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Abstract. A ring R with a monomorphism α and an α-derivation δ with αδ = δα is
called (α,δ)-quasi Baer (resp. quasi Baer) if the right annihilator of every (α,δ)-ideal
(resp. ideal) of R is generated by an idempotent of R. In this paper we show that
a semiprime ring R[x;α, δ] is α-quasi Baer if and only if S = R[x; α, δ] is (α, δ)-quasi
Baer for every extended α-derivation δ on S of δ if and only if R is (α, δ)-quasi Baer.

Throughout this paper R denotes an associative ring with unity, α : R → R is a
monomorphism which is not assumed to be surjective and δ is an α-derivation of R, that
is, δ is an additive map such that δ(ab) = δ(a)b + α(a)δ(b), for all a, b ∈ R. We denote
S = R[x;α, δ] the Ore extension whose elements are the polynomials Σn

i=0rix
i, ri ∈ R,

where the addition is defined as usual and the multiplication by xb = α(b)x + δ(b), for each
b ∈ R. An ideal I of R is called an α-ideal (resp. δ-ideal) if α(I) ⊆ I (resp. δ(I) ⊆ I ). If
α−1(I) = I, then it is called α− invariant. If I is both an α-ideal (resp. α-invariant ideal)
and δ-ideal, then it is called an (α, δ)-ideal (resp. (α, δ)-invariant ideal).

In [5] Clark defines a ring to be quasi Baer if the right annihilator of every ideal is
generated, as a right ideal, by an idempotent. He then uses the quasi Baer concept to char-
acterize when a finite dimensional algebra with unity over an algebraically closed field is
isomorphic to a twisted matrix units semigroup algebra. Pollingher and Zaks [13] show that
the quasi Baer condition is a Morita invariant property. Further work on quasi Baer rings
appears in [3-4], [6-8] and [13]. According to Hirano [7 and 8], a ring R is called δ-quasi
Baer (resp. α-quasi Baer) if the right annihilator of every δ-ideal (resp. α-ideal) of R is
generated by an idempotent. A ring R is called (α, δ)-quasi Baer if the right annihilator of
every (α, δ)-ideal of R is generated by an idempotent. A ring R is called semiprime (resp.
δ-semiprime) if for any ideal (resp. δ-ideal) I of R, I2 = 0 implies I = 0.

There are examples which show that the Baer condition is not preserved by various
polynomial extensions (see [1 and 4]). However all is not lost for, in spite of the examples,
some “Baerness” remains. Following [1,4 and 7-10], in this paper we study some Baerness
property of the skew polynomial ring R[x;α, δ]. We first prove that if S = R[x;α, δ] is a
semiprime ring, then R is (α, δ)-quasi Baer if and only if rS(J) is generated by an idempo-
tent as a right ideal of S, where J is an ideal of S such that α(an)xn + · · · + α(a0) ∈ J for
each anxn + · · · + a0 ∈ J . As a corollary we obtain [9, Theorem 11]. We also prove that,
a semiprime ring R[x;α, δ] is α-quasi Baer if and only if S = R[x;α, δ] is (α, δ)-quasi Baer
for every extended α-derivation δ on S of δ if and only if R is (α, δ)-quasi Baer. This is a
generalization of [7] to the more general setting.

Recall from [2] that, an idempotent e ∈ R is left (resp. right) semicentral if ere = re
(resp. ere = er) for each r ∈ R. Equivalently, an idempotent e ∈ R is left (resp. right)
semicentral if Re (resp. eR) is an ideal of R.
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Lemma 1. Let S = R[x;α, δ] be a semiprime ring and e(x) = enxn + · · · + e0 be a central
idempotent of S. If I is an (α, δ)-ideal of R and rS(IS) = eS, then e(x) = e0.

Proof. Since x(enxn + · · ·+e0) = (enxn + · · ·+e0)x, we have δ(e0) = 0, α(e0)+ δ(e1) = e0,
· · · , α(en−1) + δ(en) = en−1 and α(en) = en. Thus enI = 0 and that δ(en)I = 0.
But (enxn + · · · + e0)I = 0 and I is an (α, δ)-ideal of R, so en−1α

n−1(I) = 0. Since
(α(en−1) + δ(en))αn−1(I) = en−1α

n−1(I) = 0, we have en−1α
n−2(I) = 0. Similarly

en−1α
n−3(I) = · · · = en−1I = 0. Thus α(en−1)I = δ(en−1)I = 0. Continuing in this way we

see that eiI = 0 for 0 ≤ i ≤ n. Observe that e0 = e0e(x) = e(x)e0 and en = e(x)en = ene(x)
since S is semiprime and e0, en ∈ rR(I). Thus e0 = e2

0, en = ene0 and enαn(e0) = e0en = 0.
Since α(en) = en and α is injective, we have en = 0. Therefore e(x) = e0.

Lemma 2. If S = R[x;α, δ] is semiprime and I is an (α, δ)-ideal of R, then rR(I) = �R(I).

Proof. Let a ∈ �R(I). It is clear that aSI = 0 and so IaSIaS = 0. Since S is semiprime
IaS = 0 so a ∈ rR(I). Next assume a ∈ rR(I). Then a ∈ rS(SI). Since S is semiprime, by
[2] we have rS(SI) = �S(SI). Thus aSI = 0 and so aI = 0.

Theorem 3. Let S = R[x;α, δ] be a semiprime ring. Then the following are equivalent:
(1) R is (α, δ)-quasi Baer.
(2) rS(J) is generated by an idempotent as a right ideal of R[x;α, δ], where J is an ideal

of S such that, α(an)xn + · · · + α(a0) ∈ J for each anxn + · · · + a0 ∈ J .

Proof. (1) → (2) Let J be an ideal of S such that, α(an)xn + · · · + α(a1)x + α(a0) ∈ J
for each anxn + · · · + a1x + a0 ∈ J . Consider the set J0 of leading coefficients of poly-
nomials in J . Clearly J0 is an α-ideal of R. We have xf(x)-(α(an)xn + · · · + α(a1)x +
α(a0))x = δ(an)xn+(terms of lower degrees) for each f(x) = anxn + · · · + a1x + a0 ∈ J .
Thus δ(an) ∈ J0, and that J0 is an (α, δ)-ideal of R. Hence there exists a left semi-
central idempotent e ∈ R such that rR(J0) = eR. We show that rS(J) = eS. Take
f(x) = anxn + · · · + a1x + a0 ∈ rS(J) and g(x) = bmxm + · · · + b1x + b0 ∈ J . Since
αm(bm)xm + · · · + αm(b1)x + αm(b0) ∈ J , we have αm(bm)αm(an) = 0 and so bman = 0.
Thus an ∈ rR(J0). Observe that bmxmanxn = 0 since rR(J0) = �R(J0) and S is semiprime.
But e ∈ rR(J0) and hence eg(x) = ebm−1x

m−1 + · · · + eb1x + eb0, so ebm−1 ∈ J0 and
ebm−1 = 0. Since e is left semicentral and an ∈ rR(J0), bm−1x

m−1anxn = 0. Continuing in
this way, we have bix

iajx
j = 0 for 0 ≤ i ≤ m and 0 ≤ j ≤ n. Thus aj ∈ rR(J0) = eR for

0 ≤ j ≤ n. Hence rS(J) ⊆ eS. Since e ∈ rR(J0) and S is semiprime, eS ⊆ rS(J). Therefore
rS(J) = eS.
(2) → (1). Let I be an (α, δ)-ideal of R. Then IS is an ideal of S such that, α(an)xn +
· · · + α(a0) ∈ I for each anxn + · · · + a0 ∈ I. Since S is semiprime, By [2] and Lemma 1,
there exists a central idempotent e0 ∈ R such that rS(IS) = e0S. Since rR(I) = �R(I) and
S is semiprime, rR(I) = rS(IS)

⋂
R = e0R. Therefore R is (α, δ)-quasi Baer.

According to Krempa [12], an endomorphism α of a ring R is called to be rigid if
aα(a) = 0 implies a = 0 for a ∈ R. A ring R is said to be α-rigid if there exists a rigid
endomorphism α of R. Note that any rigid endomorphism of a ring is injective and α-rigid
rings are reduced by [9]. Now we show that Theorem 2 implies the following:

Corollary 4. (Hong et. al [9, Theorem 11]). Let R be an α-rigid ring. Then the following
are equivalent:

(1) R is a quasi Baer ring.
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(2) S = R[x;α, δ] is a quasi Baer ring.

Proof. Since R is an α-rigid ring, R is (α, δ)-quasi Baer if and only if R is quasi Baer. Let
I be an ideal of S. Consider the set I0 of all coefficients of elements of I. Then I0 is a left
ideal of R. Let I0(α,δ) be the (α, δ)-ideal of R generated by I0. Then I0(α,δ)S is an ideal of S
such that α(an)xn+ · · ·+α(a1)x+α(a0) ∈ I0(α,δ)S for each anxn+ · · ·+a1x+a0 ∈ I0(α,δ)S .
Since R is α-rigid, by a direct calculation one can show that, rS(I) = rS(I0(α,δ)S). Clearly
S is semiprime and so the rest of proof follows from Theorem 2.

The following example [7, Example 9] shows that there exists a commutative α-quasi
Baer ring R such that R[x;α] is semiprime quasiBaer, but R is neither α-rigid nor quasi
Baer.

Example 5. Let Z be the ring of integers and consider the ring Z
⊕

Z with the usual
addition and multiplication. Then the subring
R={(a, b) ∈ Z

⊕
Z| a ≡ b (mod 2)} of Z

⊕
Z is a commutative reduced ring. Note that the

only idempotents of R are (0, 0) and (1, 1). For (2, 0) ∈ R, we note that rR((2, 0))={(0, 2n)|n ∈
Z}. So rR((2, 0)) does not contain a non-zero idempotent of R. Hence R is not quasi Baer.
Now let α : R → R be defined by α((a, b))=(b, a). Then α is an automorphism of R. Note
that R is not α-rigid and R[x;α] is quasi Baer. Since R is commutative and R[x;α] is
semiprime quasi Baer, so by Theorem 4, R is α-quasi Baer.

For a ring R with an α-derivation δ, if αδ = δα then we can extend α to S = R[x;α, δ],
by α(f(x)) = α(an)xn + α(a1)x + · · ·+ α(a0) for all f(x) = anxn + · · ·+ a1x + a0 ∈ S. Also
there exists α-derivation δ on S which extends δ. For example, consider α-derivation δ on
S defined by δ(f(x))=δ(a0)+δ(a1)x+ · · ·+δ(an)xn for all f(x) = a0 +a1x+ · · ·+anxn ∈ S.

Theorem 6. If S = R[x;α, δ] is a semiprime ring and αδ = δα, then the following are
equivalent:

(1) R is (α, δ)-quasi Baer;
(2) S is α-quasi Baer;
(3) S is (α, δ)-quasi Baer for every extended α-derivation δ on S of δ.

Proof. The equivalence (1) ↔ (2) follows from Theorem 2.
(2) → (3). It is clear.
(3) → (1). Suppose that S is (α, δ)-quasi Baer for every extended α-derivation δ on
S of δ. Let I be any (α, δ)-ideal of R. It is clear that IS is an α-ideal of S. Let
f(x) ∈ IS. Then f(x) = Σn

i=1tifi, where ti ∈ I and fi ∈ S for 1 ≤ i ≤ n. Since
δ(tifi) = δ(ti)fi + α(ti)δ(fi) ∈ IS, so IS is an (α, δ)-ideal of S. Since S is semiprime
(α, δ)-quasi Baer, rS(IS) = e0S for some central idempotent e0 ∈ R. The rest of proof is
similar to (2) → (1) of Theorem 2.

Corollary 7. (Han et al. [7, Theorem 8]). Let R be a δ-semiprime ring and let S = R[x; δ].
Then the following are equivalent:

(1) R is δ-quasi Baer;
(2) S is quasi Baer;
(3) S = R[x; δ] is δ-quasi Baer for every extended derivation δ on S of δ.

Proof. This is a special case of theorem 5 by taking δ = 0.



408 A. MOUSSAVI AND E. HASHEMI

The following example [8, Example 2] shows that there exists a ring R such that αδ = δα,
R[x;α, δ] is semiprime and R is (α, δ)-quasi Baer but it is not quasi Baer.

Example 8. Let K be a field, let A=K[s,t] be a commutative polynomial ring, and
R=A/(st). Then R is reduced. Let s=s+(st) and t=t+(st) in R=A/(st). Define an auto-
morphism α of R by α(s) = t and α(t) = s. Since sα(s)= 0 and s �= 0, R is not α-rigid.
Now, define δ : R −→ R by setting δ(r)=r-α(r). Clearly δ is an α-derivation of R, αδ=δα
and R[x;α, δ] is semiprime. We have rR(s)=tR. Since this ideal is not generated by any
idempotent of R, R is not quasi Baer. However it is easily seen that any non-zero α-ideal I
of R, is essential in R, and so rR(I)= 0. Therefore R is (α, δ)-quasi Baer.

Lemma 9. Let e be a left semicentral idempotent of R and let α(e) ∈ eR. Then e is a left
semicentral idempotent of R[x;α, δ].

Proof. We will proceed by induction on the degree of polynomials in R[x;α, δ]. Let f(x) =
a0 + a1x. Then f(x)e = a0e + a1δ(e) + a1α(e)x. Since α(e) ∈ eR, we have α(e) = eα(e)
and hence δ(e) = δ(e2) = α(e)δ(e) + δ(e)e = e(α(e)δ(e) + δ(e)e). Thus δ(e) ∈ eR and
δ(e) = eδ(e). Therefore f(x)e = a0e + a1eδ(e) + a1eα(e)x = ea0e + ea1eδ(e) + ea1eα(e)x =
ea0e + ea1(α(e)x + δ(e)) = ea0e + ea1xe = e(a0 + a1x)e = ef(x)e. Now suppose the
statement is true for polynomials of degree less than n. Let f(x) = axn + h(x), with
deg h(x) < n. Then f(x)e = a(αn(e)xn + g(x))e + h(x)e, with deg g(x) < n. Now
f(x)e = aαn(e)xne + ag(x)e + h(x)e. Since α(e) = eα(e), so αn(e) = eαn(e). Therefore
f(x)e = eaeαn(e)xne + eag(x)e + eh(x)e = ea(xne)e + eh(x)e = e(axn + h(x))e = ef(x)e.

Now we turn our attention to the case where α is assumed to be an automorphism and
δ an α-derivation of the ring R.

Lemma 10. Let I be an (α,δ)-invariant ideal of R and t ∈ R. If It = 0, then Ixnt = 0 for
each n ≥ 1.

Proof. We will proceed by induction on n. For n=1, it implies that α(I)α(t) = 0. Since I is
α-invariant, Iα(t) = 0 and Iδ(t) = 0. Thus Ixt = I(α(t)x+δ(t)) ⊆ Iα(t)x+Iδ(t) = 0. Now
suppose that Ixnt = 0. Then we have Ixn+1t = Ixn(α(t)x + δ(t)) ⊆ Ixnα(t)x + Ixnδ(t),
and Iα(t) = 0 = Iδ(t) = 0. Therefore by induction Ixn+1t = 0.

The next theorem is also a generalization of [7, Theorem 8], to the skew polynomial ring
S = R[x;α, δ].

Theorem 11. Let α be an automorphism and δ be an α-derivation of R with αδ = δα. Let
S = R[x;α, δ] be a semiprime ring. If α(e) ∈ eR for each semicentral idempotent e ∈ R,
then the following are equivalent :

(1) the right annihilator of every (α, δ)-invariant ideal of R is generated by some idem-
potent as a right ideal of R.

(2) the right annihilator of every α-invariant ideal of S is generated by some idempotent
as a right ideal of S.

(3) for every extended α-derivation δ on S of δ, the right annihilator of every (α, δ)-
invariant ideal of S is generated by some idempotent as a right ideal of S.

Proof. We will mention some notes in the proof of (1) → (2) and the remaining parts are
similar to those of Theorem 5.
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(1) → (2). Let I be an α-invariant ideal of S and let I0 denotes the set of leading
coefficients of polynomials in I. Clearly I0 is an (α,δ)-ideal of R. Hence there exists a left
semicentral idempotent e ∈ R such that rR(I0) = eR. By Lemma 8, e is a semicentral
idempotent of S. Since S is semiprime, e is central by [2]. Hence α(e) = e and δ(e) = 0.
For each f(x) = anxn + · · ·+ a1x + a0 ∈ rS(I) and each g(x) = bmxm + · · ·+ b1x + b0 ∈ I,
we have biaj = 0 for 0 ≤ i ≤ m and 0 ≤ j ≤ n. Thus bi ∈ rR(I0) = eR for 0 ≤ i ≤ m.
Using the fact that α(e) = e and δ(e) = 0, it is clear that f(x) ∈ eS and that rS(I) = eS.
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