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REMOTAL SETS IN VECTOR VALUED FUNCTION SPACES∗
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Abstract. Let X be a Banach space and E a bounded set in X. For x ∈ X, we set
M(x, E) = sup{‖x − y‖ : y ∈ E}. The set E is called remotal if for any x ∈ X there
exists z ∈ E such that M(x, E) = ‖x − z‖ . In this paper, we prove:

(i) M(f, L1(I,E)) =
�

I

M(f(t), E)dt, for f ∈ L1(I, X).

(ii) If E is closed and span(E) is a finite dimensional subspace of X, then L1(I, E)
is remotal in L1(I, X). Some other results are presented.

0.Introduction Let X be a Banach space and E a bounded set in X. For x ∈ X, set
M(x,E) = sup{‖x − y‖ : y ∈ E}. The set E is called remotal if for any x ∈ X there exists
z ∈ E such that M(x,E) = ‖x − z‖ . The point z is called the farthest point of E from x.
The concept of remotal sets in Banach spaces goes back to the sixties, [1], [6], and [10]. The
study of remotal sets is little more difficult and less developed than that of proximinal sets.
While best approximation has applications in many branches of mathematics, remotal sets
and farthest points have applications in the study of geometry of Banach spaces, [2], [3], [9],
and the survey article [7]. Remotal sets in vector valued continuous functions was considered
in [4]. Remotal sets in the space of Bochner integrable functions have never been considered.
The object of this paper is to study the remotality of L1(I, E) in L1(I, X) in connection
with remotality of E in X. We prove two main results:

(i) M(f, L1(I, E)) =
∫
I

M(f(t), E)dt for any remotal set E in X.

(ii) If E is a closed bounded set in X such that span(E) is a finite dimensional subspace
of X , then L1(I, E) is remotal in L1(I, X). Some other results are presented.

Throughout this paper, I denotes the unit interval with the Lebesgue measure. For
1 ≤ p < ∞, and X a Banach space, Lp(I, X) denotes the Banach space of Bochner in-
tegrable functions( equivalence classes) on I with values in X. For f ∈ Lp(I, X), ‖f‖p =

(
∫ ‖f (t)‖p)

1
p . For E ⊂ X, we set Lp(I, E) = {f ∈ Lp(I, X) : f(t) ∈ E a.e}.

I. Distance Formulae
Let X be a Banach space and G be a remotal subset of X. In this section we prove a

distance formulae similar to the one for best approximation, [8].

Theorem 1.1. Let X be a Banach space and G be a remotal subset of X. Then for each
f ∈ L1(I, X)

sup
g∈L1(I,G)

‖f − g‖ =
∫

sup
a∈G

‖f (s) − a‖ ds.

Proof. Let f ∈ L1(I, X) and u ∈ L1(I, G). Then

‖f − u‖ =
∫
I

‖f(s) − u (s)‖ ds ≤
∫

sup
a∈G

‖f (s) − a‖ ds.
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This implies that :

sup
u∈L1(I,G)

‖f − u )‖ ≤
∫

sup
a∈G

‖f(s) − a‖ ds.(1)

Now, since simple functions are dense in L1(I, X) [5], then given ε > 0, there exists ϕ,

simple function in L1(I, X), such that ‖f − ϕ‖ < ε. Write ϕ =
n∑

i=1

χAi
yi , where χAi

is the

characteristic function of the set Ai ⊆ I, and yi ∈ X. We may assume that
n∑

i=1

χ
Ai

= 1 and

µ(Ai) > 0 for all i. Further, ‖yi‖ µ(Ai) < ∞ for 1 ≤ i ≤ n.
Since yi ∈ X, then for a given ε > 0, we can select gi ∈ G such that :

‖yi − gi‖ > sup
a∈G

‖yi − a‖ − ε

(nµ(Ai))
.

Let w =
n∑

i=1

χ
Ai

gi. Clearly w ∈ L1(I, G). Now, since

‖ϕ − w‖ ≤ ‖f − ϕ‖ + ‖f − w‖
≤ ε + ‖f − w‖ ,

then,

‖f − w‖ + ε ≥ ‖ϕ − w‖
=

∫
I

‖ϕ(s) − w(s)‖ ds.

≥
n∑

i=1

∫
Ai

‖yi − gi ‖ ds

=
n∑

i=1

‖yi − gi ‖µ(Ai)

≥
n∑

i=1

(
sup
a∈G

‖yi − a‖ − ε

(nµ(Ai))

)
µ(Ai)

=
n∑

i=1

sup
a∈G

‖yi − a‖µ(Ai) − ε.

Thus

‖f − w‖ + 2ε ≥
n∑

i=1

∫
Ai

sup
a∈G

‖yi − a‖ ds

=
∫
I

n∑
i=1

sup
a∈G

‖yi − a‖χ
Ai

ds

=
∫
I

sup
a∈G

‖ϕ(s) − a‖ ds

≥
∫
I

sup
a∈G

‖ϕ(s) − a + f(s) − f(s)‖ ds
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Since

‖ϕ(s) − a + f(s) − f(s)‖ ≥ |‖f(s) − a‖ − ‖ϕ(s) − f(s)‖| ,

then,

‖f − w‖ + 2ε ≥
∫
I

sup
a∈G

|‖f (s) − a‖ − ‖ϕ(s) − f(s)‖| ds

≥
∫
I

∣∣∣∣sup
a∈G

‖f (s) − a‖ − ‖ϕ(s) − f(s)‖
∣∣∣∣ ds

≥
∣∣∣∣∣∣
∫
I

sup
a∈G

‖f (s) − a‖ − ‖ϕ(s) − f(s)‖ ds

∣∣∣∣∣∣

=

∣∣∣∣∣∣
∫
I

sup
a∈G

‖f (s) − a‖ ds −
∫
I

‖ϕ(s) − f(s)‖ ds

∣∣∣∣∣∣

≥
∣∣∣∣∣∣
∫
I

sup
a∈G

‖f (s) − a‖ ds − ε

∣∣∣∣∣∣ .

Consequently,

‖f − w‖ + 3ε ≥
∫
I

sup
a∈G

‖f (s) − a‖ ds.

Since ε was arbitrary, it follows that

‖f − w‖ ≥
∫
I

sup
a∈G

‖f(s) − a‖ ds.(2)

Equations (1) and (2) give the result.

Corollary 1.2. Let G be a remotal subset of a Banach space X . Then g ∈ L1(I, G) is
a farthest point in L1(I, G) from f ∈ L1(I, X) if and only if for almost all t ∈ I, g(t) is a
farthest point in G from f(t) in X.

Proof. Let g be a farthest element in L1(I, G) from f ∈ L1(I, X). Then

‖f − g‖ = sup
u∈L1(I,G)

‖f − u‖ .

By Theorem 1.1 we have:

‖f − g‖1 =
∫
I

‖f(s) − g(s)‖ ds = sup
u∈L1(I,G)

‖f − u‖ =
∫
I

sup
a∈G

‖f (s) − a‖ ds.

So, ‖f (s) − g (s)‖ = sup
a∈G

‖f (s) − a‖ for a.e. t ∈ I, and g(s) is a farthest point in G

from f(t) ∈ X a.e. t ∈ I.
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II Remotal sets in Vector Valued Functions
In this section we study the following question: For which remotal sets E in X one has

L1(I, E) remotal in L1(I, X)?.

Theorem 2.1. Let E be a remotal set in a Banach space X . If E is a finite set, then
L1(I, E) is remotal in L1(I, X).

Proof. Let f ∈ L1(I, X). For f(t) ∈ X, let et be the farthest point from f(t) in E. Then

‖f(t) − et‖ ≥ ‖f(t) − h(t)‖
for every h ∈ L1(I, E). The function g(t) = et is in L1(I, E), since g(t) is a simple function.
Now,

‖f(t) − g(t)‖ ≥ ‖f (t) − h(t)‖ .

This implies

1∫
0

‖f (t) − g(t)‖dt ≥
1∫

0

‖f(t) − h(t)‖ dt.

So ‖f − g‖ ≥ ‖f − h‖ . Hence, L1(I, E) is remotal in L1(I, X).

Theorem 2.2. Let E be a finite remotal set in a Banach space X . Then l1(E) is remotal
in l1(X) if and only if E = {0} .

Proof. If E = {0} , then l1 (E) = {0} , the zero sequence, and hence l1(E) is remotal in
l1(X).

Conversely, suppose that l1(E) is remotal in l1(X). Let f = (0, 0, 0, ..., 0, ...) ∈ l1(X)
and e ∈ F (0, E). If e �= 0 ∈ E, then (e, e, e, ....e, 0, 0, 0, 0, .....) ∈ l1 (E) ,where e appears in
the first n−coordinates. But, in such a case we have:

‖(, e, e, e, ..., e, 0, 0, ...)− f‖ = n ‖e‖ .

This implies that d(f, l1(E)) = ∞ and l1(E) is not remotal. Consequently, e must equal to
zero, and E = {0}.

Now we state and prove one of the main results of this paper.

Theorem 2.3. Let X be a Banach space, and E be a closed convex bounded subset in X.
If span(E) = Y is finite dimensional, then L1(I, E) is remotal in L1(I, X).

Proof. Let {x1, x2, x3, ..., xm} be a basis of Y such that {x1, x2, x3, ..., xm} ⊆ E. Then
every function g ∈ L1(I, E) has the form

g =
m∑

k=1

gk ⊗ xk.

where gk ∈ L1(I).
Now, let f be any element in L1(I, X), and (Sn) be a sequence of simple functions in

L1(I, X) such that ‖f − Sn‖ → 0. Since E is a compact set, (being closed and bounded in
a finite dimensional space Y ), E is remotal. If

Sn =
l∑

k=1

1Ekn
⊗ yk,
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then

∧
Sn =

l∑
k=1

1Ekn
⊗ ∧

yk

is the farthest point of Sn in L1(I, E), where
∧
yk is the farthest point of yk in E.

Let y ∈ E such that ‖y‖ = max {‖z‖ : z ∈ E} . Such y exists since E is compact. Now,∥∥∥∥
∧
Sn (t)

∥∥∥∥ ≤ ‖y‖

for every t ∈ I, since
∧
Sn (t) ∈ E. Thus

∫
K

∥∥∥∥
∧
Sn (t)

∥∥∥∥ dt ≤
∫
K

‖y‖ dt

for any measurable set K ⊆ I. But the sequence (1 ⊗ y) , (the constant sequence) is uni-

formly integrable. Thus
{ ∧

Sn

}
is uniformly integrable. Being bounded, the Dunford com-

pactness Theorem [5], implies that
{ ∧

Sn

}
is relatively weakly compact. Thus we can assume

that
( ∧

Sn

)
(or a subsequence ) is weakly convergent. Let

∧
Sn

w−→
∧
f . We claim that

∧
f is the

farthest point to f. Indeed : each
∧
Sn has the form :

∧
Sn =

m∑
k=1

fkn ⊗ xk.

Let g ∈ L∞(I), x∗ ∈ X∗. Weak convergence of
∧
Sn implies :

〈 ∧
Sn , g ⊗ x∗

〉
=

m∑
k=1

〈fkn , g〉 ⊗ 〈xk, x∗〉 .

Choose x∗ such that

x∗(xk) =
{

1 k = 1
0 1 < k ≤ m

.

Then 〈 ∧
Sn , g ⊗ x∗

〉
= 〈f1n , g〉 .

So (f1n) converges weakly, to f1 say. Similarly f2n
w−→ f2, ..., fmn

w−→ fm, with f1, f2, ..., fm ∈
L1(I), since L1(E) is weakly sequentially complete [5]. Now, since f1n

w−→ f1, there exists
a subsequence that converges to f1 point wise (a.e), say f1nk

. Indeed : if there is no subse-
quence of f1n that converges to f1 a.e, then for every subsequence f1nk

and for every ε > 0
there exists Q ⊆ I, µ(Q) > 0 such that |f1nk

(t) − f1(t)| > ε, for every t ∈ Q and for every
n ∈ N . Let

Qnk = {t ∈ Q : f1nk
(t) − f1(t) > 0}
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and

Qc
nk = Pnk = {t ∈ Q : f1nk

(t) − f1(t) < 0} .

If
⋂

Qnk = φ, then,

Qnk ∩ Qc
nk = φ.

So ⋃
Qnk ∩ Qc

nk = φ(⋃
Qnk

)⋂ (⋃
Qc

nk

)
= φ((⋃

Qnk

)⋂(⋃
Qc

nk

))c

= Q(⋃
Qnk

)c ⋃(⋃
Qc

nk

)c

= Q(⋂
Qc

nk

)⋃ (⋂
Qnk

)
= Q.

So, if
⋂

Qnk = φ, we get
⋂

Qc
nk = Q. Hence, with no loss of generality we can assume that

there exists P ⊆ Q, µ(P ) > 0 and fnk(t) − f(t) > ε on P for every nk.
Thus ∫

P

(fnk − f1) dt ≥ εµ(P ) > 0.

But weak convergence implies ∫
P

(fnk − f1) dt −→ 0.

This is a contradiction. Thus (f1n) , has a subsequence (f1nk
) that converges to f1 point

wise. Similarly f2nk
has a subsequence that converges point wise say f2nkj

, and so on. We
get

f1n has a subsequence g1n that converges point wise to f1(t)
f2n has a subsequence g2n that converges point wise to f2(t)

.

.

.
fmn has a subsequence gmn converges point wise to fm(t).

So we have,

lim
n→∞g1n(t) = f1(t)

lim
n→∞g2n(t) = f2(t)

.

.

lim
n→∞gmn(t) = fm(t)

But again, these are sequentially bounded functions and can’t exceed h(t) = ‖y‖ . Hence

|gin(t) − fi| ≤ 2 ‖y‖ .
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Hence, the Labesgue Dominated Convergence Theorem gives

‖gin − fi‖1 −→ 0.

Thus

∧
Snk =

m∑
i=1

gin ⊗ xi.

∥∥∥∥
∧

Snk −
∧
f

∥∥∥∥ =

∥∥∥∥∥
m∑

i=1

gin ⊗ xi −
m∑

i=1

fi ⊗ xi

∥∥∥∥∥
≤

m∑
i=1

‖gin − fi‖ ‖xi‖ −→ 0.

Now,
∥∥∥∥f−

∧
f

∥∥∥∥ = lim
∥∥∥∥Snk−

∧
Snk

∥∥∥∥
≥ lim ‖Snk − h‖
= ‖f − h‖

for every h ∈ L1(I, E). Hence L1(I, E) is remotal in L1(I, X).
We end this section with the following question:

Question 1. Is Theorem 2.3 true if span(E) is assumed to be reflexive?.

III. Remotal sets:
Let X be any Banach space, and Y be a closed subspace of X . The unit ball of X is

B[X ] = {x : ‖x‖ ≤ 1}. For a set E ⊂ Y and x ∈ X , let
d(E) = sup{‖x − y‖ : x, y ∈ E}.

If E is a closed and convex set in a reflexive Banach space X , then for x ∈ X, d(x,E) =
‖x − y‖, for some y ∈ E. This is not the case in general for M(x,E) [3].

Lemma 3.1 For any Banach space X, B[X ] is remotal.

Proof. Let x ∈ X. If x = 0, then every point of y such that ‖y‖ = 1 is the farthest point
to x = 0. If ‖x‖ ≥ 1, then z = x

‖x‖ is the best approximant of x in B[X ]. Consequently, −z

is the farthest point from x in B[X ]. Indeed:
‖x − (−z)‖ =

∥∥∥x + x
‖x‖

∥∥∥ = 1 + ‖x‖ .

But, for any point y ∈ B[X ] we have:
‖x − y‖ ≤ ‖y − z‖ + ‖x − z‖ ≤ 2 + ‖x − z‖ = 2 + (‖x‖ − 1) = 1 + ‖x‖ = ‖x − (−z)‖ .

If If x �= 0 and ‖x‖ < 1, let z = − x
‖x‖ . Then ‖x − z‖ = 1 + ‖x‖ . If y is any element in

B[X ], then
‖x − y‖ ≤ ‖x‖ + ‖y‖ ≤ ‖x‖ + 1 = ‖x − z‖ . Hence B[X ] is remotal.

Question 2. If Y is a reflexive subspace, must B[Y ] be remotal in X?

Theorem 3.2. Let E be a closed convex set in a Banach space X and x ∈ X. Set
F (x,E) = {e ∈ E : ‖x − e‖ ≥ ‖x − y‖ for all y ∈ E} . Then F (x,E) is an extremal set in
E.
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Proof. Let z, y ∈ E and w = tz + (1 − t)y ∈ F (x,E). We claim that z, y ∈ F (x,E).
Now

‖x − w‖ ≤ t ‖x − z‖ + (1 − t) ‖x − y‖ .

If ‖x − z‖ < ‖x − w‖ ( or ‖x − y‖ < ‖x − w‖) , then ‖x − w‖ < ‖x − w‖ , which can’t be
true. So

‖x − z‖ = ‖x − y‖ = ‖x − w‖ .

Hence z, y ∈ F (x,E) and F (x,E) is an extremal set in E. Note that F (x,E) is closed in
E.

Corollary 3.3. If E is any closed bounded uniqely remotal set in X∗, then

F (x,E) ∩ Ext(E) �= φ.

Proof. Since E is w∗-closed, by Aloglu Theorem and the Krein Milman Theorem, E =

Ext(E)
w∗

. By Theorem 1.2 above, F (x,E) is an extremal subset consisting of one point (
E being uniquely remotal). Hence F (x,E) is an extreme point.

Theorem 3.4. Let E be any closed bounded uniqely remotal set in a metric linear space
X. If x ∈ X and e ∈ E such that d(x, e) = sup

y∈E
d(x, y), then e is an extreme point of E.

Proof. Suppose not. Then, there exist points s, w ∈ E, e �= w �= s such that e = 1
2 (w + s).

But

d(x, e) = d(x,
1
2
(w + s)) ≤ 1

2
d(x,w) +

1
2
d(x, s).

Now either

d(x, e) = d(x,w) = d(x, s)

(and since E is uniquely remotal we have e = w = s), or d(x,w), or d(x, s) is greater than
d(x, e). But, this is a contradiction. Thus e is an extreme point of E.

Theorem 3.5. Let E is any bounded remotal set in a Banach space X. Then E can’t be
open.

Proof. Suppose E is an open remotal subset of X and let x ∈ X. Then there exists e ∈ E
such that ‖x − e‖ = sup

y∈E
‖x − y‖ . Since E is open, there exists a number r > 0 such that

{y ∈ X : ‖y − e‖ < r} ⊆ E. Put u = e − r
2‖x−e‖ (x − e). Then ‖u − e‖ = r

2 < r, and hence
u ∈ E. But

‖x − u‖ =
∥∥∥∥x − e +

r

2 ‖x − e‖ (x − e)
∥∥∥∥

=
∥∥∥∥(x − e)

(
1 +

r

2 ‖x − e‖
)∥∥∥∥

=
(

1 +
r

2 ‖x − e‖
)
‖(x − e)‖ > ‖(x − e)‖ .

This is a contradiction. So E can not be open.
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