SEMIPRIME SKEW POLYNOMIAL RINGS

A. Moussavi* and E. Hashemi**

Received November 5, 2005

Abstract

A ring R with a monomorphism α and an α-derivation δ with $\alpha \delta=\delta \alpha$ is called (α, δ)-quasi Baer (resp. quasi Baer) if the right annihilator of every (α, δ)-ideal (resp. ideal) of R is generated by an idempotent of R. In this paper we show that a semiprime ring $R[x ; \alpha, \delta]$ is α-quasi Baer if and only if $S=R[x ; \alpha, \delta]$ is $(\alpha, \bar{\delta})$-quasi Baer for every extended α-derivation $\bar{\delta}$ on S of δ if and only if R is (α, δ)-quasi Baer.

Throughout this paper R denotes an associative ring with unity, $\alpha: R \rightarrow R$ is a monomorphism which is not assumed to be surjective and δ is an α-derivation of R, that is, δ is an additive map such that $\delta(a b)=\delta(a) b+\alpha(a) \delta(b)$, for all $a, b \in R$. We denote $S=R[x ; \alpha, \delta]$ the Ore extension whose elements are the polynomials $\sum_{i=0}^{n} r_{i} x^{i}, r_{i} \in R$, where the addition is defined as usual and the multiplication by $x b=\alpha(b) x+\delta(b)$, for each $b \in R$. An ideal I of R is called an α-ideal (resp. δ-ideal) if $\alpha(I) \subseteq I$ (resp. $\delta(I) \subseteq I$). If $\alpha^{-1}(I)=I$, then it is called α-invariant. If I is both an α-ideal (resp. α-invariant ideal) and δ-ideal, then it is called an (α, δ)-ideal (resp. (α, δ)-invariant ideal).

In [5] Clark defines a ring to be quasi Baer if the right annihilator of every ideal is generated, as a right ideal, by an idempotent. He then uses the quasi Baer concept to characterize when a finite dimensional algebra with unity over an algebraically closed field is isomorphic to a twisted matrix units semigroup algebra. Pollingher and Zaks [13] show that the quasi Baer condition is a Morita invariant property. Further work on quasi Baer rings appears in [3-4], [6-8] and [13]. According to Hirano [7 and 8], a ring R is called δ-quasi Baer (resp. α-quasi Baer) if the right annihilator of every δ-ideal (resp. α-ideal) of R is generated by an idempotent. A ring R is called (α, δ)-quasi Baer if the right annihilator of every (α, δ)-ideal of R is generated by an idempotent. A ring R is called semiprime (resp. δ-semiprime) if for any ideal (resp. δ-ideal) I of $R, I^{2}=0$ implies $I=0$.

There are examples which show that the Baer condition is not preserved by various polynomial extensions (see [1 and 4]). However all is not lost for, in spite of the examples, some "Baerness" remains. Following [1,4 and 7-10], in this paper we study some Baerness property of the skew polynomial ring $R[x ; \alpha, \delta]$. We first prove that if $S=R[x ; \alpha, \delta]$ is a semiprime ring, then R is (α, δ)-quasi Baer if and only if $r_{S}(J)$ is generated by an idempotent as a right ideal of S, where J is an ideal of S such that $\alpha\left(a_{n}\right) x^{n}+\cdots+\alpha\left(a_{0}\right) \in J$ for each $a_{n} x^{n}+\cdots+a_{0} \in J$. As a corollary we obtain [9, Theorem 11]. We also prove that, a semiprime ring $R[x ; \alpha, \delta]$ is α-quasi Baer if and only if $S=R[x ; \alpha, \delta]$ is $(\alpha, \bar{\delta})$-quasi Baer for every extended α-derivation $\bar{\delta}$ on S of δ if and only if R is (α, δ)-quasi Baer. This is a generalization of [7] to the more general setting.

Recall from [2] that, an idempotent $e \in R$ is left (resp. right) semicentral if ere $=r e$ (resp. ere $=e r$) for each $r \in R$. Equivalently, an idempotent $e \in R$ is left (resp. right) semicentral if $R e$ (resp. $e R$) is an ideal of R.

2000 Mathematics Subject Classification. 16S36; 16W60; secondary 16W10.
Key words and phrases. semiprime ring, (α, δ)-quasi Baer ring, skew polynomial ring.

Lemma 1. Let $S=R[x ; \alpha, \delta]$ be a semiprime ring and $e(x)=e_{n} x^{n}+\cdots+e_{0}$ be a central idempotent of S. If I is an (α, δ)-ideal of R and $r_{S}(I S)=e S$, then $e(x)=e_{0}$.

Proof. Since $x\left(e_{n} x^{n}+\cdots+e_{0}\right)=\left(e_{n} x^{n}+\cdots+e_{0}\right) x$, we have $\delta\left(e_{0}\right)=0, \alpha\left(e_{0}\right)+\delta\left(e_{1}\right)=e_{0}$, $\cdots, \alpha\left(e_{n-1}\right)+\delta\left(e_{n}\right)=e_{n-1}$ and $\alpha\left(e_{n}\right)=e_{n}$. Thus $e_{n} I=0$ and that $\delta\left(e_{n}\right) I=0$. But $\left(e_{n} x^{n}+\cdots+e_{0}\right) I=0$ and I is an (α, δ)-ideal of R, so $e_{n-1} \alpha^{n-1}(I)=0$. Since $\left(\alpha\left(e_{n-1}\right)+\delta\left(e_{n}\right)\right) \alpha^{n-1}(I)=e_{n-1} \alpha^{n-1}(I)=0$, we have $e_{n-1} \alpha^{n-2}(I)=0$. Similarly $e_{n-1} \alpha^{n-3}(I)=\cdots=e_{n-1} I=0$. Thus $\alpha\left(e_{n-1}\right) I=\delta\left(e_{n-1}\right) I=0$. Continuing in this way we see that $e_{i} I=0$ for $0 \leq i \leq n$. Observe that $e_{0}=e_{0} e(x)=e(x) e_{0}$ and $e_{n}=e(x) e_{n}=e_{n} e(x)$ since S is semiprime and $e_{0}, e_{n} \in r_{R}(I)$. Thus $e_{0}=e_{0}^{2}, e_{n}=e_{n} e_{0}$ and $e_{n} \alpha^{n}\left(e_{0}\right)=e_{0} e_{n}=0$. Since $\alpha\left(e_{n}\right)=e_{n}$ and α is injective, we have $e_{n}=0$. Therefore $e(x)=e_{0}$.

Lemma 2. If $S=R[x ; \alpha, \delta]$ is semiprime and I is an (α, δ)-ideal of R, then $r_{R}(I)=\ell_{R}(I)$.
Proof. Let $a \in \ell_{R}(I)$. It is clear that $a S I=0$ and so $\operatorname{IaSIaS}=0$. Since S is semiprime $I a S=0$ so $a \in r_{R}(I)$. Next assume $a \in r_{R}(I)$. Then $a \in r_{S}(S I)$. Since S is semiprime, by [2] we have $r_{S}(S I)=\ell_{S}(S I)$. Thus $a S I=0$ and so $a I=0$.

Theorem 3. Let $S=R[x ; \alpha, \delta]$ be a semiprime ring. Then the following are equivalent:
(1) R is ($\alpha, \delta)$-quasi Baer.
(2) $r_{S}(J)$ is generated by an idempotent as a right ideal of $R[x ; \alpha, \delta]$, where J is an ideal of S such that, $\alpha\left(a_{n}\right) x^{n}+\cdots+\alpha\left(a_{0}\right) \in J$ for each $a_{n} x^{n}+\cdots+a_{0} \in J$.

Proof. (1) $\rightarrow(2)$ Let J be an ideal of S such that, $\alpha\left(a_{n}\right) x^{n}+\cdots+\alpha\left(a_{1}\right) x+\alpha\left(a_{0}\right) \in J$ for each $a_{n} x^{n}+\cdots+a_{1} x+a_{0} \in J$. Consider the set J_{0} of leading coefficients of polynomials in J. Clearly J_{0} is an α-ideal of R. We have $x f(x)-\left(\alpha\left(a_{n}\right) x^{n}+\cdots+\alpha\left(a_{1}\right) x+\right.$ $\left.\alpha\left(a_{0}\right)\right) x=\delta\left(a_{n}\right) x^{n}+($ terms of lower degrees $)$ for each $f(x)=a_{n} x^{n}+\cdots+a_{1} x+a_{0} \in J$. Thus $\delta\left(a_{n}\right) \in J_{0}$, and that J_{0} is an (α, δ)-ideal of R. Hence there exists a left semicentral idempotent $e \in R$ such that $r_{R}\left(J_{0}\right)=e R$. We show that $r_{S}(J)=e S$. Take $f(x)=a_{n} x^{n}+\cdots+a_{1} x+a_{0} \in r_{S}(J)$ and $g(x)=b_{m} x^{m}+\cdots+b_{1} x+b_{0} \in J$. Since $\alpha^{m}\left(b_{m}\right) x^{m}+\cdots+\alpha^{m}\left(b_{1}\right) x+\alpha^{m}\left(b_{0}\right) \in J$, we have $\alpha^{m}\left(b_{m}\right) \alpha^{m}\left(a_{n}\right)=0$ and so $b_{m} a_{n}=0$. Thus $a_{n} \in r_{R}\left(J_{0}\right)$. Observe that $b_{m} x^{m} a_{n} x^{n}=0$ since $r_{R}\left(J_{0}\right)=\ell_{R}\left(J_{0}\right)$ and S is semiprime. But $e \in r_{R}\left(J_{0}\right)$ and hence $e g(x)=e b_{m-1} x^{m-1}+\cdots+e b_{1} x+e b_{0}$, so $e b_{m-1} \in J_{0}$ and $e b_{m-1}=0$. Since e is left semicentral and $a_{n} \in r_{R}\left(J_{0}\right), b_{m-1} x^{m-1} a_{n} x^{n}=0$. Continuing in this way, we have $b_{i} x^{i} a_{j} x^{j}=0$ for $0 \leq i \leq m$ and $0 \leq j \leq n$. Thus $a_{j} \in r_{R}\left(J_{0}\right)=e R$ for $0 \leq j \leq n$. Hence $r_{S}(J) \subseteq e S$. Since $e \in r_{R}\left(J_{0}\right)$ and S is semiprime, $e S \subseteq r_{S}(J)$. Therefore $r_{S}(J)=e S$.
$(2) \rightarrow(1)$. Let I be an (α, δ)-ideal of R. Then $I S$ is an ideal of S such that, $\alpha\left(a_{n}\right) x^{n}+$ $\cdots+\alpha\left(a_{0}\right) \in I$ for each $a_{n} x^{n}+\cdots+a_{0} \in I$. Since S is semiprime, By [2] and Lemma 1, there exists a central idempotent $e_{0} \in R$ such that $r_{S}(I S)=e_{0} S$. Since $r_{R}(I)=\ell_{R}(I)$ and S is semiprime, $r_{R}(I)=r_{S}(I S) \bigcap R=e_{0} R$. Therefore R is (α, δ)-quasi Baer.

According to Krempa [12], an endomorphism α of a ring R is called to be rigid if $a \alpha(a)=0$ implies $a=0$ for $a \in R$. A ring R is said to be α-rigid if there exists a rigid endomorphism α of R. Note that any rigid endomorphism of a ring is injective and α-rigid rings are reduced by [9]. Now we show that Theorem 2 implies the following:

Corollary 4. (Hong et. al [9, Theorem 11]). Let R be an α-rigid ring. Then the following are equivalent:
(1) R is a quasi Baer ring.
(2) $S=R[x ; \alpha, \delta]$ is a quasi Baer ring.

Proof. Since R is an α-rigid ring, R is (α, δ)-quasi Baer if and only if R is quasi Baer. Let I be an ideal of S. Consider the set I_{0} of all coefficients of elements of I. Then I_{0} is a left ideal of R. Let $I_{0(\alpha, \delta)}$ be the (α, δ)-ideal of R generated by I_{0}. Then $I_{0(\alpha, \delta)} S$ is an ideal of S such that $\alpha\left(a_{n}\right) x^{n}+\cdots+\alpha\left(a_{1}\right) x+\alpha\left(a_{0}\right) \in I_{0(\alpha, \delta)} S$ for each $a_{n} x^{n}+\cdots+a_{1} x+a_{0} \in I_{0(\alpha, \delta)} S$. Since R is α-rigid, by a direct calculation one can show that, $r_{S}(I)=r_{S}\left(I_{0(\alpha, \delta)} S\right)$. Clearly S is semiprime and so the rest of proof follows from Theorem 2.

The following example [7, Example 9] shows that there exists a commutative α-quasi Baer ring R such that $R[x ; \alpha]$ is semiprime quasiBaer, but R is neither α-rigid nor quasi Baer.

Example 5. Let Z be the ring of integers and consider the ring $Z \bigoplus Z$ with the usual addition and multiplication. Then the subring
$R=\{(a, b) \in Z \bigoplus Z \mid a \equiv b(\bmod 2)\}$ of $Z \bigoplus Z$ is a commutative reduced ring. Note that the only idempotents of R are $(0,0)$ and $(1,1)$. For $(2,0) \in R$, we note that $r_{R}((2,0))=\{(0,2 n) \mid n \in$ $Z\}$. So $r_{R}((2,0))$ does not contain a non-zero idempotent of R. Hence R is not quasi Baer. Now let $\alpha: R \rightarrow R$ be defined by $\alpha((a, b))=(b, a)$. Then α is an automorphism of R. Note that R is not α-rigid and $R[x ; \alpha]$ is quasi Baer. Since R is commutative and $R[x ; \alpha]$ is semiprime quasi Baer, so by Theorem 4, R is α-quasi Baer.

For a ring R with an α-derivation δ, if $\alpha \delta=\delta \alpha$ then we can extend α to $S=R[x ; \alpha, \delta]$, by $\alpha(f(x))=\alpha\left(a_{n}\right) x^{n}+\alpha\left(a_{1}\right) x+\cdots+\alpha\left(a_{0}\right)$ for all $f(x)=a_{n} x^{n}+\cdots+a_{1} x+a_{0} \in S$. Also there exists α-derivation $\bar{\delta}$ on S which extends δ. For example, consider α-derivation $\bar{\delta}$ on S defined by $\bar{\delta}(f(x))=\delta\left(a_{0}\right)+\delta\left(a_{1}\right) x+\cdots+\delta\left(a_{n}\right) x^{n}$ for all $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n} \in S$.

Theorem 6. If $S=R[x ; \alpha, \delta]$ is a semiprime ring and $\alpha \delta=\delta \alpha$, then the following are equivalent:
(1) R is (α, δ)-quasi Baer;
(2) S is α-quasi Baer;
(3) S is $(\alpha, \bar{\delta})$-quasi Baer for every extended α-derivation $\bar{\delta}$ on S of δ.

Proof. The equivalence $(1) \leftrightarrow(2)$ follows from Theorem 2 .
$(2) \rightarrow(3)$. It is clear.
$(3) \rightarrow(1)$. Suppose that S is $(\alpha, \bar{\delta})$-quasi Baer for every extended α-derivation $\bar{\delta}$ on S of δ. Let I be any (α, δ)-ideal of R. It is clear that $I S$ is an α-ideal of S. Let $f(x) \in I S$. Then $f(x)=\sum_{i=1}^{n} t_{i} f_{i}$, where $t_{i} \in I$ and $f_{i} \in S$ for $1 \leq i \leq n$. Since $\bar{\delta}\left(t_{i} f_{i}\right)=\bar{\delta}\left(t_{i}\right) f_{i}+\alpha\left(t_{i}\right) \bar{\delta}\left(f_{i}\right) \in I S$, so $I S$ is an $(\alpha, \bar{\delta})$-ideal of S. Since S is semiprime $(\alpha, \bar{\delta})$-quasi Baer, $r_{S}(I S)=e_{0} S$ for some central idempotent $e_{0} \in R$. The rest of proof is similar to $(2) \rightarrow(1)$ of Theorem 2.

Corollary 7. (Han et al. [7, Theorem 8]). Let R be a δ-semiprime ring and let $S=R[x ; \delta]$. Then the following are equivalent:
(1) R is δ-quasi Baer;
(2) S is quasi Baer;
(3) $S=R[x ; \delta]$ is $\bar{\delta}$-quasi Baer for every extended derivation $\bar{\delta}$ on S of δ.

Proof. This is a special case of theorem 5 by taking $\delta=0$.

The following example [8, Example 2] shows that there exists a ring R such that $\alpha \delta=\delta \alpha$, $R[x ; \alpha, \delta]$ is semiprime and R is (α, δ)-quasi Baer but it is not quasi Baer.

Example 8. Let K be a field, let $\mathrm{A}=\mathrm{K}[\mathrm{s}, \mathrm{t}]$ be a commutative polynomial ring, and $\mathrm{R}=\mathrm{A} /(\mathrm{st})$. Then R is reduced. Let $\bar{s}=\mathrm{s}+(\mathrm{st})$ and $\bar{t}=\mathrm{t}+(\mathrm{st})$ in $R=\mathrm{A} /(\mathrm{st})$. Define an automorphism α of R by $\alpha(\bar{s})=\bar{t}$ and $\alpha(\bar{t})=\bar{s}$. Since $\bar{s} \alpha(\bar{s})=0$ and $\bar{s} \neq \overline{0}, R$ is not α-rigid. Now, define $\delta: R \longrightarrow R$ by setting $\delta(\bar{r})=\bar{r}-\alpha(\bar{r})$. Clearly δ is an α-derivation of $R, \alpha \delta=\delta \alpha$ and $R[x ; \alpha, \delta]$ is semiprime. We have $r_{R}(\bar{s})=\bar{t} R$. Since this ideal is not generated by any idempotent of R, R is not quasi Baer. However it is easily seen that any non-zero α-ideal I of R, is essential in R, and so $r_{R}(I)=0$. Therefore R is (α, δ)-quasi Baer.

Lemma 9. Let e be a left semicentral idempotent of R and let $\alpha(e) \in e R$. Then e is a left semicentral idempotent of $R[x ; \alpha, \delta]$.

Proof. We will proceed by induction on the degree of polynomials in $R[x ; \alpha, \delta]$. Let $f(x)=$ $a_{0}+a_{1} x$. Then $f(x) e=a_{0} e+a_{1} \delta(e)+a_{1} \alpha(e) x$. Since $\alpha(e) \in e R$, we have $\alpha(e)=e \alpha(e)$ and hence $\delta(e)=\delta\left(e^{2}\right)=\alpha(e) \delta(e)+\delta(e) e=e(\alpha(e) \delta(e)+\delta(e) e)$. Thus $\delta(e) \in e R$ and $\delta(e)=e \delta(e)$. Therefore $f(x) e=a_{0} e+a_{1} e \delta(e)+a_{1} e \alpha(e) x=e a_{0} e+e a_{1} e \delta(e)+e a_{1} e \alpha(e) x=$ $e a_{0} e+e a_{1}(\alpha(e) x+\delta(e))=e a_{0} e+e a_{1} x e=e\left(a_{0}+a_{1} x\right) e=e f(x) e$. Now suppose the statement is true for polynomials of degree less than n. Let $f(x)=a x^{n}+h(x)$, with $\operatorname{deg} h(x)<n$. Then $f(x) e=a\left(\alpha^{n}(e) x^{n}+g(x)\right) e+h(x) e$, with $\operatorname{deg} g(x)<n$. Now $f(x) e=a \alpha^{n}(e) x^{n} e+a g(x) e+h(x) e$. Since $\alpha(e)=e \alpha(e)$, so $\alpha^{n}(e)=e \alpha^{n}(e)$. Therefore $f(x) e=e a e \alpha^{n}(e) x^{n} e+e a g(x) e+e h(x) e=e a\left(x^{n} e\right) e+e h(x) e=e\left(a x^{n}+h(x)\right) e=e f(x) e$.

Now we turn our attention to the case where α is assumed to be an automorphism and δ an α-derivation of the ring R.

Lemma 10. Let I be an (α, δ)-invariant ideal of R and $t \in R$. If $I t=0$, then $I x^{n} t=0$ for each $n \geq 1$.

Proof. We will proceed by induction on n. For $n=1$, it implies that $\alpha(I) \alpha(t)=0$. Since I is α-invariant, $I \alpha(t)=0$ and $I \delta(t)=0$. Thus $I x t=I(\alpha(t) x+\delta(t)) \subseteq I \alpha(t) x+I \delta(t)=0$. Now suppose that $I x^{n} t=0$. Then we have $I x^{n+1} t=I x^{n}(\alpha(t) x+\delta(t)) \subseteq I x^{n} \alpha(t) x+I x^{n} \delta(t)$, and $I \alpha(t)=0=I \delta(t)=0$. Therefore by induction $I x^{n+1} t=0$.

The next theorem is also a generalization of [7, Theorem 8], to the skew polynomial ring $S=R[x ; \alpha, \delta]$.

Theorem 11. Let α be an automorphism and δ be an α-derivation of R with $\alpha \delta=\delta \alpha$. Let $S=R[x ; \alpha, \delta]$ be a semiprime ring. If $\alpha(e) \in e R$ for each semicentral idempotent $e \in R$, then the following are equivalent :
(1) the right annihilator of every (α, δ)-invariant ideal of R is generated by some idempotent as a right ideal of R.
(2) the right annihilator of every α-invariant ideal of S is generated by some idempotent as a right ideal of S.
(3) for every extended α-derivation $\bar{\delta}$ on S of δ, the right annihilator of every $(\alpha, \bar{\delta})$ invariant ideal of S is generated by some idempotent as a right ideal of S.

Proof. We will mention some notes in the proof of $(1) \rightarrow(2)$ and the remaining parts are similar to those of Theorem 5.
$(1) \rightarrow(2)$. Let I be an α-invariant ideal of S and let I_{0} denotes the set of leading coefficients of polynomials in I. Clearly I_{0} is an (α, δ)-ideal of R. Hence there exists a left semicentral idempotent $e \in R$ such that $r_{R}\left(I_{0}\right)=e R$. By Lemma $8, e$ is a semicentral idempotent of S. Since S is semiprime, e is central by [2]. Hence $\alpha(e)=e$ and $\delta(e)=0$. For each $f(x)=a_{n} x^{n}+\cdots+a_{1} x+a_{0} \in r_{S}(I)$ and each $g(x)=b_{m} x^{m}+\cdots+b_{1} x+b_{0} \in I$, we have $b_{i} a_{j}=0$ for $0 \leq i \leq m$ and $0 \leq j \leq n$. Thus $b_{i} \in r_{R}\left(I_{0}\right)=e R$ for $0 \leq i \leq m$. Using the fact that $\alpha(e)=e$ and $\delta(e)=0$, it is clear that $f(x) \in e S$ and that $r_{S}(I)=e S$.

ACKNOWLEDGEMENT. The authors thank the referee for his valuable comments and suggestions which improves the results.

References

[1] E.P. Armendariz, A note on extensions of Baer and p.p-rings, J. Austral. Math. Soc. 18 (1974), 470-473.
[2] G.F. Birkenmeier, Idempotents and completely semiprime ideals, Comm. in Algebra 11 (1983), 567-580.
[3] G.F. Birkenmeier, Jin Yong Kim and Jae keol Park, Principally quasi Baer rings, Comm. Algebra, 29(2)(2001), 639-660.
[4] G.F. Birkenmeier, Jin Yong Kim and Jae keol Park, Polynomial extensions of Baer and quasi Baer rings, J. Pure Appl. Algebra 159(2001), 24-42.
[5] W.E. Clark, Twisted matrix units semigroup algebras, Duke Math. J. 34(1967), 417-424.
[6] E. Hashemi and A. Moussavi, Skew power series extensions of α-rigid p.p.-rigs, Bull. Korean Math. Soc. 41 (2004), No. 4, pp. 657-664.
[7] J. Han, Y. Hirano and H. Kim, Semiprime Ore Extensions, Comm. in Algebra, 28(8)(2000), 3795-3801.
[8] Y. Hirano, On ordered monoid rings over a quasi Baer ring, Comm. Algebra 29(5)(2001), 20892095.
[9] C. Y. Hong, N. K. Kim and T. k. Kwak, Ore extensions of Baer and p.p.-rings, J. Pure Appl. Algebra 151(2000), 215-226.
[10] D.A. Jordan, Noetherian Ore Extensions and Jacobson Rings, J. London Math. Soc. 10(2) (1975), 281-291.
[11] I. Kaplansky, Rings of Operators, Math. Lecture Notes Series, Benjamin, New York, Pacific J. Math.(1965).
[12] J. Krempa, Some examples of reduced rings, Algebra Colloq. 3(4) (1996), 289-300.
[13] P. Pollingher and A. Zaks, On Baer and quasi Baer rings, Duke Math.J. 37(1970), 127-138.

[^0]
[^0]: * Department of Mathematics, University of Tarbiat Modarres, Academic Center for Education, Culture and Research P.O.Box. 14115-343, Tehran, Iran

 Corresponding author: moussavi_a@modares.ac.ir
 jahad@modares.ac.ir
 ** Department of Mathematics, University of Tarbiat Modarres, P.O.Box:14115-170, Tehran, Iran

