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ABSTRACT. A ring R with a monomorphism « and an a-derivation § with ad = da is
called («,0)-quasi Baer (resp. quasi Baer) if the right annihilator of every («,0)-ideal
(resp. ideal) of R is generated by an idempotent of R. In this paper we show that
a semiprime ring R[z;a, 8] is a-quasi Baer if and only if S = R[z;a,d] is (a, §)-quasi
Baer for every extended a-derivation & on S of § if and only if R is («, §)-quasi Baer.

Throughout this paper R denotes an associative ring with unity, @« : R — R is a
monomorphism which is not assumed to be surjective and § is an a-derivation of R, that
is, 0 is an additive map such that §(ab) = 6(a)b + a(a)d(b), for all a,b € R. We denote
S = R[z;a,6] the Ore extension whose elements are the polynomials X7 r;xt, 7; € R,
where the addition is defined as usual and the multiplication by b = a(b)z + §(b), for each
b€ R. Anideal I of R is called an a-ideal (resp. d-ideal) if a(I) C I (resp. 6(I) C I ). If
a~Y(I) = I, then it is called a — invariant. If I is both an a-ideal (resp. a-invariant ideal)
and d-ideal, then it is called an («, d)-ideal (resp. («,d)-invariant ideal).

In [5] Clark defines a ring to be quasi Baer if the right annihilator of every ideal is
generated, as a right ideal, by an idempotent. He then uses the quasi Baer concept to char-
acterize when a finite dimensional algebra with unity over an algebraically closed field is
isomorphic to a twisted matrix units semigroup algebra. Pollingher and Zaks [13] show that
the quasi Baer condition is a Morita invariant property. Further work on quasi Baer rings
appears in [3-4], [6-8] and [13]. According to Hirano [7 and 8], a ring R is called 0-quasi
Baer (resp. a-quasi Baer) if the right annihilator of every d-ideal (resp. a-ideal) of R is
generated by an idempotent. A ring R is called («, §)-quasi Baer if the right annihilator of
every (a,0)-ideal of R is generated by an idempotent. A ring R is called semiprime (resp.
d-semiprime) if for any ideal (resp. d-ideal) I of R, I? = 0 implies I = 0.

There are examples which show that the Baer condition is not preserved by various
polynomial extensions (see [1 and 4]). However all is not lost for, in spite of the examples,
some “Baerness” remains. Following [1,4 and 7-10], in this paper we study some Baerness
property of the skew polynomial ring R[z;«,d]. We first prove that if S = R[z;a, 0] is a
semiprime ring, then R is («, d)-quasi Baer if and only if rg(J) is generated by an idempo-
tent as a right ideal of .S, where .J is an ideal of S such that a(a,)z™ + - -+ + a(ag) € J for
each a,z™ + -+ 4+ ag € J. As a corollary we obtain [9, Theorem 11]. We also prove that,
a semiprime ring R[z;«,d] is a-quasi Baer if and only if S = R[z;«, ] is («, d)-quasi Baer
for every extended a-derivation § on S of § if and only if R is (c, §)-quasi Baer. This is a
generalization of [7] to the more general setting.

Recall from [2] that, an idempotent e € R is left (resp. right) semicentral if ere = re
(resp. ere = er) for each r € R. Equivalently, an idempotent e € R is left (resp. right)
semicentral if Re (resp. eR) is an ideal of R.
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Lemma 1. Let S = R[z;«, ] be a semiprime ring and e(x) = epx™ + - -+ + o be a central
idempotent of S. If I is an (a,0)-ideal of R and rs(1S) = €S, then e(x) = eg.

Proof. Since z(epz™ +---+e9) = (enx™ +- - -+eg)x, we have §(eg) = 0, a(eg) +(e1) =
-+, alen—1) + d6(en) = en—1 and a(e,) = e,. Thus e, I = 0 and that d(e,)] =

But (epz™ 4+ -+ + eg)l = 0 and I is an («,d)-ideal of R, so e,_1a" (1) = 0. Slnce
(a(en—1) + 0(en))a™ (1) = ep_1a™ 1(I) = 0, we have e, 10" 2(I) = 0. Similarly
en_10"3()=---=e, 11 =0. Thus a(e,_1)I = 6(e,—1)I = 0. Continuing in this way we
see that e;I = 0 for 0 <4 < n. Observe that eg = epe(z) = e(z)eg and e, = e(x)e, = epe(x)
since S is semiprime and eg, e, € 7r(I). Thus eg = €2, e, = eneg and e,a™(eg) = egep, = 0.
Since a(e,) = e, and « is injective, we have e,, = 0. Therefore e(x) = eg.

Lemma 2. If S = R[z;a, d] is semiprime and I is an («, §)-ideal of R, then rg(I) = Lr(I).

Proof. Let a € {g(I). Tt is clear that aST = 0 and so IaSITaS = 0. Since S is semiprime
IaS =0s0a € rgr(l). Next assume a € rg(I). Then a € rg(ST). Since S is semiprime, by
[2] we have rg(SI) = ¥g(SI). Thus aSI =0 and so al = 0.

Theorem 3. Let S = R[z;«, 0] be a semiprime ring. Then the following are equivalent:
(1) R is («, 6 )-quasi Baer.
(2) rs(J) is generated by an idempotent as a right ideal of R[x; a, 8], where J is an ideal
of S such that, a(an)x™ + -+ alag) € J for each anx™ +---+ag € J.

Proof. (1) — (2) Let J be an ideal of S such that, a(a,)z™ + -+ + a(a1)z + a(ag) € J
for each a,z™ + -+ 4+ a1x + ag € J. Consider the set Jy of leading coefficients of poly-
nomials in J. Clearly Jy is an a-ideal of R. We have zf(x)-(a(an)z™ + -+ + ala1)r +
afap))r = §(an)z™+(terms of lower degrees) for each f(x) = apz™ + -+ + a1z 4+ ag € J.
Thus d(a,) € Jo, and that Jy is an (o, d)-ideal of R. Hence there exists a left semi-
central idempotent e € R such that rg(Jy) = eR. We show that rg(J) = eS. Take
f(x) = apa™ + -+ a1z + ap € rs(J) and g(z) = bpa™ + -+ + byx + by € J. Since
a (bpy)x™ 4+ -+ a™(b)x + o™ (bo) € J we have o™ (by,)a™(an) = 0 and so bya, = 0.
Thus a,, € TR(J()) Observe that b, 2™ a,x™ = 0 since rR(Jo) ={lg(Jo) and S is semiprime.
But e € rr(Jy) and hence eg(z) = eby,_12™ 1 + .-+ + ebix + ebg, so e€by,_1 € Jo and
eb,,—1 = 0. Since e is left semicentral and a,, € rR(JO), bm—12™ La,z™ = 0. Continuing in
this way, we have b;z’ajz? = 0 for 0 < i < m and 0 < j < n. Thus a; € rr(Jy) = eR for
0 <j <n. Hence rg(J) C eS. Since e € rg(Jp) and S is semiprime, eS C rg(.J). Therefore
rs(J) =eS.
(2) — (1). Let I be an (o, 0)-ideal of R. Then IS is an ideal of S such that, a(a,)z™ +
-+ afag) € I for each ana™ + -+ ap € I. Since S is semiprime, By [2] and Lemma 1,
there exists a central idempotent eg € R such that rg(I.S) = e¢S. Since rr(I) = ¢r(I) and
S is semiprime, rg(I) = rg(IS) (R = egR. Therefore R is («a, §)-quasi Baer.

According to Krempa [12], an endomorphism « of a ring R is called to be rigid if
aa(a) = 0 implies a = 0 for a € R. A ring R is said to be a-rigid if there exists a rigid
endomorphism « of R. Note that any rigid endomorphism of a ring is injective and a-rigid
rings are reduced by [9]. Now we show that Theorem 2 implies the following:

Corollary 4. (Hong et. al [9, Theorem 11]). Let R be an a-rigid ring. Then the following
are equivalent:
(1) R is a quasi Baer ring.
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(2) S = R[x;«,d] is a quasi Baer ring.

Proof. Since R is an a-rigid ring, R is («, )-quasi Baer if and only if R is quasi Baer. Let
I be an ideal of S. Consider the set Iy of all coefficients of elements of I. Then I is a left
ideal of R. Let Iy(q,5) be the (a,d)-ideal of R generated by Iy. Then Iy(q,5)S is an ideal of S
such that a(a,)z" +---+a(a1)r+a(ao) € Io(a,s)S for each ap,x™ +---+ar1x+ag € Io(a,s)S -
Since R is a-rigid, by a direct calculation one can show that, rs(I) = 75(Io(qa,sS). Clearly
S is semiprime and so the rest of proof follows from Theorem 2.

The following example [7, Example 9] shows that there exists a commutative a-quasi
Baer ring R such that R[z;«] is semiprime quasiBaer, but R is neither a-rigid nor quasi
Baer.

Example 5. Let Z be the ring of integers and consider the ring Z € Z with the usual
addition and multiplication. Then the subring

R={(a,b) € ZP Z|a =b(mod 2)} of Z &P Z is a commutative reduced ring. Note that the
only idempotents of R are (0,0) and (1, 1). For (2,0) € R, we note that rg((2,0))={(0,2n)|n €
Z}. So rg((2,0)) does not contain a non-zero idempotent of R. Hence R is not quasi Baer.
Now let o : R — R be defined by a((a,b))=(b,a). Then « is an automorphism of R. Note
that R is not a-rigid and R[z;a] is quasi Baer. Since R is commutative and R[z;a] is
semiprime quasi Baer, so by Theorem 4, R is a-quasi Baer.

For a ring R with an a-derivation §, if ad = da then we can extend « to S = Rz; «, 4],
by a(f(z)) = a(an)x™ + a(a1)x + -+ alag) for all f(x) =apz™+---+a12+ag € S. Also
there exists a-derivation § on S which extends §. For example, consider a-derivation ¢ on
S defined by §(f(z))=0(ag) +d(a1)z+---+8(ay)z™ for all f(z) = ag+arx+---+a,z" € S.

Theorem 6. If S = R[z;«q,d] is a semiprime ring and ad = S, then the following are
equivalent:

(1) R is («,6)-quasi Baer;

(2) S is a-quasi Baer;

(3) S is (a, 6)-quasi Baer for every extended a-derivation § on S of §.

Proof. The equivalence (1) < (2) follows from Theorem 2.

(2) — (3). It is clear.

(3) — (1). Suppose that S is (a,d)-quasi Baer for every extended a-derivation J on
S of §. Let I be any (a,d)-ideal of R. It is clear that IS is an a-ideal of S. Let
f(z) € IS. Then f(z) = X ,t;fi, where t; € T and f; € S for 1 < ¢ < n. Since
O(tifi) = 0(t:)fi + a(t;)o(f;) € IS, so IS is an (a,d)-ideal of S. Since S is semiprime
(v, §)-quasi Baer, r5(IS) = €oS for some central idempotent eq € R. The rest of proof is
similar to (2) — (1) of Theorem 2.

Corollary 7. (Han et al. [7, Theorem 8]). Let R be a 0-semiprime ring and let S = R[z;4].
Then the following are equivalent:

(1) R is §-quasi Baer;

(2) S is quasi Baer;

(8) S = R[z; 0] is 6-quasi Baer for every extended derivation 6 on S of 6.

Proof. This is a special case of theorem 5 by taking § = 0.
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The following example [8, Example 2] shows that there exists a ring R such that ad = da,
R[z; e, 0] is semiprime and R is (¢, d)-quasi Baer but it is not quasi Baer.

Example 8. Let K be a field, let A=K]s,t] be a commutative polynomial ring, and
R=A/(st). Then R is reduced. Let S=s+(st) and {=t+(st) in R=A/(st). Define an auto-
morphism « of R by a(5) =t and «(f) = 5. Since 5a(5)= 0 and 5 # 0, R is not a-rigid.
Now, define § : R — R by setting §(7)=F-«(7). Clearly ¢ is an a-derivation of R, ad=d0«a
and R[z;«,d] is semiprime. We have rg(s)=tR. Since this ideal is not generated by any
idempotent of R, R is not quasi Baer. However it is easily seen that any non-zero a-ideal 1
of R, is essential in R, and so rg(I)= 0. Therefore R is («, §)-quasi Baer.

Lemma 9. Let e be a left semicentral idempotent of R and let a(e) € eR. Then e is a left
semicentral idempotent of R[x;a, ).

Proof. We will proceed by induction on the degree of polynomials in R[x; «, d]. Let f(x) =
ap + a1x. Then f(z)e = ape + a1d(e) + ara(e)x. Since a(e) € eR, we have a(e) = ea(e)
and hence 6(e) = &(e?) = a(e)d(e) + d(e)e = e(ale)d(e) + d(e)e). Thus &(e) € eR and
d(e) = ed(e). Therefore f(x)e = ape + ared(e) + areale)r = eape + eared(e) + eareale)r =
eage + ear(a(e)x + d(e)) = eape + earze = e(ap + ar1x)e = ef(x)e. Now suppose the
statement is true for polynomials of degree less than n. Let f(z) = az™ + h(x), with
deg h(r) < n. Then f(x)e = a(a™(e)x™ + g(z))e + h(x)e, with deg g(z) < n. Now
f(z)e = aa™(e)z™e + ag(z)e + h(x)e. Since ae) = eafe), so a™(e) = ea™(e). Therefore
f(z)e = eaea™(e)x™e + eag(x)e + eh(x)e = ea(z™e)e + eh(x)e = e(azx™ + h(x))e = ef (x)e.

Now we turn our attention to the case where « is assumed to be an automorphism and
& an a-derivation of the ring R.

Lemma 10. Let I be an (o,0)-invariant ideal of R and ¢ € R. If It = 0, then Iz"t = 0 for
each n > 1.

Proof. We will proceed by induction on n. For n=1, it implies that a(I)a(t) = 0. Since I is
a-invariant, Ta(t) = 0 and I6(¢) = 0. Thus Izt = I(a(t)z+9(t)) C Ia(t)z+16(t) = 0. Now
suppose that Iz"t = 0. Then we have Iz" "'t = 2" (a(t)z + 5(t)) C Iz"a(t)z + [2™6(t),
and Ia(t) = 0 = I§(t) = 0. Therefore by induction Iz" 1t = 0.

The next theorem is also a generalization of [7, Theorem 8], to the skew polynomial ring

S = R[z; e, 0]

Theorem 11. Let o be an automorphism and § be an a-derivation of R with ad = da.. Let
S = R[z;a, 0] be a semiprime ring. If a(e) € eR for each semicentral idempotent e € R,
then the following are equivalent :

(1) the right annihilator of every (o, §)-invariant ideal of R is generated by some idem-
potent as a right ideal of R.

(2) the right annihilator of every a-invariant ideal of S is generated by some idempotent
as a right ideal of S.

(3) for every extended a-derivation § on S of §, the right annihilator of every (a,6)-
invariant ideal of S is generated by some idempotent as a right ideal of S.

Proof. We will mention some notes in the proof of (1) — (2) and the remaining parts are
similar to those of Theorem 5.
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(1) — (2). Let I be an a-invariant ideal of S and let Iy denotes the set of leading
coefficients of polynomials in I. Clearly Iy is an («,0)-ideal of R. Hence there exists a left
semicentral idempotent e € R such that rg(ly) = eR. By Lemma 8, e is a semicentral
idempotent of S. Since S is semiprime, e is central by [2]. Hence a(e) = e and d(e) = 0.
For each f(x) = apnz™ + -+ a1z + ag € rs(I) and each g(x) = bpz™ + -+ bix + by € I,
we have bja; = 0 for 0 < i <mand 0 < j < n. Thus b; € rr(ly) = eR for 0 < i < m.
Using the fact that a(e) = e and §(e) = 0, it is clear that f(z) € eS and that rg(I) = eS.
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