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Abstract. We generalize the techniques developed in the previous paper [10] on free
algebras and free bimodules to path algebras and projective bimodules. We develop
the theory of Gröber bases on path algebras and their projective bimodules, and use
it to construct projective resolutions of bimodules over a quotient algebra of a path
algebra. It gives an effective way to calculate the Hochschild cohomology of algebras
expressed as quotients of path algebras. We also give a formula for the cup product
in the cohomology in terms of our resolution. It gives a way to determine the ring
structure of the cohomology.

1 Introduction In our previous paper [10] we developed the theory of Gröbner bases on
free algebras and free bimodules. We utilized it to construct free bimodule resolutions of
algebras admitting Gröbner bases. In this paper we develop the theory of Gröber bases on
path algebras and their projective bimodules, and use it to construct projective resolutions
of bimodules over a quotient algebra of a path algebra. It gives a way to calculate the
Hochschild cohomology of the algebras expressed as quotients of path algebras.

We consider a possibly infinite Gröbner basis G on a path algebra F of a quiver over a
commutative ring. We give an algorithmic way to construct a projective bimodule resolution
of a bimodule over the quotient algebra A = F/I(G) where I(G) is the ideal of F generated
by G. In the construction Gröbner bases on projective bimodules play a crucial role as
Gröbner bases on free bimodules do in the previous paper. We treat Gröbner bases from a
viewpoint of rewriting systems.

We give basic results on Gröbner bases on a path algebra F and on projective F -
bimodules in Sections 2 and 3. We omit most of the proofs of these basic results in this
paper, because it is not difficult for the reader to modify the proofs given in [10] for our
generalized situation. We need thereby suitable compatible well-founded partial orders on
F and on projective F -bimodules.

Let Σ be a quiver and let F = KΣ∗ be the path algebra of Σ over a commutative ring K.
Let A be the quotient algebra of F modulo the ideal I(G) generated by a Gröbner basis G
on F . Moreover, we consider a Gröbner basis H for an A-subbimodule L of a projective A-
bimodule A·X ·A generated by a set X , that is, H is a set of monic elements of the projective
F -bimodule F ·X ·F generated by X such that the system TH = {lt(h)→ −rt(h) |h ∈ H} is
a complete rewriting system on F ·X ·F modulo G, where lt(h) is the leading term of h and
rt(h) = h − lt(h). Defining a morphism ∂ of A-bimodules from the projective A-bimodule
A · H · A generated by H to A · X · A by ∂([h]) = h, where [h] is the formal generator
corresponding to h ∈ H , we have an exact sequence A ·H · A ∂→ A ·X · A η→ (A ·X · A)/L
of A-bimodules, where η is the natural surjection.
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The key techniques used in the previous paper work in our new situation, and we can
construct a Gröbner basis C on F ·H ·F for the A-subbimodule Ker(∂) of A ·H ·A. Again,
the K-linear map β defined on F ·X · F plays a crucial role for our construction. This C
is made from the critical pairs of reductions on F ·X · F with respect to H and G. With
this C we have the projective A-bimodule A · C ·A generated by C and an exact sequence
A · C · A→ A ·H · A→ A ·X · A→ (A ·X · A)/L. Applying this construction inductively
to the A-bimodule A itself, we have a projective A-bimodule resolution of A

H : · · · → A · Cn ·A→ A · Cn−1 ·A→ · · · → A · C0 ·A→ A.

Taking the functor HomA,A(., A) on H, we have the Hochschild cohomology H(A) of A
as the cohomology group of the complex HomA,A(H, A). It has a ring structure with the
cup product (Yoneda product). We give a formula for the cup product in terms of our
resolution. We construct a diagonal mapping ∆ : H→ H⊗H on the resolution H above,
and define the cup product by f ∪ g = (f ⊗ g) ◦ ∆ for cocycles f and g. This gives an
effective method to determine the algebra structure of H(A). In the last section we apply
our construction to special example algebras and determine their Hochschild cohomology
algebras.

2 Gröbner bases on path algebras Let Σ be a quiver (finite directed graph). For
n ≥ 0, Σn denotes the set of directed paths in Σ of length n. Accordingly, Σ0 is the set of
vertices and Σ1 is the set of arrows of Σ. The set of all paths and the set of paths of length
≤ n are denoted by Σ∗ and Σ≤n, respectively. We farther set Σ+ = Σ∗ \ Σ0.

If x is a path from v ∈ Σ0 to v′ ∈ Σ0, v (resp. v′) is the source (resp. terminal) of x
denoted by σ(x) (resp. τ(x)). For two paths x and y, if τ(x) = σ(y) we have another path
xy concatenating x and y at τ(x) = σ(y). The set Σ∗ ∪ {0} forms a semigroup with zero;

x · y =

{
xy if τ(x) = σ(y)
0 otherwise

for x, y ∈ Σ∗. In particular,

v · v′ =

{
v if v = v′

0 if v �= v′

for v, v′ ∈ Σ0. The set of paths with source v (resp. terminal v′) is denoted by vΣ∗

(resp. Σ∗
v′). In fact, vΣ∗ is equal to the set v · Σ∗ \ {0} = {vx |x ∈ Σ∗, vx �= 0} and

Σ∗
v′ is equal to the set Σ∗ · v′ \ {0} = {xv′ |x ∈ Σ∗, xv′ �= 0}. We also consider the set

vΣ∗
v′ = vΣ∗ ∩ Σ∗

v′ = {vxv′ |x ∈ Σ∗, vxv′ �= 0} of paths with source v and target v′. Two
paths x and y are called parallel if σ(x) = σ(y) and τ(x) = τ(y), that is, x and y are
contained in some vΣ∗

v′ . For parallel x and y we write x ‖ y.
In accordance with the terminology in free monoids, we call a path in Σ∗ a word over

Σ and a path in Σ+ a nonempty word. A nonempty word x is written as x = a1a2 · · ·an

with ai ∈ Σ1 such that τ(ai) = σ(ai+1) for i = 1, . . . , n− 1. The length n of the word x is
denoted by |x|. For an empty word v ∈ Σ0, we set |v| = 0. If x = y · z for x, y, z ∈ Σ∗, y
is called a prefix of x and z is called a suffix of x. Moreover, if x = y · w · z, w is called a
subword of x. A prefix y (suffix, subword) of x is proper, if |x| > |y| > 0.

Let K be a commutative ring with 1 and let F = K ·Σ∗ be the path algebra of Σ over K.
F is the free K-module spanned by Σ∗ with the multiplication induced by the semigroup
operation of Σ∗ ∪ {0} above. For v, v′ ∈ Σ0, vF , Fv′ and vFv′ denote the K-submodules of
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F spanned by vΣ∗, Σ∗
v′ and vΣ∗

v′ , respectively. An element f of F is uniquely written as a
finite sum

(2.1) f =
n∑

i=1

kixi

with ki ∈ K \ {0} and xi are different words in Σ∗. The element f is uniform, if xi‖xj

for all i, j. So, f is uniform if f ∈ vFv′ for some v, v′ ∈ Σ0, and for this f we define the
source σ(f) = v and the terminal τ(f) = v′. Two uniform elements f and g are parallel if
σ(f) = σ(g) and τ(f) = τ(g).

We fix a compatible well-order � on Σ∗, that is, � is a strict total order on Σ∗ such that
there is no infinite decreasing sequence x1 � x2 � · · · , and for any x, y, z, w ∈ Σ∗, x � y
implies zxw � zyw as long as both zxw and zyw are nonzero. A typical such order is the
length-lexicographic order �llex based on a linear order > on Σ0∪Σ1 defined as follows. For
x = a1 · · · am and y = b1 · · · bn with a1, . . . , am, b1, . . . , bn ∈ Σ1, x �llex y if and only if (i)
m > n, or (ii) m = n = 0 (that is, x an y are vetices) and x > y in Σ0, or (iii) m = n > 0
and x is lexicographically greater than y as words over Σ1 with respect to the order > on
Σ0 ∪ Σ1 restricted to Σ1.

Let f be an element of F written as (2.1). If x1 is the maximal among xi (i = 1, . . . , n)
with respect to �, k1x1 is called the leading term of f and denoted by lt(f). Let rt(f) =
f − lt(f).

We extend the order � on Σ∗ to a (partial) order on F , which is also denoted by �, as
follows. First, f � 0 for any f �= 0. For nonzero elements f and g of F with lt(f) = k · x
and lt(g) = � · y (k, � ∈ K \ {0}, x, y ∈ Σ∗), define f � g if and only if either x � y, or
x = y and rt(f) � rt(g). Then, � is also well-founded, that is, there is no infinite sequence
f1 � f2 � · · · in F . Moreover, if f � g and f is uniform, then x · f · y � x · g · y for any
x ∈ Σ∗

σ(f) and y ∈ τ(f)Σ∗.
A rewriting rule is a pair (u, v) such that u ∈ Σ+, v ∈ F , u � v and u − v is uniform.

A rule (u, v) is written as u → v. A rewriting system R is a (not necessarily finite) set of
rewriting rules. If f ∈ F has a nonzero term k · x and x = x1ux2 with x1, x2 ∈ Σ∗ and
u→ v ∈ R, the rule u→ v can be applied to f and f is transformed to g = f−k·x1(u−v)x2.
In this situation we write f →R g, and we call →R the one-step reduction by R.

Let →∗
R denotes the reflexive transitive closure of →R, and let ↔∗

R be the reflexive
symmetric and transitive closure of →R. Set

GR = {u− v |u→ v ∈ R},
and let I(R) be the (two-sided) ideal of F generated by GR. Then, the relation↔∗

R is equal
to the congruence on F modulo I(R). The quotient algebra A = F/I(R) = F/↔∗

R is said
to be defined by the rewriting system R.

The relation →R is noetherian (terminating), that is, there is no infinite sequence

f1 →R f2 →R · · · →R fn →R · · ·
in F , because f →R g implies f � g and � is well-founded. If two elements f and g of F
have a common R-descendant, that is, there is h ∈ F such that f →∗

R h and f →∗
R h, we

say that f ↓R g holds. R is called confluent if for any f, g, h ∈ F such that h →∗
R f and

h →∗
R g, f ↓R g holds. A noetherian and confluent system is called complete, but here a

confluent system is complete because a rewriting system we consider is always noetherian.
An element f in F is irreducible (R-irreducible to specify R) if there is no g ∈ F such

that f →R g. In particular, an irreducible monic monomial x ∈ Σ∗ is called an irreducible
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word, and Irr(R) denotes the set of irreducible words. Clearly, Irr(R) = Σ∗\Σ∗ ·Left(R)·Σ∗,
where Left(R) = {u |u → v ∈ R}, and f ∈ F is irreducible if and only if f is a K-linear
combination of irreducible words. An element f ∈ F is R-reducible if it is not R-irreducible.
A word x is a minimal R-reducible word if it is R-reducible but any proper prefix y of x
(x = yx′, x′ ∈ Σ+) is R-irreducible. Since R is noetherian, for any f ∈ F there is an
irreducible f̂ ∈ F such that f →∗

R f̂ . If R is confluent (so complete), such an f̂ is unique,
and is called the normal form of f .

Let I be an ideal of F and let A = F/I be the quotient algebra. For v, v′ ∈ Σ0, vA, Av′

and vAv′ are the set of elements of A coming from elements of vF , Fv′ and vFv, and are
isomorphic to vF/(I ∩ vF ), Fv′/(I ∩ Fv′ ) and vFv′/(I ∩ vFv′) as K-modules, respectively.
We have

A =
⊕

v,v′∈Σ0

vAv′ .

A subset G of F is monic (resp. uniform) if every g ∈ G is monic (resp. uniform). A
set G of generators of an ideal I is called a Gröbner basis of I, if it is monic, uniform and
the system

RG = {lt(g)→ −rt(g) | g ∈ G}
associated with G is a complete rewriting system on F . We confuse a Gröbner basis G with
the associated rewriting system RG. We write g = u − v ∈ G, implicitly assuming that
u = lt(g) and v = −rt(g), and we simply write →G for the relation →RG . We say f ∈ F is
G-irreducible if it is RG-irreducible, and Left(G) and Irr(G) denote Left(RG) and Irr(RG)
respectively.

Now we state the fundamental results on complete rewriting systems and Gröbner bases
as follows.

Proposition 2.1. Let G be a Gröbner basis of an ideal I of a path algebra F , and let
A = F/I be the quotient algebra of F by I and let ρ : F → A be the canonical surjection.
Then, ρ is injective on Irr(G) and ρ(Irr(G)) forms a free K-basis of A = F/I. Any f has
the unique normal form f̂ , and we have

f̂ = ĝ ⇔ f ↔∗
G g ⇔ f − g →∗

G 0⇔ ρ(f) = ρ(g)

for any f, g ∈ F . In particular, we have

I = {f ∈ F | f̂ = 0} = {f ∈ F | f →∗
G 0}.

Corollary 2.2. An algebra over K isomorphic to the quotient F/I of a path algebra F over
K modulo an ideal I with a Gröbner basis is free as a K-module.

Let R be a rewriting system on F = KΣ∗. Let u1 → v1, u2 → v2 ∈ R. Suppose u1

overlaps properly with u2, that is, u1 = u′
1z, u2 = zu′

2 with u′
1, u

′
2 ∈ Σ∗ and z ∈ Σ+.

We have two reductions p1 : u1u
′
2 → v1u

′
2 and p2 : u′

1u2 → u′
1v2 applying the rules to

u1u
′
2 = u′

1u2 in two different ways. We call (v1u
′
2, u

′
1v2) a critical pair of elements of

overlapping type and (p1, p2) a critical pair of reductions. Next suppose u1 contains u2

as subword, that is, u1 = u′u2u
′′ with u′, u′′ ∈ Σ∗. Applying the rules to u1 in two

ways, we have a critical pair (v1, u
′v2u

′′) of elements of inclusion type and a critical pair
(u1 → v1, u

′u2u
′′ → u′v2u

′′) of reductions. A critical pair (v′1, v
′
2) of elements is resolvable

if v′1 ↓R v′2 holds.
The following is also basic in the rewriting theory.

Proposition 2.3. A system R is complete if all the critical pairs are resolvable.
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A rewriting system R is normalized if the right-hand side v of any rule u → v from R
is R-irreducible and the left-hand side u is (R \ {u → v})-irreducible. A set G of monic
uniform elements is normalized if so is RG. If G is normalized, there is no critical pair of
inclusion type. Subsets G and G′ are said to be equivalent if they generate the same ideal.

Proposition 2.4. For any Gröbner basis G on F , there exists a normalized Gröbner basis
G′ equivalent to G. If G is finite, we can choose G′ to be finite.

The Gröbner basis theory on path algebras over a field was developed in [5], [7] (see
also [6]). Here we discussed Gröbner bases on path algebras over a commutative ring from
a viewpoint of rewriting systems. We refer to [4] and [9] for the general theory of rewriting
systems and [12] for its relationship to the Gröbner bases theory.

In the rest of this paper, G is a normalized Gröbner basis of an ideal I of the path
algebra F = KΣ∗ of a quiver Σ with respect to a fixed compatible well-order � on Σ∗,
A = F/I is the quotient algebra and ρ:F → A is the natural surjection.

3 Gröbner bases on projective bimodules In this section we consider projective
bimodules over F and A. An edged set is a set X of elements ξ such that the source
σ(ξ) ∈ Σ0 and the terminal τ(ξ) ∈ Σ0 of ξ are assigned. For a nonempty edged set X we
consider the projective F -bimodule F ·X · F generated by X , that is, F ·X · F is the free
K-module generated by Σ∗XΣ∗ =

⋃
ξ∈X Σ∗

σ(ξ) × τ(ξ)Σ∗ with two-sided F -action. The set
Σ∗

σ(ξ) × τ(ξ)Σ∗ for ξ ∈ X is written as Σ∗[ξ]Σ∗ and an element (x, y) in it with x ∈ Σ∗
σ(ξ)

and y ∈ τ(ξ)Σ∗ is written as x[ξ]y. Then, an element f of F ·X · F is uniquely written as a
finite sum

(3.1) f =
∑

kixi[ξi]yi,

with ki ∈ K \ {0}, xi ∈ Σ∗
σ(ξi)

, yi ∈ τ(ξi)Σ
∗ and ξi ∈ X , where (xi, ξi, yi) are different for i.

For f =
∑

kixi, g =
∑

�jyj ∈ F with ki, �j ∈ K and xi, yj ∈ Σ∗, f [ξ]g denotes the element

∑
τ(xi)=σ(ξ)
σ(yj)=τ(ξ)

ki�jxi[ξ]yj

of F ·X · F . In particular, if f = σ(ξ) (resp. g = τ(ξ)), this element is simply written [ξ]g
(resp. f [ξ]).

Let � be a well-order on the set Σ∗XΣ∗. We assume that it is compatible, that is, for
any f = x[ξ]y ∈ Σ∗

σ(ξ) × τ(ξ)Σ∗ and f ′ = x′[ξ′]y′ ∈ Σ∗
σ(ξ′) × τ(ξ′)Σ∗ such that σ(x) = σ(x′)

and τ(y) = τ(y′) and for any a ∈ Σ∗
σ(x), and b ∈ τ(y)Σ∗, f � f ′ implies a · f · b � a · f ′ · b

and a � a′ in Σ∗
σ(x) implies a ·f � a′ ·f and b � b′ in Σ∗

τ(y) implies f · b � f · b′ (the order �
on Σ∗ is previously given and fixed). The order � on Σ∗XΣ∗ can be extended to a partial
order � on F ·X · F in a similar manner as we did on F in Section 2.

The leading term lt(f) of f written as (3.1) is the term kixi[ξi]yi such that xi[ξi]yi �
xj [ξj ]yj for all j �= i. The element f is monic if the coefficient ki of the leading term kixi[ξi]yi

is 1. If moreover xi = σ(ξi), f is called left very monic. f is uniform if σ(xi) = σ(xj) = v
and τ(yi) = τ(yj) = v′ for all i, j. For this uniform f we define σ(f) = v and τ(f) = v′.

A rewriting rule is a pair (s, t) with s ∈ Σ∗XΣ∗ and t ∈ F ·X · F such that s � t and
s− t is uniform. A rewriting system T on F ·X ·F is a set of rewriting rules. If f ∈ F ·X ·F
has a term k ·x[ξ]y, x = x′u, y = vy′ and s = u[ξ]v → t ∈ T , then f →T f−k ·x′(u[ξ]v−t)y′

by an application of the rule s→ t.
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A rule u→ v (u− v ∈ G) in RG can also be applied to a term k ·x[ξ]y of f , if x or y are
G-reducible, that is, x = x′ux′′ or y = y′uy′′. In the former case, f →G f−k·x′(u−v)x′′[ξ]y,
and in the latter, f →G f − k · x[ξ]y′(u− v)y′′. The relation →G on F ·X · F is complete,
because →G is complete on F . So, any f ∈ F · X · F has the unique normal form f̂ with
respect to →G. An element f written as (3.1) is G-irreducible, if and only if every xi and
yi are G-irreducible. Thus, we have

f̂ =
∑

kix̂i[ξi]ŷi.

Let→T,G =→T ∪ →G, then→T,G is a noetherian relation on F ·X ·F because f →T,G g
implies f � g by the compatibility of �. Let →∗

T,G and ↔∗
T,G be the reflexive transitive

closure and the reflexive symmetric transitive closure of →T,G, respectively. Set IX =
F ·X · I + I ·X · F , where

I ·X · F = {
∑

fi[ξi]gi | fi ∈ I ∩ Fσ(ξi), gi ∈ τ(ξi)F, ξi ∈ X}

and
F ·X · I = {

∑
fi[ξi]gi | fi ∈ Fσ(ξi), gi ∈ I ∩ τ(ξi)F, ξi ∈ X}.

Then IX is the F -subbimodule of F ·X · F generated by G ·Σ∗ ·X ∪X ·Σ∗ ·G. Let L(H)
be the F -subbimodule of F · X · F generated by H = HT = {s − t | s → t ∈ T } and let
L(T, G) be the F -subbimodule of F ·X · F generated by H ∪G ·Σ∗ ·X ∪X ·Σ∗ ·G, then,
L(T, G) = L(H)+IX . The relation↔∗

T,G is equal to the F -bimodule congruence of F ·X ·F
modulo the subbimodule L(T, G);

f ↔∗
T,G g ⇔ f ≡ g (mod L(T, G)).

The quotient M = M(T, G) = (F · X ·)F/↔∗
T,G= (F · X · F )/L(T, G) is an F -bimodule,

and actually, it is an A-bimodule in a natural way. Let η : F ·X · F → M be the natural
surjection.

Let A ·X · A be the projective A-bimodule generated by X . An element f of A ·X · A
is written as a finite sum f =

∑
xi[ξi]yi with ξ ∈ X , xi ∈ Aσ(ξ) and yi ∈ Aτ(ξ). We have a

morphism ρX : F ·X · F → A ·X · A of K-modules defined by

ρX(x[ξ]y) = ρ(x)[ξ]ρ(y)

for x ∈ Σ∗
σ(ξ), y ∈ τ(ξ)Σ∗ and ξ ∈ X . In fact, ρX is a morphism of F -bimodules. Since

ρX(f) = 0⇔ f̂ = 0⇔ f ↔∗
G 0⇔ f ≡ 0 (mod IX),

Ker(ρX) is equal to the F -subbimodule IX = I·X ·F+F ·X ·I, that is, (F ·X ·F )/IX
∼= A·X ·A.

Since M is an A-bimodule, we have a surjection η : A ·X ·A→M with η = η ◦ ρX . Hence,
Ker(η) = ρX(L(T, G)), which is denoted by LA(H), is the A-subbimodule of A · X · A
generated by ρX(H) and we have

M ∼= (A ·X · A)/LA(H).

If the rewriting system →T,G is complete on F ·X · F , we say T is complete modulo G.
An element f ∈ F ·X · F is (T, G)-irreducible, if no rule from T ∪RG can be applied to f ,
otherwise f is (T, G)-reducible.

Similar to Proposition 2.1, we have
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Proposition 3.1. If a rewriting system T on F · X · F is complete modulo G, then for
any f ∈ F · X · F , there is a unique (T, G)-irreducible element (the normal form of f)
f̃ ∈ F ·X · F such that f →∗

T,G f̃ , and for any f, g ∈ F ·X · F , we have

f̃ = g̃ ⇔ f ↔∗
T,G g ⇔ f − g →∗

T,G 0⇔ f ≡ g (mod L(T, G)).

A subset H of F ·X ·F is a Gröbner basis (modulo G), if every element of H is monic and
uniform and the associated system TH = {lt(f)→ −rt(f) | f ∈ H} is a complete rewriting
system on F ·X ·F modulo G. For an F -subbimodule L of F ·X ·F , if H is a Gröbner basis
such that L = L(H, G), H is said to be a Gröbner basis of L. It is also called a Gröbner
basis for the A-subbimodule ρX(L) of A ·X ·A. We write →H,G and →∗

H,G for →TH ,G and
→∗

TH ,G respectively. A (→H,G)-(ir)reducible element is called (H,G)-(ir)reducible. The
quotient M(H,G) = (F · X · F )/L(H, G) = (A · X · A)/LA(H) is called the A-bimodule
defined by a pair (G,H) of Gröbner bases.

A rewriting system T on F ·X ·F or the set H = HT is normalized modulo G if for any
s → t ∈ T , t is (H,G)-irreducible and s is (H \ {s − t}, G)-irreducible. We have a similar
result to Proposition 2.4.

Proposition 3.2. If an F -subbimodule L of F ·X ·F has a Gröbner basis H modulo G, it
has a normalized Gröbner basis H ′ modulo G. If H is finite, we can choose H ′ as finite.

Let T be a normalized rewriting system on F ·X · F . We consider three rules x[ξ]y →
t, x′[ξ]y′ → t′ ∈ T (t, t′ ∈ F ·X ·F , ξ ∈ X , x, x′ ∈ Σ∗

σ(ξ) and y, y′ ∈ τ(ξ)Σ∗) and u− v ∈ G.

(i) First, suppose that y overlaps with u, that is, y = y1z, u = zu1 with z ∈ Σ+. We can
apply the rules on x[ξ]yu1 = x[ξ]y1u in two ways, and obtain a critical pair

(3.2) (x[ξ]yu1 →T tu1, x[ξ]x1u→G x[ξ]y1v)

of reductions and a critical pair (tu1, x[ξ]y1v) of elements.

(ii) Next, suppose that x overlaps with u, that is, x = zx1, u = u1z with z ∈ Σ+. Then
we obtain a critical pair

(ux1[ξ]y →G vx1[ξ]y, u1x[ξ]y →T u1t)

of reductions and a critical pair (vx1[ξ]y, u1t) of elements.

(iii) Lastly, suppose that x[ξ]y overlaps with x′[ξ]y′, that is, x = x1x
′ and y′ = yy1 with

x1, y1 ∈ Σ+. Then we obtain a critical pair

(x[ξ]yy1 →T ty1, x1x
′[ξ]y′ →T x1t

′)

of reductions and a critical pair (ty1, x1t
′) of elements.

A critical pair (s, t) of elements is resolvable if s ↓T,G t, that is, there is f ∈ F · X · F
such that s→∗

T,G f and t→∗
T,G f . We have the following so-called critical pair theorem.

Proposition 3.3. A normalized system T on F ·X · F is complete modulo G if and only
if all the critical pairs are resolvable.

A rewriting system T on F ·X ·F (and H = HT ) is left very monic if the left-hand side
of each rule of T is left very monic, that is, every rule of T is of the form [ξ]x → t with
ξ ∈ X , x ∈ τ(ξ)Σ∗ and t ∈ F .

Very monic systems are very special, but they suffice to construct our resolutions in
Section 5.
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Example 3.4. Let V be a subset of Σ0 satisfying the condition that any x ∈ Left(G),
which passes through some u ∈ V (that is, τ(u′) ∈ V for some prefix u′ of u), ends in V
(that is, τ(x) ∈ V ). Then, the (two-sided) ideal J of A generated by V admits a left very
monic Gröbner basis as an A-bimodule. In fact, the set

H = {[σ(x)]x− x[τ(x)] |x ∈ X}
is a left very monic Gröbner basis on the projective A-bimodule A · V · A such that

(A · V · A)/LA(H) ∼= J,

where X is the set of G-irreducible words x such that σ(x), τ(x) ∈ V and x has no proper
prefix y with τ(y) ∈ V . In particular, the bimodule A is defined by the Gröbner basis

{[σ(a)]a− a[τ(a)] | a ∈ Σ1}.
If T is normalized and left very monic, only critical pairs of type (i) above can appear.

Moreover, we need to consider only proper critical pairs. A critical pair of type (i) is proper,
if yu1 is a minimal G-reducible word, that is, any proper prefix of yu1 is G-irreducible in
(3.2).

Proposition 3.5. A normalized left very monic system T on F ·X ·F is complete modulo
G if and only if all the proper critical pairs of type (i) are resolvable.

4 Standard reductions and the K-linear map β Let X be an edged set and T be a
normalized (but not necessarily complete) left very monic rewriting system on the projective
F -bimodule F ·X · F . Set H = HT = {s− t | s→ t ∈ T }.

A reduction

(4.1) f1 →T,G f2 →T,G · · · →T,G fn

is called standard, if for every i = 1, . . . , n− 1,

(i) when fi is G-reducible, the reduction fi →T,G fi+1 is an application of a rule from G,
and

(ii) when fi is G-irreducible, a rule from T is applied to the smallest T -reducible term in
fi with respect to � in the reduction step fi →T,G fi+1.

If f1 is reduced to fn through a standard reduction as above, we write as f1 ⇒∗
T,G fn.

A standard one-step reduction by a rule from T is denoted by ⇒T , that is, f ⇒T g if f is
G-irreducible and g is obtained by applying a rule of T to the smallest T -reducible term of
f .

Since →G is complete, the standard reduction (4.1) can be rewritten as

f1 = g1 →∗
G ĝ1 ⇒T g2 →∗

G ĝ2 ⇒T · · · ⇒T gm →G ĝm = fn,

and since T is left very monic and normalized, in the step ĝi ⇒T gi+1 in the above reduction
sequence, only one rule from T is applicable to the smallest T -reducible term of ĝi. In this
sense, a standard reduction from f to a (T, G)-irreducible element f ′ is unique. The unique
element f ′ is called the standard form of f . If T is complete modulo G, f ′ coincides with
the normal form f̃ of f .

The set H is considered to be an edged set because every element h in H is uniform and
σ(h) and τ(h) are defined. We consider the projective F -bimodule F ·H · F generated by
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H . For h ∈ H , [h] denotes the formal generator of F ·H · F corresponding to h ∈ H . Let
δ = δH : F ·H · F → F ·X · F be a morphism of F -bimodules defined by

δ([h]) = h.

Let A ·H ·A be the projective A-bimodule generated by H and we consider a morphism
∂ = ∂H : A ·H ·A→ A ·X ·A of A-bimodules defined by ∂([h]) = ρX(h). Then we have a
commutative diagram

F ·H · F δ−−−−→ F ·X · F⏐⏐�ρH

⏐⏐�ρX

A ·H · A ∂−−−−→ A ·X · A
where ρX and ρH are the surjections. Clearly we have Im(δ) = L(H) and Im(∂) = LA(H).

Now we define a K-linear map β = βH : F ·X · F → F ·H · F , which will play a key
role in the rest of this paper. For f ∈ F ·X · F let f ′ be the standard form of f . Then we
have a unique standard reduction

(4.2) f = f1 →∗
G f̂1 ⇒H f2 →∗

G f̂2 ⇒H · · · ⇒H fn →∗
G f̂n = f ′,

here in every step f̂i ⇒H fi+1, a rule corresponding to hi = si − ti ∈ H is applied, that is,
kixisiyi with ki ∈ K \ {0}, xi ∈ Aσ(si) and yi ∈ τ(si)A is the least H-reducible term of f̂i

and fi+1 = kixi(ti − si)iyi + f̂i. Now define

β(f) =
n−1∑
i=1

kixi[hi]yi.

Thus, β(f) depicts the H-reductions in the standard reduction (4.2) of f .

Lemma 4.1. (1) β(f) = β(f̂) for f ∈ F ·X · F , where f̂ is the normal form of f with
respect to G.

(2) β(x · f) = (x · β(f))̂ for x ∈ Σ∗ and f ∈ F ·X · F .

(3) β is uniform, that is, σ(β(f)) = σ(f) and τ(β(f)) = τ(f) for any uniform element
f ∈ F ·X · F .

(4) β is a morphism of K-modules, that is,

β(kf + �g) = kβ(f) + �β(g)

for k, � ∈ K and f, g ∈ F ·X · F .

Proof. (1) and (2) are immediate from the definition of β. (3) follows from the fact that in
the standard reduction (4.2), fi and f̂i are all parallel to each other.

Since β is defined here in a little different way from [10], we give a proof of (4). First
we note that β(k · f) = k ·β(f) holds for k ∈ K and f ∈ F ·X ·F . Let f, g ∈ F ·X ·F , and
we shall show β(f + g) = β(f) + β(g) by induction with respect to the order �. We may
assume that f and g are G-irreducible due to (1). If f and g are H-irreducible, then f +g is
also H-irreducible and we have β(f + g) = β(f)+ β(g) = 0. Suppose that f is H-reducible
and kxsy with k ∈ K \ {0}, x, y ∈ Σ∗ is its least H-reducible term, where h = s − t ∈ H .
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Then, f ⇒H f ′ = kx(t − s)y + f and β(f) = kx[h]y + β(f ′). If g is H-irreducible or the
least H-reducible term of g is greater than xsty, then kxsy is the least H-reducible term of
f + g too. Since f � f ′, by induction hypothesis we have

β(f + g) = kx[h]y + β(f ′ + g) = kx[h]y + β(f ′) + β(g) = β(f) + β(g).

The case where g has an H-reducible term less than kxsy is symmetric. Suppose that g
has the least H-reducible term k′xsy with k′ ∈ K \ {0}, and set g′ = k′x(t− s)y + g. Then,
β(g) = k′x[h]y +β(g′). If k +k′ �= 0, then (k+k′)xsy is the least H-reducible term of f + g,
and we have

β(f + g) = (k + k′)x[h]y + β(f ′ + g′)
= (k + k′)x[h]y + β(f ′) + β(g′)
= β(f) + β(g).

If k + k′ = 0, then f + g = f ′ + g′ and we have

β(f + g) = β(f ′ + g′) = β(f ′) + β(g′) = β(f) + β(g).

The assertion (1) in Lemma 4.1 means that β(f) = β(g) follows from ρX(g) = ρX(f).
Thus, β induces a K-linear map β′ : A · X · A → F · H · F such that β = β′ ◦ ρX . The
composition β = βH = ρH ◦ β′ : A ·X ·A→ A ·H ·A with the surjection ρH is a K-linear
map, but due to Lemma 4.1,(2), we see that β is a morphism of left A-modules. Thus,

Lemma 4.2. The K-linear map β induces a morphism β of left A-modules and we have a
commutative diagram

F ·X · F β−−−−→ F ·H · F⏐⏐�ρX

⏐⏐�ρH

A ·X · A β−−−−→ A ·H · A.

Lemma 4.3. For f ∈ F ·X · F we have

δ ◦ β(f) ≡ f − f ′ (mod IX),

where f ′ is the standard form of f .

Proof. Consider the standard reduction (4.2). We have

(4.3) δ ◦ β(f) = δ

(
n−1∑
i=1

kixi[hi]yi

)
=

n−1∑
i=1

kixihiyi.

Since kixihiyi = f̂i − fi+1, the righthand side of (4.3) is equal to

f1 − f̂n +
n∑

i=1

(f̂i − fi) ≡ f − f ′ (mod IX).
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Since ρX(f) = ρX(g) if and only if f̂ = ĝ, we sometimes regard a G-irreducible element
of F ·X · F as an element of A ·X · A. Thus, a G-irreducible element f and its standard
form f ′, which is also G-irreducible, are considered to be an element of A ·X ·A. With this
convention, Lemma 4.3 means

Lemma 4.4. For f ∈ A ·X · A we have

∂ ◦ β(f) = f − f ′.

Lemma 4.5. The mapping sending f ∈ F ·X · F to its standard form f ′ is K-linear, that
is,

(4.4) (k · f + � · g)′ = k · f ′ + � · g′

for any k, � ∈ K and f, g ∈ F ·X · F .

Proof. By Lemmas 4.1 and 4.3,

kf + �g − (kf + �g)′ ≡ δ ◦ β(kf + �g) (mod IX)
= k · δ ◦ β(f) + � · δ ◦ β(g)
≡ k(f − f ′) + �(g − g′) (mod IX).

Hence, we see
(k · f + � · g)′ ≡ k · f ′ + � · g′ (mod IX),

but the elements in the both sides in the above congruence are G-irreducible, we have the
equality (4.4) in F ·X · F .

5 Construction of Gröbner bases and exact sequences of projective bimodules
Let X be an edged set and let H be a normalized left very monic Gröbner basis on the
projective F -bimodule F · X · F generated by X . Let M be the A-bimodule defined by
(H,G), that is, M = (F ·X ·F )/L(H, G). Via the surjection ρX : F ·X ·F → A ·X ·A, M
is isomorphic to the quotient (A ·X ·A)/LA(H) as stated in the previous section.

Now we are going to construct a Gröbner basis on F ·H · F under the situation above.
We need a compatible well-order on F ·H · F suitable for our purpose. We define an order
� on Σ∗HΣ∗ =

⋃
h∈H Σ∗

σ(h)× τ(h)Σ∗ under the condition that a compatible well-order � is
already given on Σ∗XΣ∗ =

⋃
ξ∈X Σ∗

σ(ξ) × τ(ξ)Σ∗. For f = x[h]y and g = x′[h′]y′ in Σ∗HΣ∗

with h, h′ ∈ H , x ∈ Σ∗
σ(h), x′ ∈ Σ∗

σ(h′), y ∈ τ(h)Σ∗ and y′ ∈ τ(h′)Σ∗, f � g if and only if

(i) x · lt(h) · y � x′ · lt(h′) · y′ in Σ∗XΣ∗, or

(ii) x · lt(h) · y = x′ · lt(h′) · y′ and |y| > |y′| , or

(iii) x · lt(h) · y = x′ · lt(h′) · y′, |y| = |y′| and |x| < |x′| .
It is easy to see that � is a compatible well-order on Σ∗HΣ∗. It can be extended to the
partial order � on F ·H · F as we did on F in Section 2.

Let h = [ξ]x− t ∈ H and u′′ ∈ Σ∗ such that x = x′u′, u = u′u′′, u− v ∈ G and xu′′ is a
minimal G-reducible word. We have a proper critical pair ([ξ]xu′′ →H tu′′, [ξ]x′u→G [ξ]x′v)
of reductions. We consider an element c of F ·H ·F corresponding to this critical pair defined
by

(5.1) c = [h]u′′ + β(tu′′)− β([ξ]x′v).
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From the definition of � above, we see that [h]u′′ � −β([ξ]x′v)+β(tu′′) and so lt(c) = [h]u′′

and c is a left very monic element of F ·H · F . Moreover, we see that c is uniform because
the elements [h]u′′, [ξ]x′v and tu′′ are uniform and parallel and the mapping β is uniform.

Let C be the set of the elements c given as (5.1) for all proper critical pairs of reductions.
Accordingly, the rewriting system TC on F ·H · F associated with C is the set of all rules

[h]u′′ → β([ξ]x′v)− β(tu′′)

corresponding to proper critical pairs.
The following lemmas can be proved in a similar way to the previous paper [10, Lemmas

5.2 and 5.3] and we omit the proofs. Our key result (Theorem 5.3), which asserts that the
set C is a Gröbner basis on F ·H · F , also can be proved using these lemmas in a similar
manner to [10].

Lemma 5.1. The element β(f) is (C,G)-irreducible for any f ∈ F ·X · F .

Lemma 5.2. For f ∈ F ·X · F and x ∈ F we have a standard reduction

β(f) · x⇒∗
C,G β(f · x)− β(f̃ · x),

where f̃ is the normal form of f with respect to G ∪H.

Theorem 5.3. The set C is a normalized left very monic Gröbner basis on F ·H · F .

We call C the Gröbner basis made from critical pairs of reductions for H . We consider
the projective F -bimodule F · C · F and the projective A-bimodule A · C · A generated by
C. As before, [c] denotes the generator corresponding to c ∈ C. We have a morphism
δC : F · C · F → F · H · F of F -bimodules and a morphism ∂C : A · C · A → A · H · A of
A-bimodules defined by δC([c]) = c, and ∂C([c]) = ρH(c), for c ∈ C. With these morphisms
we have a commutative diagram

F · C · F δC−−−−→ F ·H · F δH−−−−→ F ·X · F⏐⏐�ρC

⏐⏐�ρH

⏐⏐�ρX

A · C · A ∂C−−−−→ A ·H · A ∂H−−−−→ A ·X · A
We also have a commutative diagram of K-modules

F · C · F βC←−−−− F ·H · F βH←−−−− F ·X · F⏐⏐�ρC

⏐⏐�ρH

⏐⏐�ρX

A · C ·A βC←−−−− A ·H · A βH←−−−− A ·X ·A,

(5.2)

where βC is the K-linear map obtained through standard reduction on F ·H ·F with respect
to the Gröbner basis C and βC is the induced mapping from βC on A ·H · A.

Lemma 5.4. The equality βH ◦ δH(f) = f̃ holds for any f ∈ F · H · F , where f̃ is the
normal form with respect to (C,G).

Proof. Let f =
∑

kixi[hi]yi ∈ F ·H · F , then

βH ◦ δH(f) =
∑

ki · βH(xihiyi).
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By Lemma 5.2, we have

βH(xihi)yi →∗
C,G βH(xihiyi)− βH((xhi )̃ yi),

where (xhi)˜ is the normal form of xhi with respect to G∪H , and equals 0 because hi ∈ H .
On the other hand, βH(xihi) = x̂i[hi] by the definition of βH . Thus, we have

f →∗
G

∑
kiβH(xihi)yi →∗

C,G

∑
kiβH(xihiyi) = βH ◦ δH(f).

Since βH ◦ δH(f) is (C,G)-irreducible by Lemma 5.1, and C is a Gröbner basis by Theorem
5.3, βH ◦ δH(f) must be equal to the unique normal form f̃ of f .

Since δC ◦ βC(f) ≡ f − f̃ (mod IH) for f ∈ F ·H · F by Lemma 4.3, we have

Proposition 5.5. For any f ∈ F ·H · F ,

δC ◦ βC(f) + βH ◦ δH(f) ≡ f (mod IH).

Corollary 5.6. we have
∂C ◦ βC + βH ◦ ∂H = idA·H·A.

By Lemma 4.3, for c ∈ C given as (5.1) we have

δH ◦ δC([c]) = δH(c) = δH([h]u′′)− δH ◦ βH([ξ]x′v) + δH ◦ βH(tu′′)
≡ hu′′ − [ξ]x′v + ([ξ]x′v)̃ + tu′′ − (tu′′)̃ (mod IX)
= 0 (mod IX).

This identity and Proposition 5.5 show that

Im(δC) + IH = Ker(δH) + IH .

Thus, C is a normalized left very monic Gröbner basis of Ker(δH) + IH on F · H · F
modulo G, that is, C is a Gröbner basis for Ker(∂). Moreover, Corollary 5.6 means that
the β-mappings are contracting homotopy mappings and

Im(∂C) = Ker(∂H).

So the lower sequence in (5.2) is exact, and we have

Theorem 5.7. Let M be defined by a normalized left very monic Gröbner basis H on
F ·X ·F modulo G. Then, C is a normalized left very monic Gröbner basis for Ker(∂), and
we have an exact sequence of A-bimodules:

A · C ·A ∂C−→ A ·H ·A ∂H−→ A ·X · A η−→M −→ 0,

where η is the natural surjection. Moreover, we have morphisms βH : A ·X ·A→ A ·H ·A
and βC : A ·H ·A→ A · C ·A of left A-modules such that ∂C ◦ βC + βH ◦ ∂H = idA·H·A.

Let M be an A-bimodule admitting a normalized left very monic Gröbner basis X1 on
the projective F -bimodule F ·X0 ·F generated by an edged set X0, that is, M ∼= M(X1, G).
An n-chain with respect to X1 is a sequence (ξ, u0, u1, . . . , un−1) such that ξ ∈ X0, [ξ]u0 ∈
Left(X1) and ui is nonempty proper suffixes of words in Left(G) and ui−1ui are minimal
G-reducible words for i = 1, . . . , i− 1. Let Xn be the set of n-chains. Because a 0-chain is
an element of X0 and to a 1-chain (ξ, u0) uniquely corresponds an element of the Gröbner
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basis X1 with leading term [ξ]u0, there is no inconsistency in using the symbols X0 and X1

for the sets of 0-chains and of 1-chains, respectively.
Starting with the initial exact sequence

A ·X1 ·A ∂1−→ A ·X0 ·A η−→M −→ 0

and applying Theorem 5.7 inductively, we have

Theorem 5.8. Let M be an A-bimodule defined by a left very monic normalized Gröbner
basis X1 on the projective F -bimodule F · X0 · F generated by an edged set X0. With the
set Xn of n-chains we have a projective A-bimodule resolution of M :

(5.3) X :→ A ·Xn ·A ∂n→ A ·Xn−1 · A→ · · · → A ·X1 · A ∂1→ A ·X0 ·A η→M.

Here, Ker(∂n−1) has a left very monic normalized Gröbner basis {hc | c ∈ Xn} on F ·Xn−1 ·F
parameterized with Xn such that lt(hc) = [c′]un−1 and ∂n([c]) = ρXn−1(hc), where c is an
n-chain (ξ, u0, u1, . . . , un−1) and c′ is the (n− 1)-chain (ξ, u0, u1, . . . , un−2). Moreover, we
have morphisms βn : A · Xn−1A → A · Xn · A of left A-modules such that ∂n+1 ◦ βn+1 +
βn ◦ ∂n = idA·Xn·A for n ≥ 1.

Suppose A is supplemented with augmentation (K-algebra morphism) ε : A→ K. Then
taking the functor K ⊗A on the resolution (5.3), we have a complex Xr = K ⊗A X :

(5.4) → Xn · A ∂r
n→ Xn−1 ·A→ · · · → X1 ·A ∂r

1→ X0 · A ηr

→M r,

where M r = K ⊗A M is the right A-module induced from M with trivial left action via ε
and ∂r

n = 1 ⊗ δn, ηr = 1 ⊗ η. Moreover, the morphism βn : A · Xn−1 · A → A · Xn · A of
left A-modules induces a K-linear map: βr

n = 1 ⊗ βn : Xn−1 · A → Xn · A, and we have
∂r

n+1 ◦βr
n+1 +βr

n ◦∂r
n = idXn·A for n ≥ 1. Hence (5.4) remains exact and forms a projective

resolution of the right A-module M r. On the other hand, let M be a right A-module. By
tensoring with A on the left we have an A-bimodule A⊗K M . If A⊗K M admits a left very
monic Gröbner basis as an A-bimodule (when K is a field, M always admits a (possibly
infinite) right Gröbner basis H and this H gives rise to a left very monic Gröbner basis of
A ⊗K M as an A-bimodule), we have the projective A-bimodule resolution X of A ⊗K M
in Theorem 5.4. But, since (A ⊗K M)r ∼= M , Xr gives a projective resolution of M as a
right A-module. This, in particular, yields the Anick-Green resolution given in [1]. In this
sense our construction is a generalization of theirs.

The algebra A is itself an A-bimodule. Consider the projective F -bimodule F ·Σ0 ·F and
the projective A-bimodule generated by the set Σ0 of vertices of Σ, where Σ0 is considered
to be an edged set such that σ(v) = τ(v) = v for v ∈ Σ0. Let η : F · Σ0 · F → F and
η : A · Σ0 · A → A be the augmentation map, which is an F -bimodule morphism and an
A-bimodule morphism, respectively, given by

η([v]) = η([v]) = v

for v ∈ Σ0.
Let X1 = {[σ(a)]a−a[τ(a)] | a ∈ Σ1}. Then, X1 is a left very monic normalized Gröbner

basis on F ·Σ0 ·F for Ker(η) as stated in Example 3.4. Since X1 is bijective to Σ1, we have
an exact sequence

A · Σ1 · A ∂1−→ A ·Σ0 ·A η−→ A −→ 0

of A-bimodules, where ∂1([a]) = [σ(a)]a− a[τ(a)] for a ∈ Σ1 and η([v]) = v for v ∈ Σ0.
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Based on this initial exact sequence, we can construct a projective bimodule resolution
of A. For n ≥ 1, an n-chain for A is a sequence (a, u1, . . . , un−1) such that a ∈ Σ1, au1 ∈ G
and ui−1ui is a minimal G-reducible word for i = 1, . . . , n−2. Let Cn be the set of n-chains
for A. As above, C0 = Σ0 and C1 = Σ1. C2 is bijective to G and {[g]1 | g ∈ G} forms
a Gröbner basis of Ker(∂1), where [g]1 is defined as follows. For words x = a1a2 · · ·am,
[x]1 = [a1]a2 · · ·am + a1[a2] · · ·am + · · · + a1a2 · · · [am] with ai ∈ Σ1, and for g =

∑
i kixi

with ki ∈ K and xi ∈ Σ∗, [g]1 =
∑

i ki[xi]1.

Theorem 5.9. We have a projective A-bimodule resolution H:

(5.5) · · · → A·Cn ·A ∂n→ A·Cn−1 ·A→ · · · → A·C3 ·A ∂3→ A·G·A ∂2→ A·Σ1 ·A ∂1→ A·Σ0 ·A η→ A

of A. Here, ∂1([a]) = [σ(a)]a−a[τ(a)] for a ∈ Σ1 and ∂2[g] = [g]1 for g ∈ G, and in general
for n ≥ 3, Ker(∂n−1) has a left very monic normalized Gröbner basis {hc | c ∈ Cn} on
F · Cn−1 · F such that lt(hc) = [c′]un and ∂n([c]) = ρCn−1(hc), where c = (a, u1, . . . , un−1)
and c′ = (a, u1, . . . , un−2).

For two A-bimodules M and N , let HomA,A(M, N) be the K-modules consisting of all
bimodules morphisms from M to N . Taking the functor HomA,A(., N) with the resolution
(5.5), we have a complex

HomA,A(H, N) :
⊕
v∈Σ0

vMv
∂∗
1−→
⊕
a∈Σ0

σ(a)Mτ(a) −→ · · · −→
⊕

c∈Cn−1

σ(c)Mτ(c)
∂∗

n−→
⊕
c∈Cn

σ(c)Mτ(c) −→ · · · .

The cohomology group Ker(∂∗
n+1)/Im(∂∗

n) is equal to the Hochschild cohomology Hn(A,M)
of dimension n with coefficients in M . In particular, letting M = A we have the Hochschild
cohomology Hn(A) ([7]).

Let U be a subset of Σ≥2 such that any element of U is not a subword of another word
in U . Then U is a normalized Gröbner basis of the ideal I = I(U) of F generated by U ,
and we have a monomial algebra A = F/I . The resolution for A constructed on this basis
in our method is essentially a resolution given by Bardzell [2]. The resolution is used to
calculate the Hochschild cohomology groups for a certain type of monomial algebras in [11]
(the algebra structure of the cohomology is given for more special monomial algebras in
[3]).

6 Diagonal maps and products The Hochschild cohomology group H(A) has a ring
structure with the cup product (the Yoneda product). In this section we describe the ring
structure of H(A) in terms of our resolution constructed in the previous section. Again,
our K-linear map β will play an important role.

Let X be an edged set, and H be a normalized left very monic Gröbner basis on F ·X ·F .
We have the K-linear mappings βH : F ·X · F → F ·H ·F and βH : A ·X ·A→ A ·H ·A.

Let Z be another edged set. Let F ·Z ·F ·X ·F denotes the tensor product F ·Z ·F ⊗F

F · X · F , which is the projective F -bimodule generated by
⋃

ζ∈Z,ξ∈X τ(ζ)Σ∗
σ(ξ). It is the

free K-module generated by ⋃
ζ∈Z,ξ∈X

Σ∗
σ(ζ) × τ(ζ)Σ∗

σ(ξ) × τ(ξ)Σ∗.

So, an element f of F · Z · F ·X · F is uniquely written as a finite sum

f =
∑

kixi[ζi]yi[ξi]zi
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where ki ∈ K \ {0}, ζi ∈ Z, ξi ∈ X , xi ∈ Σ∗
σ(ζi)

, yi ∈ τ(ζi)Σ
∗
σ(ξi)

, zi ∈ τ(ξi)Σ
∗ and

(xi, ζi, yi, ξi, zi) are all different for i. We also consider the projective A-bimodule A ·Z ·A ·
X ·A = A ·Z ·A⊗A A ·X ·A generated by

⋃
ζ∈Z,ξ∈X τ(ζ)Aσ(ξ). An element f of A ·Z ·A ·X ·A

is written as
f =

∑
kix̂i[ζi]ŷi[ξi]ẑi

with ki ∈ K \ {0}, ζi ∈ Z, ξi ∈ X , xi ∈ Σ∗
σ(ζi)

, yi ∈ τ(ζi)Σ
∗
σ(ξi)

, zi ∈ τ(ξi)Σ
∗. This expression

is unique if (x̂i, ζi, ŷi, ξi, ẑi) are all different for i.
We define K-linear mappings

ZβH : F · Z · F ·X · F → F · Z · F ·H · F

and
ZβH : A · Z · A ·X ·A→ A · Z ·A ·H ·A

by
ZβH(x[ζ]y[ξ]z) = x[ζ]βH(y[ξ]z)

and
ZβH(x̂[ζ]ŷ[ξ]ẑ) = x̂[ζ]βH(ŷ[ξ]ẑ)

for ζ ∈ Z, ξ ∈ X , x ∈ Σ∗
σ(ζ), y ∈ τ(ζ)Σ∗

σ(ξ) and z ∈ τ(ξ)Σ∗. Since βH is a morphism of left
A-modules, we have

(6.1) ZβH = idA·Z·A ⊗A βH .

Clearly ZβH and ZβH are uniform.
By Corollary 5.6 we have

Proposition 6.1. We have

(idA·Z·A ⊗ ∂C) ◦ ZβC + ZβH ◦ (idA·Z·A ⊗ ∂H) = idA·Z·A·H·A.

By Theorem 5.9 we have the projective A-bimodule resolution H in (5.5) of A. Let 1r

denote the identity mapping on A · Cr · A, in particular 10 = idA·Σ0·A and 11 = idA·Σ1·A.
For r ≥ 0 and s > 0, let rβs denote the K-linear mapping

(−1)r · CrβCs
= (−1)r · 1r ⊗ βCs

: A · Cr · A · Cs−1 · A→ A · Cr · A · Cs · A,

that is,
rβs(x[c]y[c′]z) = (−1)rx[c]βCs

(y[c′]z) = (−1)rx[c]yβCs
([c′]z)

for c ∈ Cr, c′ ∈ Cs−1 and x, y, z ∈ A.
Now, for r, s ≥ 0 we define a morphism

∆r,s : A · Cr+s · A→ A · Cr · A · Cs · A

of A-bimodules by induction on s. First, define ∆r,0 by

(6.2) ∆r,0([c]) = [c][τ(c)]

for c ∈ Cr and extend it A-bilinearly. Let s > 0 and assuming that ∆r,s−1 is already
defined, define ∆r,s by

(6.3) ∆r,s([c]) = rβs ◦∆r,s−1 ◦ ∂r+s([c]).
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for c ∈ Cr+s and extend it A-bilinearly. Note that ∆r,s is not necessarily equal to the
composition rβs ◦∆r,s−1 ◦ ∂r+s because rβs is not a morphism of A-bimodules.

As before, for a word x = a1 · · · an ∈ Σ∗ with ai ∈ Σ1, [x]1 denotes the element
[a1]a2 · · ·an + · · ·+ a1 · · · an−1[an] of A · Σ1 · A. We know that

βC1
([σ(x)]x) = [x]1

for any x ∈ Σ∗.

Lemma 6.2. Let c ∈ Cr+1 and suppose that ∂r+1([c]) is written as

(6.4) ∂r+1([c]) =
∑

kixi[ci]yi

with ki ∈ K, xi ∈ Σ∗
vi

, yi ∈ v′
i
Σ∗ and ci ∈ Cr, where vi = σ(ci), v′i = τ(ci). Then,

∆r,1([c]) = (−1)r
∑

kixi[ci][yi]1.

Proof. By definition

∆r,1([c]) = rβ1 ◦∆r,0(
∑

kixi[ci]yi)

=
∑

ki · rβ1(xi[ci][v′i]yi)

= (−1)r
∑

kixi[ci][yi]1.

Theorem 6.3. The following identities among our mappings hold: First,

(6.5) η = (η ⊗ η) ◦∆0,0,

holds, that is, the diagram

A · Σ0 · A
∆0,0 ��

η

��������������� A ·Σ0 · A · Σ0 ·A
η⊗η

��
A = A⊗A A

commutes. In general, for r, s ≥ 0

(6.6) ∆r,s ◦ ∂r+s+1 = (−1)r(1r ⊗ ∂s+1) ◦∆r,s+1 + (∂r+1 ⊗ 1s) ◦∆r+1,s,

holds, that is, the diagram

A · Cr+s+1 · A
∆r,s+1⊕∆r+1,s

��

∂r+s+1

��

A · Cr · A · Cs+1 · A⊕A · Cr+1 · A · Cs · A
(−1)r1r⊗∂s+1+∂r+1⊗1s

��
A · Cr+s · A ∆r,s �� A · Cr ·A · Cs ·A

commutes.
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Proof. First (6.5) is easily checked by (6.2) as

(η ⊗ η) ◦∆0,0([v]) = (η ⊗ η)([v][v]) = v · v = v = η([v]).

Now, we prove (6.6) by induction on s. Let r ≥ 0 and c ∈ Cr+1, and let ∂r+1([c]) be given
as (6.4). By Lemma 6.2 we have

(−1)r(1r ⊗ ∂1)◦∆r,1([c]) + (∂r+1 ⊗ 10) ◦∆r+1,0([c])

= (1r ⊗ ∂1)
(∑

kixi[ci][yi]1
)

+ (∂r+1 ⊗ 10)([c][τ(c)])

=
∑

kixi[ci]([σ(yi)]yi − yi[τ(yi)]) +
∑

kixi[ci]yi[τ(c)]

=
∑

kixi[ci][σ(yi)]yi = ∆r,0 ◦ ∂r+1([c]}.

This implies that (6.6) holds for s = 0.
Next, suppose s ≥ 1 and let c ∈ Cr+s+1. By our definition (6.3) we see

(6.7) ∆r,s+1([c]) = rβs+1 ◦∆r,s ◦ ∂r+s+1([c]).

By induction hypothesis we have

(6.8) ∆r,s−1 ◦ ∂r+s = (−1)r(1r ⊗ ∂s) ◦∆r,s + (∂r+1 ⊗ 1s−1) ◦∆r+1,s−1.

By Proposition 6.1 we have

(6.9) (1r ⊗ ∂s+1) ◦ rβs+1 + rβs ◦ (1r ⊗ ∂s) = (−1)r · idA·Cr·A·Cs·A.

By (6.7), (6.8) and (6.9), we get

(6.10) (−1)r(1r ⊗ ∂s+1) ◦∆r,s+1([c])
= ∆r,s ◦ ∂r+s+1([c])− rβs ◦∆r,s−1 ◦ ∂r+s ◦ ∂r+s+1([c])

+ rβs ◦ (∂r+1 ⊗ 1s−1) ◦∆r+1,s−1 ◦ ∂r+s+1([c]).

Due to (6.1) we have,

rβs ◦ (∂r+1 ⊗ 1s−1) = (−1)r(∂r+1 ⊗ βCs
) = −(∂r+1 ⊗ 1s) ◦ r+1βs.

Thus, rβs ◦ (∂r+1 ⊗ 1s−1) ◦∆r+1,s−1 ◦ ∂r+s+1([c]) is equal to −(∂r+1 ⊗ 1s) ◦∆r+1,s([c]) by
the inductive definition of ∆r+1,s. Moreover, since ∂r+s ◦ ∂r+s+1 = 0, the righthand side of
(6.10) is equal to

∆r,s∂r+s+1([c])− (∂r+1 ⊗ 1s) ◦∆r+1,s([c]),

as desired.

Let M and N be A-bimodules. For f ∈ HomA,A(A ·Cr ·A,M) and g ∈ HomA,A(A ·Cs ·
A,N) define the cup product f ∪ g ∈ HomA,A(A · Cr+s ·A,M ⊗A N) by

(6.11) f ∪ g = (f ⊗ g) ◦∆r,s.

This product ∪ induces the product on the cohomology, that is, it induces the product
∪ : H(A,M) × H(A,N) → H(A,M ⊗A N). By the uniqueness of the product (see [13]),
this is actually the Yoneda product. In particular, we have an algebra structure on the
Hochschild cohomology H(A). Thus, we have

Theorem 6.4. The Yoneda product in the graded algebra H(A) =
⊕

Hn(A) over the center
Z(A) = H0(A) of A is given by the product ∪ in (6.11) above.
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7 Examples In this section we calculate the Hochschild cohomology algebras of two
special example algebras. Only these simple examples will be illustrative enough to show
how our methods can be applied effectively.

Example 7.1. Let Σ be a quiver with two vertices u, v and two arrows a, b given as

u
a ��

v.
b

��

Let
G = {ababa + aba, babab + bab}

and I be the ideal generated by G of the path algebra F = K · Σ∗ over K. Then, G is a
Gröbner basis of I. The quotient algebra A = F/I is spanned by

Irr(G) = {u, v, a, b, ab, ba, aba, bab, abab, baba},

over K and decomposed as

A = uAu ⊕ vAv ⊕ uAv ⊕ vAu,

where

uAu = K · {u, ab, abab}, uAv = K · {v, ba, baba}, uAv = K · {a, aba}, vAu = K · {b, bab}.

Let V = {α, β} and V = {α, β} be edged sets such that

σ(α) = u, τ(α) = v, σ(β) = v, τ(β) = u, σ(α) = τ(α) = u, σ(β) = τ(β) = v,

and let ∂1 : A · V · A→ A · V ·A, ∂2 : A · V ·A→ A · V · A, ∂3 : A · V · A→ A · V · A, and
∂4 : A · V ·A→ A · V · A be morphisms of A-bimodules defined by

∂1([α]) = [α]a− a[β], ∂1([β]) = [β]b− b[α],
∂2([α]) = [α]baba + a[β]aba + ab[α]ba + aba[β]a + abab[α] + [α]ba + a[β]a + ab[α],
∂2([β]) = [β]abab + b[α]bab + ba[β]ab + bab[α]b + baba[β] + [β]ab + b[α]b + ba[β],

∂3([α]) = [α]b− a[β], ∂3([β]) = [β]a− b[α],

∂4([α]) = [α]abab + a[β]bab + ab[α]ab + aba[β]b + abab[α] + [α]ab + a[β]b + ab[α],

∂4([β]) = [β]baba + b[α]aba + ba[β]ba + bab[α]a + baba[β] + [β]ba + b[α]a + ba[β].

With these morphisms we have a projective bimodule resolution of A:

(7.1) · · · −→ A · Cn · A ∂n−→ A · Cn−1 ·A −→ . . .
∂2−→ A · C1 ·A ∂1−→ A · C0 · A ε−→ A,

where

Cn =

{
V if n ≡ 1, 2 (mod 4)
V if n ≡ 0, 3 (mod 4),

and
ε([α]) = u, ε([β]) = v,

∂n = ∂r if n ≡ r (mod 4).
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As we saw in Section 5, (7.1) is exact up to dimension 2 and H = ∂2(C2) = {hα, hβ} is
a Gröbner basis for Ker(∂1), where

hα = [α]baba + a[β]aba + ab[α]ba + aba[β]a + abab[α] + [α]ba + a[β]a + ab[α],
hβ = [β]abab + b[α]bab + ba[β]ab + bab[α]b + baba[β] + [β]ab + b[α]b + ba[β].

We have two critical pairs of reduction

[α]babab
↗G −[α]bab

↘H −a[β]abab− ab[α]bab− aba[β]ab− abab[α]b− [α]bab− a[β]ab− ab[α]b

and

[β]ababa
↗G −[β]aba

↘H −b[α]baba− ba[β]aba− bab[α]ba− baba[β]a− [β]aba − b[α]ba− ba[β]a

with respect to H and G. Corresponding to these critical pairs we have two elements

[hα]b− βH([α]bab)
+ βH(−a[β]abab− ab[α]bab− aba[β]ab− abab[α]b− [α]bab− a[β]ab − ab[α]b)

= [hα]b− a[hβ ]

and
[hβ]a− b[hα],

which constitute a Gröbner basis C3 for Ker(∂2).
In general for all n ≥ 3 we can check that ∂n(Cn) forms a Gröbner basis for Ker(∂n−1)

and we see that (7.1) is actually exact.
Taking the functor HomA,A(., A) on (7.1) we have a complex:

uAu ⊕ vAv
∂∗
1−→ uAv ⊕ vAu

∂∗
2−→ uAv ⊕ vAu

∂∗
3−→ uAu ⊕ vAv

∂∗
4−→ uAu ⊕ vAv,

where

∂∗
1 (x, y) = (xa− ay, yb− bx),

∂∗
4 (x, y) = (xabab + aybab + abxab + abayb + ababx + xab + ayb + abx,

ybaba + bxaba + bayba + babxa + babay + yba + bxa + bay)

for (x, y) ∈ uAu × vAv, and

∂∗
2 (x, y) = (xbaba + ayaba + abxba + abaya + ababx + xba + aya + abx,

yabab + bxbab + bayab + babxb + babay + yab + bxb + bay),
∂∗
3 (x, y) = (xb− ay, ya− bx)

for (x, y) ∈ uAv × vAu.
Note that all the calculations can be done in A because uAu ⊕ vAv and uAv ⊕ vAu are

contained in A. From here we assume that K is a field of characteristic p.
Elements x ∈ uAu and y ∈ vAv are uniquely written as

(7.2) x = ku + �ab + m abab, y = k′v + �′ba + m′baba



GRÖBNER BASES AND COHOMOLOGY ALGEBRAS 431

with k, �, m, k′, �′, m′ ∈ K, respectively. Since

xa− ay = (k − k′)a + (�−m− �′ + m′)aba,

yb− bx = −(k − k′)b− (�−m− �′ + m′)bab,

we have

Ker(∂∗
1 ) = K ⊕K · (ab + ba)⊕K · (ab + abab)⊕K · (abab + baba)

and
Im(∂∗

1 ) = K · (a− b)⊕K · (aba− bab).

For x ∈ uAv and y ∈ vAu given as

(7.3) x = ka + �aba, y = k′b + �′bab

with k, �, k′, �′ ∈ K, we have

∂∗
2 (x, y) = ((−k + �− k′ + �′)aba, (−k′ + �′ − k + �)bab),

∂∗
3 (x, y) = ((k − k′)ab + (�− �′)abab, (k′ − k)ba + (�′ − �)baba).

Thus, we have

Ker(∂∗
2 ) = K · (a− b)⊕K · (aba− bab)⊕K · (a + aba)

Im(∂∗
2 ) = K · (aba + bab),

Ker(∂∗
3 ) = K · (a + b)⊕K · (aba + bab),

Im(∂∗
3 ) = K · (ab− ba)⊕K · (abab− baba).

Therefore, we obtain

H1(A) = Ker(∂∗
2 )/Im(∂∗

1 ) ∼= K · (a + aba),

H2(A) = Ker(∂∗
3 )/Im(∂∗

2 ) ∼= K · (a + b).

For elements x ∈ uAu and y ∈ vAv given as (7.2) we have

∂∗
4 (x, y) = ((2k + k′)ab + (3k − � + m + 2k′ − �′ + m′)abab,

(2k′ + k)ba + (3k′ − �′ + m′ + 2k − � + m)baba).

Hence, ∂∗
4 (x, y) = 0, if and only if{

k = k′ = 0, �−m + �′ −m′ = 0 if p �= 3
k = k′, 2k = �−m + �′ −m′ if p = 3,

and so we obtain

Ker(∂∗
4 ) =

{
K · (ab− ba)⊕K · (abab− baba)⊕K · (ab + abab) if p �= 3
K · (ab− ba)⊕K · (abab− baba)⊕K · (ab + abab)⊕K · (1 + ab + ba) if p = 3,
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and

Im(∂∗
4 ) =

{
K · (ab + ba)⊕K · (ab + abab)⊕K · (abab + baba) if p �= 3
K · (ab− ba− abab)⊕K · (abab + baba) if p = 3.

Therefore, we have

H3(A) =
Ker(∂∗

4 )
Im(∂∗

3 )
∼=
{

K · (ab + abab) if p �= 3
K · (ab + abab)⊕K · (1 + ab + ba) if p = 3,

and

H4(A) =
Ker(∂∗

1 )
Im(∂∗

4 )
∼=
{

K if p �= 3
K ⊕K · (ab + ba) if p = 3.

Summarizing,

H0(A) = Z(A) = K ⊕K · (ab + ba)⊕K · (ab + abab)⊕K · (abab + baba),

H1(A) = K · (a + aba),

H2(A) = K · (a + b),

H3(A) =

{
K · (ab + abab) if p �= 3
K · (ab + abab)⊕K · (1 + ab + ba) if p = 3,

H4(A) =

{
K if p �= 3
K ⊕K · (ab + ba) if p = 3,

and for n ≥ 5,

Hn(A) = Hr(A) if n ≡ r (mod 4), 1 ≤ r ≤ 4.

Next, we calculate the ring structure of H(A). First, setting

λ = ab + ba, µ = ab + abab

in H0(A), we have
λ2 = abab + baba, λ3 = −λ2, λµ = µ2 = 0.

Hence, H0(A) is the quotient of a polynomial ring:

K[λ, µ]/(λ3 + λ2, µ2, λµ).

Now, assuming that p = char(K) �= 3, set

σ = a + aba, τ = a + b, θ = 1

in H1(A),H2(A),H4(A), respectively. It is well-known that H(A) is graded commutative.
We have

σ ∪ λ = (a + aba)(ab + ba) = aba + ababa = 0

and
σ ∪ µ = (a + aba)(ab + abab) = 0.
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in H1(A). Similarly we have
τ ∪ λ = τ ∪ µ = 0

in H2(A). Moreover we have

(7.4) θ ∪ λ = ab + ba

and

(7.5) θ ∪ µ = ab + abab,

in H4(A), which are equal to 0 when p �= 0
By Lemma 6.2, we have

∆1,1([α]) = − {[α][β]aba + [α]b[α]ba + [α]ba[β]a + [α]bab[α] + a[β][α]ba + a[β]a[β]a
+ a[β]ab[α] + ab[α][β]a + ab[α]b[α] + aba[β][α] + [α][β]a + [α]b[α] + a[β][α]},

∆1,1([β]) = − {[β][α]bab + [β]a[β]ab + [β]ab[α]b + [β]aba[β] + b[α][β]ab + b[α]b[α]b
+ b[α]ba[β] + ba[β][α]b + ba[β]a[β] + bab[α][β] + [β][α]b + [β]a[β] + b[α][β]},

from which we find

(σ ⊗ σ) ◦∆1,1([α]) = 0, (σ ⊗ σ) ◦∆1,1([β]) = 0,

meaning
σ ∪ σ = 0.

Since
∆2,1([α]) = [α][β], ∆2,1([β]) = [β][α],

we have
(τ ⊗ σ) ◦∆2,1([α]) = 0, (τ ⊗ σ) ◦∆2,1([β]) = ba + baba.

Thus, we find that

(7.6) τ ∪ σ = ab + abab

is the generator in H3(A). Since

∆2,2([α]) = 2β2 ◦∆2,1 ◦ ∂4([α]) = [α][β],

∆2,2([β]) = 2β2 ◦∆2,1 ◦ ∂4([β]) = [β][α],

we have
(τ ⊗ τ) ◦∆2,2([α]) = ab, (τ ⊗ τ) ◦∆2,2([β]) = ba.

Hence,

(7.7) τ ∪ τ = ab + ba,

which equals 0 in H4(A) in case p �= 3. Since

∆4,1([α]) = [α][α], ∆4,1([β]) = [β][β],

we have
(θ ⊗ σ) ◦∆4,1([α]) = a + aba, (θ ⊗ σ) ◦∆4,1([β]) = 0,
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and hence, θ ∪ σ is equal to the generator a + aba in H5(A) (∼= H1(A));

(7.8) θ ∪ σ = a + aba

Similarly, we see that θ ∪ τ equals the generator a + b in H6(A), and θ ∪ θ equals the
generator 1 in H8(A).

Summarizing, when p �= 3, H(A) is isomorphic to the graded commutative algebra

K[λ, µ, σ, τ, θ]/(λ3 + λ2, µ2, σ2, τ2, λµ, σλ, σµ, τλ, τµ, θλ, θµ)

over K with
deg(λ) = deg(µ) = 0, deg(σ) = 1, deg(τ) = 2, deg(θ) = 4.

Next, we consider the case where p = 3. In this case, the element ab + ba in H4(A) is
equal to θ∪λ by (7.4). The element 1+ ab+ ba in H3(A) cannot be expressed by the other
elements, and we need a new variable ζ = 1 + ab + ba of degree 3.

Again an easy (but tedious) calculation shows that

(7.9) ζ ∪ λ = −(ab + abab), ζ ∪ µ = ab + abab

in H3(A),
ζ ∪ σ = 0

in H4(A),

(7.10) ζ ∪ τ = −(a + aba)

in H5(A),
ζ ∪ ζ = 0,

in H6(A), and
θ ∪ ζ = 1 + ab + ba

in H7(A). By (7.4), (7.5) and (7.7) we see

θ ∪ λ = −(θ ∪ µ) = τ ∪ τ,

By (7.8) and (7.10) we have
ζ ∪ τ = −(θ ∪ σ),

and by (7.6) and (7.9) we have

−ζ ∪ λ = ζ ∪ µ = τ ∪ σ.

Now, summarizing the above calculations, when p = 3, we find that H(A) is isomorphic
to the graded commutative algebra

K[λ, µ, σ, τ, θ, ζ]/J

over K with

deg(λ) = deg(µ) = 0, deg(σ) = 1, deg(τ) = 2, deg(θ) = 4, deg(ζ) = 3,

where J is the ideal

(λ3 + λ2, µ2, σ2, τ2 − θλ, ζ2, λµ, σλ, σµ, τλ, τµ, θλ + θµ, ζσ, ζλ − τσ, ζµ + τσ, ζτ + θσ).
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Next we consider another simple example but this time we treat it over the integer ring
Z.

Example 7.2. Let q(�= 0) ∈ Z be fixed and consider the quiver

Σ =

⎧⎪⎪⎨
⎪⎪⎩ c � u

a
−→
←−
b

v � d

⎫⎪⎪⎬
⎪⎪⎭ .

Let
G = {ca− ad, db− bc, ab− qc, ba− qd},

and let I be the ideal of F = Z ·Σ∗ generated by G. Then, G is a Gröbner basis of I, and
we have a resolution of the quotient algebra A = F/I :

(7.11) → AΣ1A
∂n→ AΣ1A→ · · · → AΣ1A

∂1→ AΣ0A
ε→ A

where
ε([u]) = u, ε([v]) = v,

∂1([a]) = [u]a− a[v], ∂1([b]) = [v]b− b[u], ∂1([c]) = [u]c− c[u], ∂1([d]) = [v]d − d[v],

and for n ≥ 2

∂n([a]) = [c]a− a[d] + c[a]− [a]d, ∂n([b]) = [d]b− b[c] + d[b]− [b]c,
∂n([c]) = [a]b + a[b]− q[c], ∂n([d]) = [b]a + b[a]− q[d]

if n is even, and

∂n([a]) = [c]a− a[d] + q[a], ∂n([b]) = [d]b− b[c] + q[b],
∂n([c]) = [a]b + a[b]− c[c] + [c]c, ∂n([d]) = [b]a + b[a]− d[d] + [d]d,

if n is odd.
Taking the functor Hom(., A) on (7.11) we have a complex:

uAu⊕vAv
∂∗
1→ uAv⊕vAu⊕uAu⊕vAv → · · · → uAv⊕vAu⊕uAu⊕vAv

∂∗
n→ uAv⊕vAu⊕uAu⊕vAv → . . .

with
∂∗
1 (z, w) = (za− aw,wb− bz, zc− cz, wd− dw),

and

∂∗
n(x, y, z, w) = (za− aw + cx− xd,wb− bz + dy − yc, xb + ay − qz, ya + bx− qw)

for even n ≥ 2, and

∂∗
n(x, y, z, w) = (za− aw + qx,wb− bz + qy, xb + ay − cz + zc, ya + bx− dw + wd)

for odd n ≥ 3, where x ∈ uAv, y ∈ vAu, z ∈ uAu and w ∈ vAv.
For z =

∑
i≥0 mic

i ∈ uAu = Z · c∗ and w =
∑

i≥0 nid
i ∈ vAv = Z · d∗ with mi, ni ∈ Z,

where only finitely many mi and ni are nonzero, we have

∂∗
1 (z, w) = (

∑
i≥0

(mi − ni)adi,
∑
i≥0

(ni −mi)bci, 0, 0).
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It follows that

Ker(∂∗
1 ) =

⊕
i≥0

Z(ci + di), Im(∂∗
1 ) =

⊕
i≥0

Z(adi − bci).

For even n ≥ 2 we can obtain (we omit the calculation)

Ker(∂∗
n) =

⊕
i≥0

Z(adi − bci)
⊕
i≥0

Z(adi + ci+1 + di+1),

Im(∂∗
n) =

⊕
i≥0

Z(adi − bci − qci)
⊕
i≥0

qZ(di + ci).

For odd n ≥ 3 we obtain

Ker(∂∗
n) =

⊕
i≥0

Z(ci + di)
⊕
i≥0

Z(adi − bci − qci),

Im(∂∗
n) =

⊕
i≥0

Z(adi − bci)
⊕
i≥0

qZ(adi + ci+1 + di+1).

Consequently we have
H0(A) =

⊕
i≥0

Z(ci + di),

H1(A) =
⊕
i≥0

Z(adi + ci+1 + di+1),

Hn(A) =
⊕
i≥0

Zq(ci + di)

for even n ≥ 2, and
Hn(A) =

⊕
i≥0

Zq(adi + ci+1 + di+1)

for odd n ≥ 3.
Set λ = c + d in H0(A). Since λi = ci + di, we have

H0(A) = Z[λ].

Set µn = a + c + d in Hn(A) for odd n ≥ 1. Since

µn ∪ λi = adi + ci+1 + di+1

in Hn(A), we have
H1(A) = Z[λ] · µ1

and
Hn(A) = Zq[λ] · µn.

for odd n ≥ 3. Similarly, setting νn = 1 in Hn(A) for even n ≥ 2., we have

Hn(A) = Zq[λ] · νn.

Since
(µ1 ⊗ µ1) ◦∆1,1([a] + [b] + [c] + [d]) = ca− ad = 0
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in H2(A), we see
µ1 ∪ µ1 = 0.

Moreover, by an easy calculation we obtain

νn ∪ µ1 = µn+1

and
νn ∪ ν2 = νn+2.

Therefore, letting µ = µ1 and ν = ν2, we have

H(A) = Z[λ, µ, ν]/(µ2, qν)

with deg(λ) = 0, deg(µ) = 1 and deg(ν) = 2. In particular, when q = ±1,

H(A) = Z[λ, µ]/(µ2).
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