IMPLICATION ALGEBRAS ARE EQUIVALENT TO THE DUAL IMPLICATIVE BCK-ALGEBRAS

R. A. BORZOOEI, S. KHOSRAVI SHOAR

Received February 30, 2006

ABSTRACT. In this paper by considering the notion of implicative BCK-algebras, we show that the implication algebras are equivalent to the dual implicative BCK-algebras.

1. Introduction

Several algebras with one binary and one nulary operations were introduced to set up an algebraic counterpart of implication reduct of classical or non-classical propositional logics. For the classical logic, it is the so called implication algebra introduced by J. C. Abbott[1] in 1967. The study of BCK-algebras was initiated by Y. Imai and K. Iséki[3] in 1966 as a generalization of the concept of set-theoretic difference and propositional calcului. Now we follow [1,2] and we show that the implication algebras are equivalent to the dual implicative BCK-algebras.

2. Preliminaries

Definition 2.1. [1] An *implication algebra* is a set X with a binary operation "*" which satisfies the following axioms:

(I1) (x * y) * x = x, (I2) (x * y) * y = (y * x) * x, (I3) x * (y * z) = y * (x * z). for all $x, y, z \in X$.

Lemma 2.2. [2] In any implication algebra (X, *), the following identities hold;

 $(i) \quad x * (x * y) = x * y,$

 $(ii) \quad x * x = y * y,$

(iii) There exists a unique element 1 in X such that for all $x \in X$,

(a) x * x = 1, 1 * x = x and x * 1 = 1,

(b) if x * y = 1 and y * x = 1 then x = y. for all $x, y \in X$.

Definition 2.3. [3] A *BCK-algebra* is a set X with a binary operation " \circ " and constant "0" which satisfies the following axioms:

 $\begin{array}{ll} (\mathrm{BCK1}) & ((x\circ y)\circ (x\circ z))\circ (z\circ y)=0,\\ (\mathrm{BCK2}) & (x\circ (x\circ y))\circ y=0,\\ (\mathrm{BCK3}) & x\circ x=0,\\ (\mathrm{BCK4}) & x\circ y=y\circ x=0 \text{ imply } x=y,\\ (\mathrm{BCK5}) & 0\circ x=0.\\ \mathrm{for \ all}\ x,y,z\in X. \end{array}$

²⁰⁰⁰ Mathematics Subject Classification. 06F35, 03G25.

 $Key \ words \ and \ phrases.$ Implication algebras, dual implicative BCK-algebras.

Lemma 2.4. [3] In any BCK-algebra $(X, \circ, 0)$, the following identities hold: (i) $x \circ 0 = x$, (ii) $(x \circ y) \circ z = (x \circ z) \circ y$. for all $x, y, z \in X$.

Definition 2.5. [4] Let $(X, \circ, 0)$ be a *BCK*-algebra. Then, (i) X is called *implicative* if $x \circ (y \circ x) = x$, for all $x, y \in X$, (ii) X is called *commutative* if $x \circ (x \circ y) = y \circ (y \circ x)$, for all $x, y \in X$.

Theorem 2.6. [4] Any implicative BCK-algebra is a commutative BCK-algebra.

3. Implication algebras are equivalent to the dual implicative BCK-algebras

Definition 3.1. Let $(X, \circ, 0)$ be a *BCK*-algebra and binary operation "*" on X is defined as follows:

$$x * y = y \circ x$$

Then (X, *, 1) is called *dual BCK-algebra*. In fact, the axioms of that are as follows: (DBCK1) (y * z) * ((z * x) * (y * x)) = 1, (DBCK2) y * ((y * x) * x) = 1, (DBCK3) x * x = 1, (DBCK4) y * x = x * y = 1 imply x = y, (DBCK5) x * 1 = 1. for all $x, y, z \in X$.

Lemma 3.2. Let (X, *) be an implication algebra. Then, x * (y * x) = 1, for all $x, y \in X$. Proof. Let $x, y \in X$. Then, by (I3) and Lemma 2.2(iii)(a),

$$x * (y * x) = y * (x * x) = y * 1 = 1$$

Theorem 3.3. Any implication algebra is a dual BCK-algebra.

Proof. Let (X, *) be an implication algebra. Then the axioms of (DBCK3), (DBCK4) and (DBCK5) come from Lemma 2.2(iii)(a) and (b). So, it is enough to prove that the axioms of (DBCK1) and (DBCK2). Now, let $x, y, z \in X$. Then,

$$\begin{array}{rcl} (y*z)*((z*x)*(y*x)) &=& (y*z)*(y*((z*x)*x)), \ \mathrm{By}\ (\mathrm{I3})\\ &=& (y*z)*(y*((x*z)*z)), \ \mathrm{By}\ (\mathrm{I2})\\ &=& (y*z)*((x*z)*(y*z)), \ \mathrm{By}\ (\mathrm{I3})\\ &=& 1, \ \mathrm{by}\ \mathrm{Lemma}\ 3.2 \end{array}$$

Hence, (DBCK1) hold. Moreover, by (I3) and Lemma 2.2(iii)(a),

$$y * ((y * x) * x) = (y * x) * (y * x) = 1$$

Hence, (DBCK2) hold. Therefore, (X, *, 1) is a dual BCK-algebra.

Definition 3.4. Let (X, *, 1) be a dual *BCK*-algebra. Then X is called a *dual implicative BCK*-algebra, if

$$x = (x * y) * x$$

for all $x, y \in X$. (In fact, it is dual of implicative *BCK*-algebra $(X, \circ, 0)$, where $x \circ y = y * x$).

Theorem 3.5. Any dual implicative BCK-algebra is an implication algebra.

372

Proof. Let (X, *, 1) be a dual implicative *BCK*-algebra. Then by hypothesis (x * y) * x = x, for any $x, y \in X$ and so we have (I1). Since, $(X, \circ, 0)$, where $x \circ y = x * y$, is an implicative *BCK*-algebra and so by Theorem 2.6, it is a commutative *BCK*-algebra, then

$$y \circ (y \circ x) = x \circ (x \circ y)$$

Hence, in dual implicative BCK-algebra (X, *, 1) we have

(x * y) * y = (y * x) * x

and this implies that (I2). Now, since by Lemma 2.4(ii), in any *BCK*-algebra $(X, \circ, 0)$ we have $(x \circ y) \circ z = (x \circ z) \circ y$, for any $x, y, z \in X$. Then, in dual implicative *BCK*-algebra (X, *, 1) we have z * (y * x) = y * (z * x) and this implies that (I3). Therefore, (X, *) is an implication algebra.

Corollary 3.6. Implication algebras are equivalent to the dual implicative BCK-algebras.

Proof. The proof comes from Theorems 3.3 and 3.5.

References

- [1] J. C. Abbott, Semi-boolean algebras, Matematichki Vesnik, 4(1967), 177-198.
- W. Y. C Chen, J. S Oliveira, Implication Algebras and the Metropolis-Rota Axioms for Cubic Lattices, J. Algebra, 171, No.2, 1993
- [3] Y. Imai, K. Iseki, On axiom systems of propositional calculi, XIV Proc. Japan Academy, 42 (1966), 19-22.
- [4] J. Meng, Y. B. Jun, BCK-algebras, Kyung Moonsa, Korea, 1994.

R. A. BORZOOEI, S. KHOSRAVI SHOAR, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF SISTAN AND BALUCHESTAN, ZAHEDAN, IRAN

E-mail address: borzooei@hamoon.usb.ac.ir