t > t∗1(S | η). Furthermore, since t∗1(S | η) ≥ t1(S | η), the value t = t∗1(S | η) that
maximize q̂1(t | η) is greater than, or equal to, the value t = t1(S | η) that maximize p1(t).

Under assumption (4.1), a study of the first two moments of process {M̂(t), t ≥ 0} can
be performed.

Proposition 4.2 Under assumption (4.1), one has:

E
{
M̂(t) | η} =

�t ξ�∑
k=0

[
1 −

k∑
j=0

pj

(
t− k

ξ

)]
,

(4.9)

E
{
[M̂(t)]2 | η} =

�t ξ�∑
k=0

(2 k + 1)
[
1 −

k∑
j=0

pj

(
t− k

ξ

)]
,

where �x� denotes the largest integer less than or equal to x.
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Proof. Making use of (2.10), (2.13) and (4.6) one has:

P
{
M̂(t) ≥ k | η} =

∑
j≥k

q̂j(t | η) =

⎧⎪⎪⎨⎪⎪⎩
1 − p0(t), k = 1

H

(
t− k − 1

ξ

) ∑
j≥k

pj

(
t− k − 1

ξ

)
k = 2, 3, . . .

(4.10)

so that, by virtue of (2.18), one obtains (4.9).

We point out that, due to (4.1), Eq. (2.19) leads to:

γ̂(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, t <

1
ξ

1
t1(S | η) exp

{
− 1
t1(S | η)

(
t− 1

ξ

)}
, t >

1
ξ
,

(4.11)

that is seen to coincide with the result (8) in [22] related to the pulse-interval pdf for
a Poisson process of parameter [t1(S | η)]−1 with a fixed dead time 1/ξ. Hence, in the
presence of constant refractoriness, if t > 1/ξ, ISI pdf is simply obtained by replacing t with
t − 1/ξ in the exponential firing density (2.1). Furthermore, as ξ → +∞, (4.11) identifies
with the exponential firing density (2.1).

5 Uniform Refractory Period
Assume that the refractoriness pdf is given by:

ϕ(t) =

⎧⎪⎨⎪⎩
ξ

2
, 0 < t <

2
ξ

0, otherwise

(ξ > 0).(5.1)

Proposition 5.1 Under assumption (5.1), relation (2.4) holds and there hold:

q̂1(t | η) =
1

t1(S | η) f1(t) −
ξ

2 t21(S | η)

min
(
1, �ξ t/2�

)∑
n=0

(
1
n

)
(−1)n f2

(
t− 2n

ξ

)
,

(5.2)

q̂k(t | η) =
(

ξ

2 t1(S | η)
)k−1 {

1
t1(S | η)

min
(
k−1, �ξ t/2�

)∑
n=0

(
k − 1
n

)
(−1)n fk

(
t− 2n

ξ

)

− ξ

2 t21(S | η)

min
(
k, �ξ t/2�

)∑
n=0

(
k

n

)
(−1)n fk+1

(
t− 2n

ξ

)}
(k = 2, 3, . . . )

where

fk(t) = (−1)k[t1(S | η)]2k−1
k−1∑
j=0

(
2k − j − 2
k − 1

)
1
j!

[
t

t1(S | η)
]j [

exp
{
− t

t1(S | η)
}
− (−1)j

]
(k = 1, 2, . . . ).(5.3)
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Proof. The Laplace transform of (5.1) is:

Φ(λ) =
ξ

2λ

(
1 − exp

{
− 2λ

ξ

})
,(5.4)

so that, from (2.3) one has:

∑
j≥k

π̂j(λ | η) =
( ξ

2

)k−1 1

λk
[
1 + λ t1(S | η)]k

(
1 − exp

{
− 2λ

ξ

})k−1

(k = 1, 2 . . . ).(5.5)

Note that (cf. [4], p. 238, n. 5)

L−1

[
1

λk
(
λ+

1
t1(S | η)

)k

]
=

√
π

(k − 1)!
[
t1(S | η) t]k−1/2 exp

{
− t

2 t1(S | η)
}

× tk−1/2 Ik−1/2

[
t

2 t1(S | η)
]

(k = 1, 2, . . . ),(5.6)

where L−1 denotes the inverse Laplace transform and Iν(z) is the Bessel function of first
kind. Since (cf. [14], p. 967, n. 8467)

Ik−1/2(z) =
1√
2 π z

[
ez

k−1∑
n=0

(−1)n (k + n− 1)!
n! (k − n− 1)!

(
2 z

)n + (−1)k e−z
k−1∑
n=0

(k + n− 1)!
n! (k − n− 1)!

(
2 z

)n

]
(k = 1, 2, . . . ),

the right-hand side of (5.6) is seen to coincide with fk(t) given in (5.3). Then, making use
of (5.6), one obtains (cf. [4] , p. 244, n. 23):

L−1

[
1

λk
(
λ+

1
t1(S | η)

)k

(
1−exp

{
−2λ
ξ

})k−1
]

=
min

(
k−1, �ξ t/2�

)∑
n=0

(
k − 1
n

)
(−1)nfk

(
t− 2n

ξ

)
(k = 1, 2, . . . ).(5.7)

Taking now the inverse Laplace transform of (5.5), by virtue of (5.7), one obtains:

∑
j≥k

q̂j(t | η) =
1

t1(S | η)
(

ξ

2 t1(S | η)
)k−1 min

(
k−1, �ξ t/2�

)∑
n=0

(
k − 1
n

)
(−1)n fk

(
t− 2n

ξ

)
(k = 1, 2, . . . ).(5.8)

Hence, making use of (5.8) in (2.11), relations (5.2) are easily proved.
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Note that, as easily seen, the first of (5.2) can also be written as:

q̂1(t | η) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 + ξ t1(S | η) − ξ t

2
−

[
1 + ξ t1(S | η) +

ξ t

2

]
exp

{
− t

t1(S | η)
}
,

0 < t ≤ 2/ξ[ξ t
2

− 1 + ξ t1(S | η)
]

exp
{
− 1
t1(S | η)

(
t− 2

ξ

)}
−

[
1 + ξ t1(S | η) +

ξ t

2

]
exp

{
− t

t1(S | η)
}
, t > 2/ξ

(5.9)

Proposition 5.2 Under assumption (5.1), one has:

E
{
M(t) | η}=

1
t1(S | η)

∑
k≥0

[
ξ

2 t1(S | η)
]k min

(
k, �ξ t/2�

)∑
n=0

(
k

n

)
(−1)n fk+1

(
t− 2n

ξ

)
,

(5.10)

E
{
[M(t)]2 | η}=

1
t1(S | η)

∑
k≥0

(2 k+1)
[

ξ

2 t1(S | η)
]k min

(
k, �ξ t/2�

)∑
n=0

(
k

n

)
(−1)nfk+1

(
t− 2n

ξ

)
,

with fk(t) defined in (5.3).

Proof. The proof follows from (2.18) making use of (5.8).

It is interesting to note that, by virtue of (5.1), from (2.19) one obtains:

γ̂(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ξ

2

[
1 − exp

{
− t

t1(S | η)
}]
, 0 ≤ t <

2
ξ

ξ

2
exp

{
− t

t1(S | η)
}[

exp
{ 2
ξ t1(S | η)

}
− 1

]
, t ≥ 2

ξ
·

(5.11)

We remark that (5.11) becomes the exponential firing density (2.1) as ξ → +∞.

6 Exponential Refractory Period
Let now consider the case of exponential refractoriness pdf:

ϕ(t) =

⎧⎨⎩ ξ e−ξ t , t > 0

0, otherwise
(ξ > 0).(6.1)

Proposition 6.1 Under assumption (6.1), relation (2.4) holds and one has:

(i) if ξ = [t1(S | η)]−1, then

q̂k(t | η) = e−ξ t

[
(ξ t)2k−1

(2k − 1)!
+

(ξ t)2k

(2k)!

]
(k = 1, 2, . . . );(6.2)
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(ii) if ξ �= [t1(S | η)]−1, then

q̂k(t | η) = Ak(t) e−t/t1(S|η) +Bk(t) e−ξ t ,(6.3)

where for k = 1, 2, . . . one has

Ak(t) =
(−1)k

k!

[
ξ t

1 − ξ t1(S | η)
]k

+ (−1)k

[
ξ t1(S | η)

1 − ξ t1(S | η)
]k−1

×
{

ξ t1(S | η)
1 − ξ t1(S | η)

k−1∑
r=0

(
2k − r − 1
k − 1

)
1

[t1(S | η)]r [1 − ξ t1(S | η)]k−r

tr

r!

+
k−1∑
r=0

(
2k − r − 2
k − 1

)
1

[t1(S | η)]r [1 − ξ t1(S | η)]k−r

tr

r!

}
,

(6.4)

Bk(t) = − 1
[1 − ξ t1(S | η)]k

k−1∑
r=0

(−1)k−r

(
2k − r − 1

k

) [
ξ t1(S | η)

1 − ξ t1(S | η)
]k−r (ξ t)r

r!

− 1
[1 − ξ t1(S | η)]k

k−1∑
r=0

(−1)k−r

(
2k − r − 2
k − 1

) [
ξ t1(S | η)

1 − ξ t1(S | η)
]k−r−1 (ξ t)r

r!
·

Proof. The Laplace transform of (6.1) is:

Φ(λ) =
ξ

λ+ ξ
,(6.5)

so that, from (2.3) it follows:

∑
j≥k

π̂j(λ | η) =
ξk−1

[t1(S | η)]k
1

λ (λ+ ξ)k−1
(
λ+

1
t1(S | η)

)k
(k = 1, 2, . . . ).(6.6)

We now consider separately the following two cases: (i) ξ = [t1(S | η)]−1 and (ii) ξ �= [t1(S |
η)]−1.
(i) Let ξ = [t1(S | η)]−1. Then, from (6.6) one has:∑

j≥k

π̂j(λ | η) = ξ2k−1 1
λ (λ+ ξ)2k−1

(k = 1, 2, . . . ).(6.7)

Since (cf. [4] , p. 232, n. 18)

L−1

[
1

λ
(
λ+ a

)n

]
=

1
an

[
1 − e−a t

n−1∑
r=0

(a t)r

r!

]
(n = 1, 2, . . . ),(6.8)

taking the inverse Laplace transform of (6.7), one obtains:

∑
j≥k

q̂j(t | η) = 1 − e−ξ t
2 k−2∑
r=0

(ξ t)r

r!
(k = 1, 2, . . . ).(6.9)
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Hence, by virtue of (2.11) and (6.9), one is immediately lead to (6.2).

(ii) Let ξ �= [t1(S | η)]−1. We note that

L−1

[
1

λ (λ+ ξ)k−1
(
λ+

1
t1(S | η)

)k

]
=

∫ t

0

dk(τ) dτ (k = 1, 2, . . . ),(6.10)

where (cf. [4] , p. 232, n. 21)

d1(t) = e−t/t1(S|η) ,

(6.11)

dk(t) = e−t/t1(S|η) (−1)k−1
k−1∑
j=0

(
2k − j − 3
k − 2

) [
t1(S | η)

1 − ξ t1(S | η)
]2k−j−2

tj

j!

+e−ξ t
k−2∑
j=0

(−1)k−j

(
2k − j − 3
k − 1

) [
t1(S | η)

1 − ξ t1(S | η)
]2k−j−2

tj

j!
(k = 2, 3, . . . ).

Taking the inverse Laplace transform of (6.6) and making use of (6.10) and (6.11) one has:∑
j≥1

q̂j(t | η) = 1 − e−t/t1(S|η) ,

(6.12) ∑
j≥k

q̂j(t | η) =
ξk−1

[t1(S | η)]k
∫ t

0

dk(τ) dτ = Uk + Vk(t) e−t/t1(S|η) + Zk(t) e−ξ t

(k = 2, 3, . . . ),

where for k = 2, 3, . . . we have set:

Uk =
[−ξ t1(S | η)]k−1

k−1∑
j=0

(
2 k − j − 3
k − 2

)
1

[1 − ξ t1(S | η)]2 k−j−2

+
k−2∑
j=0

(−1)k−j

(
2 k − j − 3
k − 1

)
[ξ t1(S | η)]k−j−2

[1 − ξ t1(S | η)]2 k−j−2
,

Vk(t) = −[−ξ t1(S | η)]k−1
k−1∑
j=0

(
2 k − j − 3
k − 2

)
1

[1 − ξ t1(S | η)]2 k−j−2

j∑
i=0

1
i!

( t

t1(S | η)
)i

,

Zk(t) = −
k−2∑
j=0

(−1)k−j

(
2 k − j − 3
k − 1

)
[ξ t1(S | η)]k−j−2

[1 − ξ t1(S | η)]2 k−j−2

j∑
i=0

(ξ t)i

i!
·

Hence, by virtue of (6.12), from (2.11) one obtains:

q̂1(t | η) = 1 − e−t/t1(S|η) − U2 − V2(t) e−t/t1(S|η) − Z2(t) e−ξ t,

(6.13)
q̂k(t | η) = Uk − Uk+1 + [Vk(t) − Vk+1(t)] e−t/t1(S|η)

+[Zk(t) − Zk+1(t)] e−ξ t (k = 2, 3, . . . ).
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Some rather cumbersome calculations show that

U2 = 1, −1 − V2(t) = A1(t), Z2(t) = B1(t),
Uk − Uk+1 = 0, Vk(t) − Vk+1(t) = Ak(t), Zk(t) − Zk+1(t) = Bk(t)

(k = 2, 3, . . . ),

where Ak(t) and Bk(t) (k = 1, 2, . . . ) are given in (6.4). Hence, (6.13) ultimately lead to
(6.3). This completes the proof of Propositions 6.1

Note that in particular for k = 1 from (6.2) and (6.3) one obtains:

q̂1(t | η) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

e−ξ t ξ t
(
1 +

ξ t

2

)
, ξ = [t1(S | η)]−1

1
[1 − ξ t1(S | η)]2

{
e−ξ t + e−t/t1(S|η)

[
−1 − ξ t+ ξ2 t1(S | η) t

]}
,

ξ �= [t1(S | η)]−1.

(6.14)

Remark 6.1 Under assumption (6.1), if ξ = [t1(S | η)]−1, q̂k(t | η) identifies with
P

{�N(t)/2� = k
}

(k = 0, 1, . . . ), where {N (t), t ≥ 0} is the Poisson process of param-
eter [t1(S | η)]−1.

Proof. Making use of (2.7), one has:

P
(⌊N(t)

2

⌋
= 0

)
= p0(t) ≡ e−ξ t

(6.15)

P
(⌊N(t)

2

⌋
= k

)
= P

{
2 (k − 1) < N(t) ≤ 2 k

}
= p2k−1(t) + p2k(t)

≡ e−ξ t

[
(ξ t)2k−1

(2k − 1)!
+

(ξ t)2k

(2k)!

]
(k = 1, 2, . . . ).

By comparing (6.2) and (6.15), the thesis follows.

With ξ = [t1(S | η)]−1, let us now set:

t∗k(S | η) :=

√
2 k (2 k − 1)

ξ
≡

√
2 k (2 k − 1) t1(S | η) (k = 1, 2, . . . ).

Then, q̂k(t | η) (k = 1, 2, . . . ) is monotonic increasing for t < t∗k(S | η) and monotonic
decreasing for t > t∗k(S | η). Hence, if ξ = [t1(S | η)]−1, the value t = t∗k(S | η) that
maximize q̂k(t | η) is greater then the value t = k t1(S | η) that maximize pk(t) for all
k = 1, 2, . . .

Proposition 6.2 Under assumption (6.1), one has:

E
{
M̂(t) | η} =

ξ t

1 + ξ t1(S | η) +
1

[1 + ξ t1(S | η)]2
[
1 − exp

{
− 1 + ξ t1(S | η)

t1(S | η) t
}]
,

(6.16)

E
{
[M̂(t)]2 | η} =

ξ2 t2

[1 + ξ t1(S | η)]2 +

[
3 + ξ2 t21(S | η)] ξ t
[1 + ξ t1(S | η)]3 +

1 + 3 ξ2 t21(S | η) − 2 ξ t1(S | η)
[1 + ξ t1(S | η)]4

+
{

2 ξ t
[1 + ξ t1(S | η)]3 − 3 ξ2 t21(S | η) − 2 ξ t1(S | η) + 1

[1 + ξ t1(S | η)]4
}

exp
{
− 1 + ξ t1(S | η)

t1(S | η) t
}
.
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Proof. Making use of (6.5) we re-write (2.22) in the following form:

ψ̂1(λ | η) =
λ+ ξ

λ2
[
1 + ξ t1(S | η) + λ t1(S | η)] =

1
t1(S | η)

{
1

λ
(
λ+ a

) +
ξ

λ2
(
λ+ a

)}
,

(6.17)

ψ̂2(λ | η) = ψ̂1(λ | η) +
2 ξ (λ+ ξ)

λ3
[
1 + ξ t1(S | η) + λ t1(S | η)]2

= ψ̂1(λ | η) +
2 ξ

t21(S | η)
{

1

λ2
(
λ+ a

)2 +
ξ

λ3
(
λ+ a

)2

}
,

where, for simplicity, we have set
[
1 + ξ t1(S | η)]/t1(S | η) = a. Since

L−1
[ 1
λ (λ+ a)

]
=

∫ t

0

e−a τ dτ =
1
a

(
1 − e−a t

)
,

L−1
[ 1
λ2 (λ+ a)

]
=

∫ t

0

τ e−a (t−τ) dτ =
t

a
− 1
a2

(
1 − e−a t

)
,

L−1
[ 1
λ2 (λ+ a)2

]
=

∫ t

0

τ (t− τ) e−a τ dτ =
a t+ 2
a3

e−a t +
a t− 2
a3

,

L−1
[ 1
λ3 (λ+ a)2

]
=

1
2

∫ t

0

τ (t− τ)2 e−a τ dτ = − (a t+ 3)
a4

e−a t +
a2 t2 − 4 a t+ 6

2 a4
,

taking the inverse Laplace transforms of (6.17), relations (6.16) follow.

Note that, by virtue of (6.1), Eq. (2.19) leads to:

γ̂(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ξ2 t e−ξ t, ξ = [t1(S | η)]−1

ξ
[
e−ξ t − e−t/t1(S|η)

]
1 − ξ t1(S | η) , ξ �= [t1(S | η)]−1 .

(6.18)

Hence, if ξ �= [t1(S | η)]−1, when ξ → +∞ ISI pdf (6.18) becomes the exponential firing
density (2.1).

7 Erlang Refractory Period
We now consider an Erlang distributed refractory period, with pdf:

ϕ(t) =

⎧⎪⎪⎨⎪⎪⎩
(ξ h)h

(h− 1)!
th−1 e−ξ h t , t > 0

0, otherwise

(ξ > 0, h = 1, 2, . . . ).(7.1)

Hence, refractory period may be thought of as consisting of h independent exponential stages
each with mean (ξ h)−1, so that (7.1) identifies with the pdf of the sum of h independent
and exponentially distributed random variables having mean (ξ h)−1.
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Proposition 7.1 Under assumption (7.1), for h = 1, 2, . . . relation (2.4) holds and

(i) if ξ = [h t1(S | η)]−1, then

q̂k(t | η) = e−ξ h t

(h+1)k∑
r=(h+1)k−h

(ξ h t)r

r!
(k = 1, 2, . . . );(7.2)

(ii) if ξ �= [h t1(S | η)]−1, then

q̂1(t | η) = 1 − e−t/t1(S|η) − U2,h − V2,h(t) e−t/t1(S|η) − Z2,h(t) e−ξ h t,

(7.3)
q̂k(t | η) = Uk,h − Uk+1,h +

[
Vk,h(t) − Vk+1,h(t)

]
e−t/t1(S|η)

+
[
Zk,h(t) − Zk+1,h(t)

]
e−ξ h t (k = 2, 3, . . . ),

where for k = 2, 3, . . . one has:

Uk,h =
[−ξ h t1(S | η)]h(k−1)

k−1∑
j=0

(
h(k − 1) + k − j − 2

h(k − 1) − 1

)
1

[1 − ξ h t1(S | η)]h(k−1)+k−j−1

+
h(k−1)−1∑

j=0

(
h(k − 1) + k − j − 2

k − 1

)
[−ξ h t1(S | η)]h(k−1)−j−1

[1 − ξ h t1(S | η)]h(k−1)+k−j−1
,

(7.4)

Vk,h(t) = −[−ξ h t1(S | η)]h(k−1)
k−1∑
j=0

(
h(k − 1) + k − j − 2

h(k − 1) − 1

)

× 1
[1 − ξ h t1(S | η)]h(k−1)+k−j−1

j∑
i=0

1
i!

[ t

t1(S | η)
]i

,

Zk,h(t) = −
h(k−1)−1∑

j=0

(
h(k − 1) + k − j − 2

k − 1

)
[−ξ h t1(S | η)]h(k−1)−j−1

[1 − ξ h t1(S | η)]h(k−1)+k−j−1

j∑
i=0

(ξ h t)i

i!
·

Proof. The proof is an extension of the proof provided for the exponential case. The
Laplace transform of (7.1) is:

Φ(λ) =
( ξ h

λ+ ξ h

)h

(h = 1, 2, . . . ),(7.5)

so that from (2.3) for h = 1, 2, . . . it follows:∑
j≥k

π̂j(λ | η) =
(ξ h)h(k−1)

[t1(S | η)]k
1

λ (λ+ ξ h)h(k−1)
(
λ+

1
t1(S | η)

)k
(k = 1, 2, . . . ).(7.6)

We now consider separately the following two cases: (i) ξ = [h t1(S | η)]−1 and (ii) ξ �=
[h t1(S | η)]−1.
(i) Let ξ = [h t1(S | η)]−1. From (7.6) one has:∑

j≥k

π̂j(λ | η) = (ξ h)h(k−1)+k 1
λ (λ+ ξ h)h(k−1)+k

(k = 1, 2, . . . ),(7.7)
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so that, recalling (6.8), one finds:

∑
j≥k

q̂j(t | η) = 1 − e−ξ h t

(h+1) (k−1)∑
r=0

(ξ h t)r

r!
(k = 1, 2, . . . ).(7.8)

Hence, by virtue of (2.11) and (7.8), one is immediately led to (7.2).

(ii) Let ξ �= [h t1(S | η)]−1. We note that for h = 1, 2, . . . there holds:

L−1

[
1

λ (λ+ ξ h)h(k−1)
(
λ+

1
t1(S | η)

)k

]
=

∫ t

0

dk,h(τ) dτ (k = 1, 2, . . . ),(7.9)

where (cf. [4] , p. 232, n. 21):

d1,h(t) = e−t/t1(S|η) ,

(7.10)

dk,h(t) = e−t/t1(S|η) (−1)s
k−1∑
j=0

(
s+ k − j − 2

s− 1

) [
t1(S | η)

1 − ξ h t1(S | η)
]s+k−j−1

tj

j!

+e−ξ h t
s−1∑
j=0

(−1)s−j−1

(
s+ k − j − 2

k − 1

) [
t1(S | η)

1 − ξ h t1(S | η)
]s+k−j−1

tj

j!

(k = 2, 3, . . . ),

with s = h(k − 1). Taking now the inverse Laplace transform of (7.6) and making use of
(7.9) and (7.10), one obtains:∑

j≥1

q̂j(t | η) = 1 − e−t/t1(S|η) ,

(7.11) ∑
j≥k

q̂j(t | η) =
(ξ h)h(k−1)

[t1(S | η)]k
∫ t

0

dk,h(τ) dτ

= Uk,h + Vk,h(t) e−t/t1(S|η) + Zk,h(t) e−ξ h t (k = 2, 3, . . . ),

where Uk,h, Vk,h(t) and Zk,h(t) are given in (7.4). Hence, by virtue of (7.11), from (2.11)
one finally obtains (7.3).

Note that for k = 1, from (7.2) and (7.3) in particular one obtains:

q̂1(t | η)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e−ξ h t
h+1∑
r=1

(ξ h t)r

r!
, ξ = [h t1(S | η)]−1

{[
ξ h t1(S | η) − h− 1
ξ h t1(S | η) − 1

+
t

t1(S | η)
] [

ξ h t1(S | η)
ξ h t1(S | η) − 1

]h

− 1
}
e−t/t1(S|η)

+
h−1∑
r=0

(ξ h t)r

r!

{
1 −

[
ξ h t1(S | η)

ξ h t1(S | η) − 1

]h−r[
1 − h− r

ξ h t1(S | η) − 1

]}
e−ξ h t

ξ �= [h t1(S | η)]−1.

(7.12)
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Remark 7.1 Under assumption (7.1), if ξ = [h t1(S | η)]−1, q̂k(t | η) identifies with
P

{�N(t)/(h+1)� = k
}

(k = 0, 1, . . . ), where {N (t), t ≥ 0} is a Poisson process of parameter
[t1(S | η)]−1.

Proof. Making use of (2.7), one has:

P
(⌊ N(t)
h+ 1

⌋
= 0

)
= p0(t) ≡ e−ξ h t,

(7.13)

P
(⌊ N(t)
h+ 1

⌋
= k

)
= P

{
(h+ 1) (k − 1) < N(t) ≤ (h+ 1) k

}
=

(h+1) k∑
r=0

pr(t) −
(h+1) (k−1)∑

r=0

pr(t) ≡ e−ξ h t

(h+1) k∑
r=(h+1) k−h

(ξ h t)r

r!
(k = 1, 2, . . . ).

By comparison of (7.2) and (7.13), the thesis follows.

By virtue of (7.1), from (2.19) one has:

γ̂(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ
(ξ h t)h

(h− 1)!
e−ξ h t, ξ = [h t1(S | η)]−1

1
t1(S | η)

[ ξ h t1(S | η)
ξ h t1(S | η) − 1

]h
{
e−t/t1(S|η) − e−ξ h t

h−1∑
r=0

[
ξ h t1(S | η) − 1

t1(S | η)
]r
tr

r!

}
,

ξ �= [h t1(S | η)]−1 .

(7.14)

If ξ �= [h t1(S | η)]−1, ISI pdf (7.14) becomes the exponential firing density (2.1) when
ξ → +∞.

8 Truncated Gaussian Refractory Period
Let us now consider the case of Gaussian refractoriness pdf truncated in (0,+∞):

ϕ(t) =

⎧⎪⎨⎪⎩
2 ξ
π

exp
{
− ξ2 t2

π

}
, t > 0

0, otherwise

(ξ > 0).(8.1)

The Laplace transform of ϕ(t) is:

Φ(λ) = exp
{λ2π

4 ξ2
}

Erfc
(λ√π

2 ξ

)
= exp

{λ2π

4 ξ2
}[

1 − Erf
(λ√π

2 ξ

)]
,(8.2)

where

Erf(x) =
2√
π

∫ x

0

e−u2
du, Erfc(x) =

2√
π

∫ +∞

x

e−u2
du (x ∈ R)
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denote the error function and the complementary error function, respectively. Making use
of (8.2), from (2.3) there follows:

∑
j≥k

π̂j(λ | η) =
1

[t1(S | η)]k
1

λ
(
λ+

1
t1(S | η)

)k

[
exp

{λ2π

4 ξ2
}

Erfc
(λ√π

2 ξ

)]k−1

(k = 1, 2, . . . ).(8.3)

Although (8.3) is much too complicated to lead to any useful expression for its inverse
Laplace transforms, use of it for k = 2 can be made to calculate q̂1(t | η).

Proposition 8.1 Under assumption (8.1), relation (2.4) holds and one has:

q̂1(t | η) = Erfc
( ξ t√

π

)
−

[
1 +

1
ξ t1(S | η)

]
exp

{
− t

t1(S | η)
}

+
1

ξ t1(S | η) exp
{
−ξ

2 t2

π

}
+ exp

{
− t

t1(S | η) +
π

4 ξ2 t21(S | η)
}[

1 +
t

t1(S | η) − π

2 ξ2 t21(S | η)
]

×
[
Erf

( ξ t√
π
−

√
π

2 ξ t1(S | η)
)

+ Erf
( √

π

2 ξ t1(S | η)
)]
.(8.4)

Proof. Setting k = 2 in (8.3),

∑
j≥2

π̂j(λ | η) =
1

[t1(S | η)]2
1(

λ+
1

t1(S | η)
)2

[
1
λ

exp
{λ2π

4 ξ2
}

Erfc
(λ√π

2 ξ

)]
.(8.5)

Since

L−1

[
1(

λ+ a
)2

]
= t e−a t,

and (cf. [4] , p. 266, n. 3)

L−1

[
1
λ
eb λ2

Erfc
(
λ
√
b
)]

= Erf
( t

2
√
b

)
(Re b > 0),

after taking the inverse Laplace transform of (8.5), one obtains:

∑
j≥2

q̂j(t | η) =
1

[t1(S | η)]2
∫ t

0

(t− τ) exp
{
− t− τ

t1(S | η)
}

Erf
( ξ τ√

π

)
dτ

=
2 ξ
π

1
[t1(S | η)]2

∫ t

0

dϑ exp
{
−ξ

2 ϑ2

π

} ∫ t−ϑ

0

x exp
{
− x

t1(S | η)
}
dx

=
2 ξ
π

∫ t

0

exp
{
−ξ

2 ϑ2

π

}[
1 − exp

{
− t− ϑ

t1(S | η)
}(

1 +
t− ϑ

t1(S | η)
)]

dϑ.(8.6)
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Since ∫ t

0

exp
{
−ξ

2 ϑ2

π

}
dϑ =

π

2 ξ
Erf

( ξ t√
π

)
,∫ t

0

exp
{
−

[ξ2 ϑ2

π
− ϑ

t1(S | η)
]}

dϑ =
π

2 ξ
exp

{ π

4 ξ2 t21(S | η)
}

×
[
Erf

( ξ t√
π
−

√
π

2 ξ t1(S | η)
)

+ Erf
( √

π

2 ξ t1(S | η)
)]
,∫ t

0

(t− ϑ) exp
{
−

[ξ2 ϑ2

π
− ϑ

t1(S | η)
]}

dϑ =
π

2 ξ2

[
exp

{
−ξ

2 t2

π
+

t

t1(S | η)
}
− 1

]
+
π

2 ξ
exp

{ π

4 ξ2 t21(S | η)
}[
t− π

2 ξ2 t1(S | η)
]

×
[
Erf

( ξ t√
π
−

√
π

2 ξ t1(S | η)
)

+ Erf
( √

π

2 ξ t1(S | η)
)]
,

relation (8.6) can also be written as:∑
j≥2

q̂j(t | η) = Erf
( ξ t√

π

)
+

1
ξ t1(S | η)

[
exp

{
− t

t1(S | η)
}
− exp

{
−ξ

2 t2

π

}]

− exp
{
− t

t1(S | η) +
π

4 ξ2 t21(S | η)
} [

1 +
t

t1(S | η) − π

2 ξ2 t21(S | η)
]

×
[
Erf

( ξ t√
π
−

√
π

2 ξ t1(S | η)
)

+ Erf
( √

π

2 ξ t1(S | η)
)]
.(8.7)

Hence, making use of (2.11) for k = 1, by virtue of (2.4) and (8.7), Eq. (8.4) immediately
follows.

Due to (8.1), Eq. (2.19) leads to the ISI pdf:

γ̂(t) =
1

t1(S | η) exp
{
− t

t1(S | η) +
π

4 ξ2 t21(S | η)
}

×
[
Erf

( ξ t√
π
−

√
π

2 ξ t1(S | η)
)

+ Erf
( √

π

2 ξ t1(S | η)
)]
,(8.8)

that is seen to coincide with the result (14) in [22] related to the pulse-interval pdf for a
Poisson process of parameter [t1(S | η)]−1 with the truncated in (0,+∞) Gaussian dead
time pdf (8.1). Note that as ξ → +∞, (8.8) becomes the exponential firing density (2.1).

9 Hyperexponential Refractory Period
We now consider the case of hyperexponential refractoriness pdf:

ϕ(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
h ξ

h∑
i=1

p2
i e

−h pi ξ t, t > 0

0, otherwise.

(ξ > 0)(9.1)

where 0 < pi < 1 and p1 + p2 + . . . + ph = 1. We remark that if h = 1 or pi = 1/h for
i = 1, 2, . . . , h, Eq. (9.1) identifies with the exponential refractoriness pdf given in (6.1).
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The Laplace transform of ϕ(t) is:

Φ(λ) = h ξ
h∑

i=1

p2
i

λ+ h pi ξ
·(9.2)

Making use of (9.2), from (2.3) it follows:

∑
j≥k

π̂j(λ | η) =
1

[t1(S | η)]k
1

λ
(
λ+

1
t1(S | η)

)k

[
h ξ

h∑
i=0

p2
i

λ+ h pi ξ

]k−1

(k = 1, 2, . . . ).(9.3)

Use of (9.3) for k = 2 can be made to calculate q̂1(t | η).
Proposition 9.1 Under assumption (9.1), relation (2.4) holds and one has:

q̂1(t | η) =
h∑

i=1

piHi(t) − exp
{
− t

t1(S | η)
}
,(9.4)

where for i = 1, 2, . . . , h we have set:

Hi(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
1 + h pi ξ t+

(h pi ξ t)2

2

]
e−h pi ξ t, ξ = [h pi t1(S | η)]−1

h pi ξ t1(S | η)
1 − h pi ξ t1(S | η)

[
h pi ξ t1(S | η) − 2
1 − h pi ξ t1(S | η) − t

t1(S | η)
]
e−t/t1(S|η)

+
1

[1 − h pi ξ t1(S | η)]2 e
−h pi ξ t, ξ �= [h pi t1(S | η)]−1

Proof. Setting k = 2 in (9.3) one has:

∑
j≥2

π̂j(λ | η) =
h ξ

[t1(S | η)]2
1

λ
(
λ+

1
t1(S | η)

)2

h∑
i=0

p2
i

λ+ h pi ξ
·(9.5)

We note that

L−1

[
1

λ
(
λ+

1
t1(S | η)

)2

(λ+ h pi ξ)

]
=

1
(h pi ξ)3

{
1 − e−h pi ξ t

[
1 + h pi ξ t+

(h pi ξ t)2

2

]}

if ξ = [h pi t1(S | η)]−1, whereas

L−1

[
1

λ
(
λ+

1
t1(S | η)

)2

(λ+ h pi ξ)

]
=
t21(S | η)
h pi ξ

− t21(S | η)
h pi ξ

e−h pi ξ t

[1 − h pi ξ t1(S | η)]2

+
t31(S | η)

1 − h pi ξ t1(S | η)
{

2 − h pi ξ t1(S | η)
1 − h pi ξ t1(S | η) +

t

t1(S | η)
}
e−t/t1(S|η)

if ξ �= [h pi t1(S | η)]−1. Taking the inverse Laplace transforms of (9.5) one obtains:

∑
j≥2

q̂j(t | η) = 1 −
h∑

i=1

piHi(t)(9.6)
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with Hi(t) (i = 1, 2, . . . , h) given in (9.1). Hence, making use of (2.11) for k = 1, by virtue
of (2.4) and (9.6), Eq. (9.4) finally follows.

By virtue of (9.1), from (2.19) one obtains:

γ̂(t) =
h∑

i=1

pi Li(t),(9.7)

where

Li(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
t

[t1(S | η)]2 e
−t/t1(S|η), ξ = [h pi t1(S | η)]−1

h pi ξ

1 − h pi ξ t1(S | η)
(
e−h pi ξ t − e−t/t1(S|η)

)
, ξ �= [h pi t1(S | η)]−1.

If ξ �= [h pi t1(S | η)]−1 for i = 1, 2, . . . , h, then (9.7) becomes the exponential firing density
(2.1) as ξ → +∞.

10 Some Numerical Results
In this Section, some numerical results are provided for the probability q̂1(t | η) and for
ISI pdfs γ̂(t) in the cases considered in Table 1 of constant (C), uniform (U), exponential
(E1), Erlang (Eh), truncated normal (G) and hyperexponential (Hh) distributions of the
refractory period.

To this purpose, we perform a time scaling by changing t into t t1(S | η); furthermore,
we set α = ξ t1(S | η).

First of all, we note that for the refractoriness pdf considered in Table 1 it is possible to
prove that q̂k{t t1(S | η) | η} (k = 0, 1, . . . ) does not depend on ξ and on t1(S | η) singularly,
but only depends on α.

Table 4 shows the probability q̂1{t t1(S | η) | η} obtained from (4.7), (5.9), (6.14), (7.12),
(8.4) and (9.4) after changing t to t t1(S | η). Note that as α increases q̂1{t t1(S | η) | η}
tends to t e−t, i.e. to the probability of occurrence of one event in (0, t) for a Poisson process
of unit parameter. In Figure 2 the probability q̂1{t t1(S | η) | η} is plotted as function of
t for deterministic (a), uniform (b), exponential (c), Erlang with h = 2 (d), truncated
Gaussian (e) and hyperexponential with h = 2, p1 = 0.25 and p2 = 0.75 (f) refractoriness
pdf, with α = 0.5, 1, 5. The dotted curve is the graph of t e−t, i.e. the asymptotic behavior
of q̂1{t t1(S | η) | η} as α → +∞. Figure 2 shows that already for α = 5 probabilities
q̂1{t t1(S | η) | η} become indistinguishable. This is also emphasized in Table 6 in which the
values of these probabilities are listed for the same choices of refractoriness pdf of Figure 2
with t = 1, 2, . . . , 10 and α = 5 and α = 7.

Table 5 shows the behaviors of functions t1(S | η) γ̂{t t1(S | η)} obtained from (4.11),
(5.11), (6.18), (7.14), (8.8) and (9.7) after changing t to t t1(S | η). Note that as α increases,
t1(S | η) γ̂{t t1(S | η)} approaches e−t, i.e. the interarrival times pdf of a Poisson process
of unit parameter. In Figure 3 t1(S | η) γ̂{t t1(S | η)} is plotted as function of t for the
same choices of Figure 2. The dotted curve is e−t, that depicts the asymptotic behavior
of t1(S | η) γ̂{t t1(S | η)} as α increases. Figure 3 shows that if t > 1, already for α = 5,
the functions t1(S | η) γ̂{t t1(S | η)} become indistinguishable. This is also emphasized in
Tables 7 in which the values of these functions are listed for the same choices of refractoriness
pdf of Figure 3 for t = 1, 2, . . . , 10 and α = 5 and α = 7.
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�q1{t t1(S | η) | η}

Constant

�����
1 − e−t , 0 ≤ t ≤ 1/α

e1/α
�
t + 1 − 1

α
− e−1/α

�
e−t, t > 1/α,

Uniform

�������
1 + α − α t

2
−
�
1 + α +

α t

2

�
e−t , 0 < t ≤ 2/α

�α t

2
− 1 + α

�
e−t+2/α −

�
1 + α +

α t

2

�
e−t, t > 2/α

Exponential

���������
t
�
1 +

t

2

�
e−t , α = 1

1

(1 − α)2

�
e−α t + e−t

�
−1 − α t + α2 t

��
, α �= 1

Erlang

�����������������������������

e−t
h+1�
r=1

tr

r!
, α = 1/h

�	
α h − h − 1

α h − 1
+ t


	
α h

α h − 1


h

− 1

�
e−t

+

h−1�
r=0

(α h t)r

r!

�
1 −

	
α h

α h − 1


h−r	
1 − h − r

α h − 1


�
e−α h t, α �= 1/h

Gaussian

Erfc
� α t√

π

�
−
�
1 +

1

α

�
e−t +

1

α
exp

�
−α2 t2

π

�

+ exp
�
−t +

π

4 α2

��
1 + t − π

2 α2

� �
Erf

� α t√
π

−
√

π

2α

�
+ Erf

�√π

2 α

��

Hyperexponential

h�
i=1

pi Ci(t) − e−t

Ci(t) =

�����������

�
1 + t +

t2

2

�
e−t, pi = [h α]−1

h pi α

1 − h pi α

�h pi α − 2

1 − h pi α
− t
�

e−t +
e−h pi α t

(1 − h pi α)2
, pi �= [h α]−1

Table 4: The probabilities �q1{t t1(S | η) | η} are listed for the same choices of the refractory

periods pdf as in Table 1.
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Figure 2: For the deterministic (a), uniform (b), exponential (c), Erlang with h = 2 (d), truncated
Gaussian (e) and hyperexponential with h = 2, p1 = 0.25 and p2 = 0.75 (f) refractoriness pdf, the
probabilities �q1{t t1(S | η) | η} are plotted with α = 0.5, 1, 5. The dotted curve is a plot of t e−t.
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t1(S | η) �γ{t t1(S | η)}

Constant

���
0, t < 1/α

e−t+1/α, t > 1/α

Uniform

�������
α

2

�
1 − e−t

�
, 0 ≤ t < 2/α

α

2

�
e2/α − 1

�
e−t, t ≥ 2/α

Exponential

�������
t e−t, α = 1

α
�
e−α t − e−t

�
1 − α

, α �= 1

Erlang

�������������

th

h!
e−t, α = 1/h

� α h

α h − 1

�h
�

e−t − e−α h t
h−1�
r=0

�
α h − 1

�r tr

r!

�
, α �= 1/h

Gaussian exp
� π

4 α2

��
Erf

� α t√
π

−
√

π

2 α

�
+ Erf

�√π

2 α

��
e−t

Hyperexponential

h�
i=1

pi Di(t),

Di(t) =

�������
t e−t, α = (h pi)

−1

h pi α

1 − h pi α

�
e−h pi α t − e−t

�
, α �= (h pi)

−1

Table 5: The function t1(S | η) �γ{t t1(S | η)} is listed for the same choices of refractory period

pdf’s of Table 1.
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Figure 3: For the same choices of Figure 2, t1(S | η) �γ{t t1(S | η)} is plotted with α = 0.5, 1, 5.
The dotted curve is a plot of e−t.
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t D U E1 E2 G H2

α = 5
1 0.44091 E0 0.44030 E0 0.43728 E0 0.43955 E0 0.43948 E0 0.43336 E0
2 0.32750 E0 0.32838 E0 0.32988 E0 0.32878 E0 0.32897 E0 0.33032 E0
3 0.18129 E0 0.18202 E0 0.18359 E0 0.18242 E0 0.18257 E0 0.18513 E0
4 0.89064 E-1 0.89482 E-1 0.90433 E-1 0.89719 E-1 0.89804 E-1 0.91571 E-1
5 0.40995 E-1 0.41203 E-1 0.41691 E-1 0.41324 E-1 0.41366 E-1 0.42324 E-1
6 0.18109 E-1 0.18206 E-1 0.18436 E-1 0.18263 E-1 0.18282 E-1 0.18748 E-1
7 0.77756 E-2 0.78187 E-2 0.79220 E-2 0.78442 E-2 0.78527 E-2 0.80661 E-2
8 0.32702 E-2 0.32888 E-2 0.33337 E-2 0.32999 E-2 0.33035 E-2 0.33974 E-2
9 0.13538 E-2 0.13616 E-2 0.13806 E-2 0.13663 E-2 0.13679 E-2 0.14081 E-2

10 0.55348 E-3 0.55674 E-3 0.56466 E-3 0.55869 E-3 0.55933 E-3 0.57620 E-3
α = 7

1 0.42024 E0 0.42003 E0 0.41900 E0 0.41979 E0 0.41977 E0 0.41715 E0
2 0.31072 E0 0.31117 E0 0.31202 E0 0.31139 E0 0.31149 E0 0.31260 E0
3 0.17174 E0 0.17210 E0 0.17287 E0 0.17229 E0 0.17237 E0 0.17368 E0
4 0.84307 E-1 0.84513 E-1 0.84964 E-1 0.84625 E-1 0.84668 E-1 0.85488 E-1
5 0.38788 E-1 0.38890 E-1 0.39118 E-1 0.38946 E-1 0.38967 E-1 0.39393 E-1
6 0.17129 E-1 0.17176 E-1 0.17282 E-1 0.17202 E-1 0.17212 E-1 0.17414 E-1
7 0.73532 E-2 0.73741 E-2 0.74217 E-2 0.73860 E-2 0.73902 E-2 0.74814 E-2
8 0.30921 E-2 0.31011 E-2 0.31217 E-2 0.31062 E-2 0.31080 E-2 0.31477 E-2
9 0.12799 E-2 0.12837 E-2 0.12924 E-2 0.12858 E-2 0.12866 E-2 0.13035 E-2

10 0.52321 E-3 0.52479 E-3 0.52840 E-3 0.52568 E-3 0.52600 E-3 0.53305 E-3

Table 6: The values of �q1{t t1(S | η) | η} are listed for α = 5, 7 and t = 1, 2, . . . , 10 and for the

same choices of refractoriness pdf of Figure 2.

t D U E1 E2 G H2

α = 5
1 0.44933 E0 0.45233 E0 0.45143 E0 0.45361 E0 0.45469 E0 0.43696 E0
2 0.16530 E0 0.16640 E0 0.16911 E0 0.16708 E0 0.16730 E0 0.17070 E0
3 0.60810 E-1 0.61216 E-1 0.62233 E-1 0.61466 E-1 0.61545 E-1 0.63599 E-1
4 0.22371 E-1 0.22520 E-1 0.22895 E-1 0.22612 E-1 0.22641 E-1 0.23463 E-1
5 0.82297 E-2 0.82847 E-2 0.84224 E-2 0.83185 E-2 0.83292 E-2 0.86368 E-2
6 0.30276 E-2 0.30478 E-2 0.30984 E-2 0.30602 E-2 0.30641 E-2 0.31778 E-2
7 0.11138 E-2 0.11212 E-2 0.11399 E-2 0.11258 E-2 0.11272 E-2 0.11691 E-2
8 0.40973 E-3 0.41247 E-3 0.41933 E-3 0.41415 E-3 0.41468 E-3 0.43008 E-3
9 0.15073 E-3 0.15174 E-3 0.15426 E-3 0.15236 E-3 0.15255 E-3 0.15822 E-3

10 0.55452 E-4 0.55822 E-4 0.56750 E-4 0.56049 E-4 0.56121 E-4 0.58205 E-4

α = 7
1 0.42437 E0 0.42582 E0 0.42813 E0 0.42664 E0 0.42694 E0 0.42312 E0
2 0.15612 E0 0.15665 E0 0.15789 E0 0.15696 E0 0.15706 E0 0.15923 E0
3 0.57433 E-1 0.57628 E-1 0.58085 E-1 0.57741 E-1 0.57780 E-1 0.58687 E-1
4 0.21128 E-1 0.21200 E-1 0.21368 E-1 0.21242 E-1 0.21256 E-1 0.21593 E-1
5 0.77727 E-2 0.77991 E-2 0.78609 E-2 0.78144 E-2 0.78197 E-2 0.79437 E-2
6 0.28594 E-2 0.28691 E-2 0.28919 E-2 0.28748 E-2 0.28767 E-2 0.29223 E-2
7 0.10519 E-2 0.10555 E-2 0.10639 E-2 0.10576 E-2 0.10583 E-2 0.10751 E-2
8 0.38698 E-3 0.38830 E-3 0.39137 E-3 0.38906 E-3 0.38932 E-3 0.39549 E-3
9 0.14236 E-3 0.14285 E-3 0.14398 E-3 0.14313 E-3 0.14322 E-3 0.14549 E-3

10 0.52372 E-4 0.52550 E-4 0.52967 E-4 0.52653 E-4 0.52689 E-4 0.53524 E-4

Table 7: The values of t1(S | η) �γ{t t1(S | η)} are listed for α = 5, 7 and t = 1, 2, . . . , 10 and for

the same choices of refractoriness pdf of Figure 3.
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11 Concluding Remarks
The aim of this paper has been to provide some quantitative information on the role of refractori-
ness in affecting the output distribution of single neurons whose activity is modeled by means of
stationary diffusion processes. This task has been achieved under the reasonable assumption that
the neuron firing pdf can be considered to be exponential by virtue of certain asymptotic results
holding for diffusion processes that admit a steady-state distribution. In particular, denoting by η
the reset state, exact formulas have been obtained for the probabilities �qk(t | η) of the number of
spikes released up to any specified instant t and for the first two moments, as well as for the ISI
distribution �γ(t). Manageable asymptotic expressions have finally been determined for the case of
refractory periods modeled as random variables of various types, and some numerical evaluation
have been performed to shed light on the effects on different types of random refractoriness. In all
cases, besides �q0(t | η) that is unaffected by refractoriness, �q1(t | η) and �γ(t) have been obtained
in a closed form, whereas �qk(t | η), k > 1, have been determined for the C, U , E1 and Eh cases.

Finally, for C, U and E1 refractoriness distributions, also mean E
��M(t) | η

�
and second order

moment E
�
[�M(t)]2 | η

�
have been explicitly determined.

Our study indicates that future endeavors should focus on a systematic computational analysis

to be associated to the theoretical results presented in this paper for the probabilities and moments

of the number of firings released by the neuron, as well as for ISI pdf. In particular, the compu-

tational analysis carried out for �q1{t t1(S | η) | η} should be extended also to the probabilities of

occurrence of multiple firings. Several further developments can also be envisaged, such as analysis

of the role of various types of random refractoriness, within specific neuronal models (based, for

instance, on Ornstein-Uhlenbeck and Feller processes) to obtain ISI pdf under various choices of

refractoriness distribution.
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