C^{*}-ALGEBRAS ARISING FROM TWO HOMEOMORPHISMS WITH A CERTAIN RELATION

MOTO O'UCHI
OSAKA PREFECTURE UNIVERSITY

Received January 19, 2006

Abstract

We introduce a notion of an associative trinary relation arising from two homeomorphisms that satisfy a certain relation and construct an associated C^{*}-algebra. We prove a sufficient condition for the C^{*}-algebra to have a maximal closed two-sided ideal. As an example, we study a trinary relation arising from two homeomorphisms of the ring of p-adic integers and show that the associated C^{*}-algebra has a maximal closed two-sided ideal.

1. Introduction

Pentagonal equations for operators play important roles in several aspects in operator algebras. For example, see [1], [3] and [11]. The author have studied pentagonal equations on Hilbert C^{*}-modules in [5], [6], [7] and [8]. In these studies, we are led to consider a tri-module instead of a bi-module, that is, we considered a module with three different actions of an algebra. One of our main examples comes from a groupoid. But a natural module arising from a groupoid is a bimodule because we have only the two natural maps, that is, the source map and the range map. This fact is based on that a groupoid is related to a binary relation. To consider a more general situation, it is desirable to have a notion of a trinary relation with three natural map. In this paper, we introduce a notion of a trinary relation arising from two homeomorphisms that satisfy a certain relation and study its associated C^{*}-algebra. As an example, we study a trinary relation arising from two homeomorphisms of the ring of p-adic integers.

In Section 2, we introduce a notion of an associative trinary relation arising from two homeomorphisms that satisfy a certain relation and construct its associated C^{*}-algebra A. In Section 3, we study basic properties of A. In Section 4, we study a certain property of a commutative subalgebra of A. In Section 5 , we prove a sufficient condition for A to have a maximal closed two-sided ideal. In Section 6, we study a trinary relation arising from two homeomorphisms of the ring of p-adic integers and show that the associated C^{*}-algebra has a maximal closed two-sided ideal.

The author would like to thank Y. Katayama who read carefully the manuscript and suggested valuable improvements.

2. Algebras associated with a trinary relation

Let X be a second countable compact Hausdorff space and let α and β be homeomorphisms of X onto itself. We suppose that there exists $\sigma \in \mathbb{Z} \backslash\{0, \pm 1\}$ such that $\beta \alpha=\alpha^{\sigma} \beta$.

[^0]Set $\sigma(n)=\sigma^{n}$ for $n \in \mathbb{Z}$. Then we have $\beta^{n} \alpha^{m}=\alpha^{m \sigma(n)} \beta^{n}$ for $(n, m) \in \mathbb{N} \times \mathbb{Z}$, where $\mathbb{N}=\{0,1,2, \cdots\}$. Set $\mathcal{T}=\mathbb{N} \times \mathbb{Z} \times X$. Define maps $q, r, s: \mathcal{T} \longrightarrow X$ by $q(n, m, x)=\alpha^{m}(x)$, $r(n, m, x)=\beta^{n}(x)$ and $s(n, m, x)=\beta^{n} \alpha^{m}(x)$ respectively. We denote by $\mathcal{T} *_{q} \mathcal{T}$ the fibered product $\left\{(u, v) \in \mathcal{T}^{2} ; s(u)=q(v)\right\}$. Define the fibered product $\mathcal{T} *_{r} \mathcal{T}$ similarly. Then we define a map $W: \mathcal{T} *_{q} \mathcal{T} \longrightarrow \mathcal{T} *_{r} \mathcal{T}$ by

$$
\begin{aligned}
& W\left(\left(n_{1}, m_{1}, x\left(-n_{1}, m_{2}-m_{1} \sigma\left(n_{1}\right)\right)\right),\left(n_{2}, m_{2}, x\right)\right) \\
& \quad=\left(\left(n_{2}, m_{2}-m_{1} \sigma\left(n_{1}\right), x\right),\left(n_{1}+n_{2}, m_{1}, x\left(-n_{1}, m_{2}-m_{1} \sigma\left(n_{1}\right)\right)\right)\right)
\end{aligned}
$$

where $x(n, m)=\beta^{n} \alpha^{m}(x)$ for $x \in X$ and $(n, m) \in \mathbb{Z} \times \mathbb{Z}$. Note that W is continuous and injective with its inverse W^{-1};

$$
\begin{aligned}
& W^{-1}\left(\left(n_{1}, m_{1}, x\right),\left(n_{2}, m_{2}, x\left(n_{1}-n_{2}, m_{1}\right)\right)\right. \\
& \quad=\left(\left(n_{2}-n_{1}, m_{2}, x\left(n_{1}-n_{2}, m_{1}\right)\right),\left(n_{1}, m_{1}+m_{2} \sigma\left(n_{2}-n_{1}\right), x\right)\right)
\end{aligned}
$$

but not surjective. If $W(u, v)=\left(u^{\prime}, v^{\prime}\right)$, then we have $q(u)=q\left(v^{\prime}\right), r(u)=q\left(u^{\prime}\right), r(v)=$ $r\left(u^{\prime}\right)$ and $s(v)=s\left(v^{\prime}\right)$. We denote by $\mathcal{T} *_{q} \mathcal{T} *_{q} \mathcal{T}$ the fibered product $\left\{(u, v, w) \in \mathcal{T}^{3} ; s(u)=\right.$ $q(v), s(v)=q(w)\}$. Define the fibered products $\mathcal{T} *_{r} \mathcal{T} *_{q} \mathcal{T}, \mathcal{T} *_{q} \mathcal{T} *_{r} \mathcal{T}$ and $\mathcal{T} *_{r} \mathcal{T} *_{r} \mathcal{T}$ similarly. We also denote by $(\mathcal{T} \times \mathcal{T}) * \mathcal{T}$ the fibered product $\left\{(u, v, w) \in \mathcal{T}^{2} ; s(u)=\right.$ $q(w), s(v)=r(w)\}$. Then we can define a map $W *_{q} I: \mathcal{T} *_{q} \mathcal{T} *_{q} \mathcal{T} \longrightarrow \mathcal{T} *_{r} \mathcal{T} *_{q} \mathcal{T}$ by $\left(W *_{q} I\right)(u, v, w)=(W(u, v), w)$. Similarly we can define the following maps; $I *_{r} W$: $\mathcal{T} *_{r} \mathcal{T} *_{q} \mathcal{T} \longrightarrow \mathcal{T} *_{q} \mathcal{T} *_{r} \mathcal{T}, W *_{r} I: \mathcal{T} *_{q} \mathcal{T} *_{r} \mathcal{T} \longrightarrow \mathcal{T} *_{r} \mathcal{T} *_{r} \mathcal{T}$ and $I *_{q} W:$ $\mathcal{T} *_{q} \mathcal{T} *_{q} \mathcal{T} \longrightarrow(\mathcal{T} \times \mathcal{T}) * \mathcal{T}$. We can also define a map $W_{(13)}:(\mathcal{T} \times \mathcal{T}) * \mathcal{T} \longrightarrow \mathcal{T} *_{r} \mathcal{T} *_{r} \mathcal{T}$ by $W_{(13)}(u, v, w)=(v, W(u, w))$. Then we have the following proposition. The proof is straightforward and we omit it.

Proposition 2.1. The map W satisfies the following pentagonal equation;

$$
\left(W *_{r} I\right)\left(I *_{r} W\right)\left(W *_{q} I\right)=W_{(13)}\left(I *_{q} W\right)
$$

Since the pentagonal equation means an associativity of an operation represented by W, we will call the pair (\mathcal{T}, W) an associative trinary relation.

For $x \in X$, set $\mathcal{T}_{x}=s^{-1}(x)$. We denote by λ_{x} the counting measure on \mathcal{T}_{x}. Let \mathcal{S} be the image of W and $\mathcal{S}(v)$ the set $\{u \in \mathcal{T} ;(u, v) \in \mathcal{S}\}$ for $v \in \mathcal{T}$. We denote by $C_{c}(\mathcal{T})$ the set of complex valued continuous functions on \mathcal{T} with compact supports. For $\xi, \eta \in C_{c}(\mathcal{T})$, define a product $\xi * \eta$ in $C_{c}(\mathcal{T})$ by

$$
(\xi * \eta)(v)=\int_{\mathcal{S}(v)}(\xi \otimes \eta)\left(W^{-1}(u, v)\right) d \lambda_{r(v)}(u)
$$

Theorem 2.2. The linear space $C_{c}(\mathcal{T})$ is an associative algebra over \mathbb{C} with respect to the product $\xi * \eta$ defined above.
Proof. It is enough to prove the associativity of the product. Set $W^{-1}(u, v)=\left(\Psi^{\prime}(u, v), \Psi(u, v)\right)$ for $(u, v) \in \mathcal{S}$. For $\xi, \eta, \zeta \in C_{c}(\mathcal{T})$, we have

$$
\begin{aligned}
& ((\xi * \eta) * \zeta)(v) \\
& =\iint_{A(v)}(\xi \otimes \eta \otimes \zeta)\left(\left(W *_{q} I\right)^{-1}\left(I *_{r} W\right)^{-1}(w, u, v)\right) d \lambda_{q(u)}(w) d \lambda_{r(v)}(u)
\end{aligned}
$$

where $A(v)$ is the set $\left\{(w, u) \in \mathcal{T} *_{q} \mathcal{T} ; w \in \mathcal{S}\left(\Psi^{\prime}(u, v)\right), u \in \mathcal{S}(v)\right\}$. On the other hand, we have

$$
\begin{aligned}
& (\xi *(\eta * \zeta))(v) \\
& =\iint_{B(v)}(\xi \otimes \eta \otimes \zeta)\left(\left(I *_{q} W\right)^{-1} W_{(13)}^{-1}(w, u, v)\right) d \lambda_{r(u)}(w) d \lambda_{r(v)}(u)
\end{aligned}
$$

where $B(v)$ is the set $\left\{(w, u) \in \mathcal{T} *_{r} \mathcal{T} ; w \in \mathcal{S}(\Psi(u, v)), u \in \mathcal{S}(v)\right\}$. The set $A(v)$ coincides with the set $\left\{(w, u) \in \mathcal{T} *_{q} \mathcal{T} ;(w, u, v) \in \operatorname{Im}\left(I *_{r} W\right)\left(W *_{q} I\right)\right\}$, and the set $B(v)$ coincides with the set $\left\{(w, u) \in \mathcal{T} *_{r} \mathcal{T} ;(w, u, v) \in \operatorname{Im} W_{(13)}\left(I *_{q} W\right)\right\}$. Since W satisfies the pentagonal equation, we have $W(A(v))=B(v)$. Then we have

$$
\begin{aligned}
& \iint_{B(v)} f\left(W^{-1}(w, u)\right) d \lambda_{r(u)}(w) d \lambda_{r(v)}(u) \\
& =\iint_{\mathcal{S}} f\left(W^{-1}(w, u)\right) \chi_{A(v)}\left(W^{-1}(w, u)\right) d \lambda_{r(u)}(w) d \lambda_{r(v)}(u) \\
& =\iint_{\mathcal{T}_{*_{q} \mathcal{T}}} f(w, u) \chi_{A(v)}(w, u) d \lambda_{q(u)}(w) d \lambda_{r(v)}(u) \\
& =\iint_{A(v)} f(w, u) d \lambda_{q(u)}(w) d \lambda_{r(v)}(u)
\end{aligned}
$$

for every $f \in C_{c}\left(\mathcal{T} *_{q} \mathcal{T}\right)$, where $\chi_{A(v)}$ is the characteristic function of $A(v)$. It follows from the pentagonal equation that we have $((\xi * \eta) * \zeta)(v)=(\xi *(\eta * \zeta))(v)$.

We denote by $\tilde{\mathcal{A}}$ the opposite algebra of $C_{c}(\mathcal{T})$, that is, the product $\xi \eta$ in $\tilde{\mathcal{A}}$ is defined by $\xi \eta=\eta * \xi$. Then we have

$$
(\xi \eta)(n, m, x)=\sum_{0 \leq j \leq n} \sum_{k \in \mathbb{Z}} \xi\left(j, k+m \sigma(n-j), \alpha^{-k} \beta^{n-j}(x)\right) \eta(n-j, m, x) .
$$

We denote by $\lambda_{\mathbb{N}}$ and $\lambda_{\mathbb{Z}}$ the counting measures on \mathbb{N} and \mathbb{Z} respectively. Let μ be a positive regular Radon measure on X whose support is X. Moreover we suppose that $\mu(X)=1$. We define a measure λ on \mathcal{T} by $\lambda=\lambda_{\mathbb{N}} \times \lambda_{\mathbb{Z}} \times \mu$. We denote by H the Hilbert space $L^{2}(\mathcal{T}, \lambda)$. For $\xi \in \tilde{\mathcal{A}}$, define a linear map $\tilde{\pi}(\xi): C_{c}(\mathcal{T}) \longrightarrow C_{c}(\mathcal{T})$ by $\tilde{\pi}(\xi) \eta=\eta * \xi$.
Lemma 2.3. There exists a positive number M such that $\|\tilde{\pi}(\xi) \eta\|_{H} \leq M\|\eta\|_{H}$ for every $\eta \in C_{c}(\mathcal{T})$.

Proof. Let K_{1} and K_{2} be finite sets of \mathbb{N} and \mathbb{Z} respectively such that the support of ξ is contained in $K_{1} \times K_{2} \times X$. Then we have

$$
|(\xi \eta)(n, m, x)| \leq\|\xi\|_{\infty} \#\left(K_{1}\right)^{1 / 2} \#\left(K_{2}\right)\left(\sum_{0 \leq j \leq n} \chi_{K_{1}}(j)|\eta(n-j, m, x)|^{2}\right)^{1 / 2}
$$

This implies that $\|\tilde{\pi}(\xi) \eta\|_{H} \leq \#\left(K_{1}\right) \#\left(K_{2}\right)\|\xi\|_{\infty}\|\eta\|_{H}$.
It follows from the above lemma that one can extend $\tilde{\pi}(\xi)$ to a bounded operator on H, which we denote again by $\tilde{\pi}(\xi)$. Then the map $\tilde{\pi}: \tilde{\mathcal{A}} \longrightarrow \mathcal{B}(H)$ is a homomorphism of algebras. We denote by \mathcal{A} the quotient algebra $\tilde{\mathcal{A}} / \operatorname{Ker} \tilde{\pi}$ and denote by π the representation of \mathcal{A} on H corresponding to $\tilde{\pi}$. Define a unitary operator $U \in \mathcal{B}(H)$ by $(U \xi)(n, m, x)=$ $\xi(n, m+1, x)$. We denote by A the C^{*}-subalebra of $\mathcal{B}(H)$ generated by $\pi(\mathcal{A}) U^{m}(m \in \mathbb{Z})$. Let $\tilde{\mathcal{A}}_{0}$ be the set of $\xi \in \tilde{\mathcal{A}}$ such that the support of ξ is contained in $\{0\} \times \mathbb{Z} \times X$. For $\xi \in \tilde{\mathcal{A}}_{0}$, the operator $\tilde{\pi}(\xi)$ satisfies

$$
\begin{aligned}
(\tilde{\pi}(\xi) \eta)(n, m, x) & =\sum_{k \in \mathbb{Z}} \xi\left(0, k+m \sigma(n), \alpha^{-k} \beta^{n}(x) \eta(n, m, x)\right. \\
& =\sum_{k \in \mathbb{Z}} \xi\left(0, k, \alpha^{-k} \beta^{n} \alpha^{m}(x)\right) \eta(n, m, x)
\end{aligned}
$$

We denote by A_{0} the C^{*}-subalgebra of A generated by $\tilde{\pi}\left(\tilde{\mathcal{A}}_{0}\right)$.

Lemma 2.4. The C^{*}-algebra A_{0} is *-isomorphic to the C^{*}-algebra $C(X)$ of continuous functions on X.

Proof. Note that Ker $\tilde{\pi}$ is the set of $\xi \in \tilde{\mathcal{A}}$ such that $\sum_{m \in \mathbb{Z}} \xi\left(n, m, \alpha^{-m}(x)\right)=0$ for every $n \in \mathbb{N}$ and $x \in X$. We define a map $\tilde{h}: \tilde{\mathcal{A}}_{0} \longrightarrow C(X)$ by $\tilde{h}(\xi)(x)=\sum_{m \in \mathbb{Z}} \xi\left(0, m, \alpha^{-m}(x)\right)$. Let \mathcal{A}_{0} be the subalgebra of \mathcal{A} corresponding to $\tilde{\mathcal{A}}_{0}$. Then there exists an isomorphism h of \mathcal{A}_{0} onto $C(X)$ such that $h([\xi])=\widetilde{h}(\xi)$, where $[\xi] \in \mathcal{A}$ is the class of $\xi \in \tilde{\mathcal{A}}$. Since we have $\left\|\pi\left(h^{-1}(f)\right)\right\|=\|f\|$ and $\left.\pi\left(h^{-1}(f)\right)^{*}=\pi\left(h^{-1}(\bar{f})\right)\right)$, there exists a $*$-isomorphism \hat{h} of A_{0} onto $C(X)$ such that $\hat{h}(\pi(a))=h(a)$ for every $a \in \mathcal{A}_{0}$.

3. BASIC PROPERTIES OF THE ASSOCIATED ALGEBRAS

Define $V \in \mathcal{B}(H)$ by $(V \xi)(n, m, x)=\xi(n+1, m, x)$ for $\xi \in H$ and $(n, m, x) \in \mathcal{T}$. Note that V^{*} is an isometry, that is, $V V^{*}=I$. Let α_{*} and β_{*} be automorphisms of $C(X)$ defined by $\alpha_{*}(f)(x)=f\left(\alpha^{-1}(x)\right)$ and $\beta_{*}(f)(x)=f\left(\beta^{-1}(x)\right)$ respectively for $f \in C(X)$ and $x \in X$. Let δ_{n} and δ_{m} be Kronecker's δ on \mathbb{N} and \mathbb{Z} respectively. We have

$$
\left(\tilde{\pi}\left(\delta_{n} \times \delta_{m} \times f\right) \eta\right)\left(n^{\prime}, m^{\prime}, x\right)=f\left(\alpha^{-m} \beta^{n^{\prime}-n} \alpha^{m^{\prime}}(x)\right) \eta\left(n^{\prime}-n, m^{\prime}, x\right)
$$

if $n^{\prime} \geq n$ and $\left(\tilde{\pi}\left(\delta_{n} \times \delta_{m} \times f\right) \eta\right)\left(n^{\prime}, m^{\prime}, x\right)=0$ if $0 \leq n^{\prime} \leq n-1$, and we have $\tilde{h}\left(\delta_{0} \times \delta_{m} \times f\right)=$ $\alpha_{*}^{m}(f)$. Therefore we have

$$
\begin{aligned}
\pi\left(\left[\delta_{n} \times \delta_{m} \times f\right]\right) & =\left(V^{*}\right)^{n} \pi\left(\left[\delta_{0} \times \delta_{m} \times f\right]\right) \\
& =\left(V^{*}\right)^{n} \pi\left(h^{-1}\left(\alpha_{*}^{m}(f)\right)\right)
\end{aligned}
$$

We also have

$$
\pi\left(h^{-1}(f)\right) V=V \pi\left(h^{-1}\left(\beta_{*}(f)\right)\right)
$$

For $k \in \mathbb{Z}$, define V_{k} by $V_{k}=V^{k}$ if $k \geq 0$ and by $V_{k}=\left(V^{*}\right)^{-k}$ if $k<0$ and define a projection e_{k} of $\mathcal{B}(H)$ by $e_{k}=I$ if $k \geq 0$ and $e_{k}=\left(V^{*}\right)^{-k} V^{-k}$ if $k<0$. Then we have $V_{j} e_{k}=e_{j+k} V_{j}$ and $V_{j} V_{k}=V_{j+k} e_{-k}$ for $j, k \in \mathbb{Z}$. For $k \in \mathbb{Z}$, define an injective *-homomorphism π_{k} of $C(X)$ to A by

$$
\left(\pi_{k}(f) \xi\right)(n, m, x)=f\left(\beta^{n} \alpha^{m-k}(x)\right) \xi(n, m, x)
$$

for $f \in C(X), \xi \in H$ and $(n, m, x) \in \mathcal{T}$. Then we have $\pi\left(h^{-1}(f)\right)=\pi_{0}(f)$ and $U^{-k} \pi_{j}(f) U^{k}=$ $\pi_{j+k}(f)$. We denote by \tilde{A} the dense $*$-subalgebra of A generated algebraically by $\pi(\mathcal{A}) U^{m}$ $(m \in \mathbb{Z})$ and denote by B_{0} the C^{*}-subalgebra of A generated by $\pi_{k}(C(X))(k \in \mathbb{Z})$. Then every element of \tilde{A} is a finite sum of elements of the form $e_{k} V_{n} U^{m} a$ with $k, n, m \in \mathbb{Z}$ and $a \in B_{0}$. We denote by B_{I} the commutative C^{*}-subalgebra of A generated by $B_{0} e_{n}$ $(n \in \mathbb{Z})$. Then every element of \tilde{A} is a finite sum of elements of the form $V_{n} U^{m} a$ with $n, m \in \mathbb{Z}$ and $a \in B_{I}$. For $(t, s) \in \mathbb{T}^{2}$, define a unitary operator $u(t, s)$ on H by $(u(t, s) \xi)(n, m, x)=\exp (-2 \pi i(n t+m s)) \xi(n, m, x)$ and define a homomorphism ϕ of \mathbb{T}^{2} to $\operatorname{Aut}(A)$ by $\phi_{(t, s)}=\operatorname{Ad} u_{(t, s)}$. Then we have $\phi_{(t, s)}\left(V_{n} U^{m} a\right)=\exp (2 \pi i(n t+m s)) V_{n} U^{m} a$ for $n, m \in \mathbb{Z}$ and $a \in B_{I}$. Define a faithful conditional expectation E of A onto B_{I} by

$$
E(x)=\int_{\mathbb{T}^{2}} \phi_{(t, s)}(x) d t d s
$$

For $x=V_{n} U^{m} a$ with $a \in B_{I}$, we have $E(x)=0$ if $(n, m) \neq(0,0)$ and $E(a)=a$.

4. A property of a commutative algebra

We denote by $C_{b}(\mathcal{T})$ the C^{*}-algebra of bounded continuous functions on \mathcal{T}. For $k \in \mathbb{Z}$, define an injective $*$-homomorohism $\kappa_{k}: C(X) \longrightarrow C_{b}(\mathcal{T})$ by

$$
\kappa_{k}(f)(n, m, x)=f\left(\beta^{n} \alpha^{m-k}(x)\right)
$$

for $f \in C(X)$ and $(n, m, x) \in \mathcal{T}$. We denote by C the C^{*}-subalgebra of $C_{b}(\mathcal{T})$ generated by $\kappa_{k}(C(X))(k \in \mathbb{Z})$. For $n \in \mathbb{N}$, define $\varepsilon_{n} \in C_{b}(\mathcal{T})$ by $\varepsilon_{n}(k, m, x)=1$ if $k \geq n$ and $\varepsilon_{n}(k, m, x)=0$ if $k<n$. We denote by C_{I} the C^{*}-subalgebra of $C_{b}(\mathcal{T})$ generated by $C \varepsilon_{n}$ $(n \in \mathbb{N})$. For $f \in C_{I}$, we have $f(n, m+1, x)=f(n, m, \alpha(x))$. Define a $*$-isomorphism ρ_{I} of C_{I} onto B_{I} by $\left(\rho_{I}(f) \xi\right)(n, m, x)=f(n, m, x) \xi(n, m, x)$ for $f \in C_{I}$ and $\xi \in H$. Set $C_{0}=\kappa_{0}(C(X))$. We have $\rho_{I}(C)=B_{0}$ and $\rho_{I}\left(C_{0}\right)=A_{0}$. Define an automorphism u of C_{I} by $u(f)(n, m, x)=f(n, m+1, x)$. For $k \in \mathbb{N}$, define a $*$-endomorhphism v_{k} of C_{I} by $v_{k}(f)(n, m, x)=f(n+k, m, x)$ and define a $*$-endomorphism v_{-k} of C_{I} by $v_{-k}(f)(n, m, x)=$ $f(n-k, m, x)$ if $n \geq k$ and $v_{-k}(f)(n, m, x)=0$ if $0 \leq n<k$. We consider the following property, which is an analogue of the Rohlin property (cf. [2], Lemma VIII.3.7). We say that C_{I} has Property (R) if, for every $K \in \mathbb{N}$, there exist $f_{j} \in C_{I}$ with $\left|f_{j}\right|=1(j=1, \cdots, N)$ such that

$$
\sum_{j=1}^{N} f_{j} v_{n} u^{m}\left(\overline{f_{j}}\right)=0
$$

for $n, m \in \mathbb{Z}$ with $|n|,|m| \leq K$ and $(n, m) \neq(0,0)$.
Proposition 4.1. Suppose that C_{I} has Property (R). For every $a \in A$ and $\varepsilon>0$, there exist $f_{j} \in C_{I}$ with $\left|f_{j}\right|=1(j=1, \cdots, N)$ such that

$$
\left\|E(a)-\frac{1}{N} \sum_{j=1}^{N} \rho_{I}\left(f_{j}\right) a \rho_{I}\left(\overline{f_{j}}\right)\right\|<\varepsilon
$$

Proof. We have $V_{n} U^{m} \rho_{I}(f)=\rho_{I}\left(v_{n} u^{m}(f)\right) V_{n} U^{m}$ for $f \in C_{I}$ and $n, m \in \mathbb{Z}$. Let $a \in \tilde{A}$. Then we have $a=\sum_{n, m=-K}^{K} V_{n} U^{m} a_{(n, m)}$ with $a_{(n, m)} \in B_{I}$. There exist functions $f_{j} \in C_{I}$ $(j=1, \cdots, N)$ which satisfy the equality in Property (R). Then we have

$$
\frac{1}{N} \sum_{j=1}^{N} \rho_{I}\left(f_{j}\right) a \rho_{I}\left(\overline{f_{j}}\right)=a_{(0,0)}=E(a)
$$

Since \tilde{A} is dense in A, this completes the proof of the proposition.

5. A maximal ideal of A

In this section, we assume that C_{I} has Property (R). For a subset S of C_{I}, we say that S is invariant if $u(S)=S$ and $v_{k}(S) \subset S$ for every $k \in \mathbb{Z}$. For a non-trivial closed invariant ideal S of C_{I}, we say that S is a maximal closed invariant ideal if there is no non-trivial closed invariant ideal which contains S.
Lemma 5.1. Suppose that C_{I} has Property (R). Let J be a closed two-sided ideal of A. Then $E(J)$ is a subset of J. Moreover if S is a subset of C_{I} such that $\rho_{I}(S)=E(J)$, then S is a closed invariant ideal of C_{I}.

Proof. Since J is a closed two-sided ideal, it follows from Proposition 4.1 that $E(x)$ is an element of J for every $x \in J$. Since E is a conditional expectation and ρ_{I} is an isomorphism, S is an ideal of C_{I}. Since $E(J) \subset J$ and J is closed, S is a closed subset. Since we have $\rho_{I}(u(a))=U \rho_{I}(a) U^{*}$ for $a \in C_{I}$, we have $u(S)=S$. Since we have $\rho_{I}\left(v_{k}(a)\right)=V_{k} \rho_{I}(a) V_{-k}$ for $a \in C_{I}$ and $k \in \mathbb{Z}$, we have $v_{k}(S) \subset S$.

Theorem 5.2. Suppose that C_{I} has Property (R) and that there exists a maximal closed invariant ideal S of C_{I}. Then there exists a unique maximal closed two-sided ideal J of A such that $E(J)=\rho_{I}(S)$.
Proof. Let \tilde{J} be the closed two-sided ideal of A generated by $\rho_{I}(S)$. For $f \in S$ and $g, h \in$ C_{I}, set $a=\rho_{I}(f), x=V_{n} U^{m} \rho_{I}(g)$ and $y=V_{k} U^{j} \rho_{I}(h)$. Then we have $E(x a y)=0$ if $(n+k, m+j) \neq(0,0)$ and we have $E(x a y)=\rho_{I}\left(\left(v_{n} u^{m}\right)(g f) \varepsilon_{-k} h\right)$ if $(n+k, m+j)=(0,0)$. Since S is an invariant ideal, E (xay) is an element of $\rho_{I}(S)$. Since S is closed, this implies that $E(\tilde{J}) \subset \rho_{I}(S)$. The reverse inclusion is clear. Therefore we have $E(\tilde{J})=\rho_{I}(S)$. Let \mathcal{I} be the set of closed two-sided ideals J^{\prime} of A such that $E\left(J^{\prime}\right)=\rho_{I}(S)$. Note that \tilde{J} belongs to \mathcal{I}. Since \mathcal{I} is an inductive set, it has a maximal element J. Since S is a maximal closed invariant ideal, it follows from Lemma 5.1 that J is a maximal closed two-sided ideal of A. Let J^{\prime} be another maximal closed two-side ideal of A such that $E\left(J^{\prime}\right)=\rho_{I}(S)$. Let $J^{\prime \prime}$ be the closure of $J+J^{\prime}$. Then $J^{\prime \prime}$ is a closed two-sided ideal of A such that $E\left(J^{\prime \prime}\right)=\rho_{I}(S)$. Since $J^{\prime \prime}$ is non-trivial and J and J^{\prime} are maximal, we have $J=J^{\prime}=J^{\prime \prime}$.

6. An example

In this section, we discuss the case when X is the ring of p-adic integers. Let p be a prime and \mathbb{Z}_{p} the ring of p-adic integers. As for the notations and facts related to p-adic numbers, we refer the reader to $[4,9,10]$. For $\theta \in \mathbb{Z}_{p}^{\times}$and $\sigma \in \mathbb{Z}_{p}^{\times} \cap \mathbb{Z}$ with $\sigma \neq \pm 1$, we define homeomorphisms $\alpha, \beta: \mathbb{Z}_{p} \longrightarrow \mathbb{Z}_{p}$ by $\alpha(x)=x+\theta$ and $\beta(x)=\sigma x$ respectively. Then we have $\beta \alpha=\alpha^{\sigma} \beta$. The action of α is minimal, that is, $\left\{\alpha^{n}(x) ; n \in \mathbb{Z}\right\}$ is dense in \mathbb{Z}_{p} for every $x \in \mathbb{Z}_{p}$. For $k \in \mathbb{Z}$, let $\kappa_{k}: C\left(\mathbb{Z}_{p}\right) \longrightarrow C_{b}\left(\mathbb{N} \times \mathbb{Z}_{p}\right)$ be an injective $*$-homomorphism defined by $\kappa_{k}(f)(n, x)=f\left(\beta^{n} \alpha^{-k}(x)\right)$ for $f \in C\left(\mathbb{Z}_{p}\right)$ and $(n, x) \in \mathbb{N} \times \mathbb{Z}_{p}$. We denote by C the C^{*}-subalgebra of $C_{b}\left(\mathbb{N} \times \mathbb{Z}_{p}\right)$ generated by $\kappa_{k}\left(C\left(\mathbb{Z}_{p}\right)\right)(k \in \mathbb{Z})$. We set $C_{0}=\kappa_{0}\left(C\left(\mathbb{Z}_{p}\right)\right)$. For $n \in \mathbb{N}$, define $\varepsilon_{n} \in C_{b}\left(\mathbb{N} \times \mathbb{Z}_{p}\right)$ by $\varepsilon_{n}(k, x)=1$ if $k \geq n$ and $\varepsilon_{n}(k, x)=0$ if $k<n$. We denote by C_{I} the C^{*}-subalgebra of $C_{b}\left(\mathbb{N} \times \mathbb{Z}_{p}\right)$ generated by C and $\left\{\varepsilon_{n}\right\}$. Note that the C^{*}-algebras C and C_{I} defined here are isomorphic to the algebras C and C_{I} defined in Section 4 respectively. Define an automorphism u of C_{I} by $u(f)(n, x)=f\left(n, \alpha^{-1}(x)\right)$. For $k \in \mathbb{N}$, define a $*$-endomorphism v_{k} of C_{I} by $v_{k}(f)(n, x)=f(n+k, x)$ and define a *-endomorphism v_{-k} of C_{I} by $v_{-k}(f)(n, x)=f(n-k, x)$ if $n \geq k$ and by $v_{-k}(f)(n, x)=0$ if $n \leq k-1$. Note that maps u, v_{k} and v_{-k} defined here correspond to the maps u^{-1}, v_{k} and v_{-k} defined in Section 4 respectively.

Let n_{k} be the least positive integer such that $\sigma^{n} \equiv 1\left(\bmod p^{k+1}\right)$. Since n_{k-1} is a divisor of $n_{k},\left(\mathbb{Z} / n_{k} \mathbb{Z}\right)_{k \geq 0}$ is a projective system in a natural way. We denote by G the projective $\operatorname{limit} \lim \mathbb{Z} / n_{k} \mathbb{Z}$. Since $\lim _{k \rightarrow \infty} n_{k}=\infty, G$ is a compact additive group which contains \mathbb{Z} as a dense subgroup. For $k \in \mathbb{N}$, define an equivalence relation \sim_{k} on \mathbb{N} as follows; $n \sim_{k} m$ if and only if either $n=m$ if $n \leq n_{k}-1$ or $m \geq n_{k}$ and $n \equiv m\left(\bmod n_{k}\right)$ if $n \geq n_{k}$. We set $Y_{k}=\mathbb{N} / \sim_{k}$ and denote by $[n]_{k}$ the equivalence class of n in Y_{k}. Define a map $F_{k}: Y_{k} \longrightarrow Y_{k-1}$ by $F_{k}\left([n]_{k}\right)=[n]_{k-1}$. Then $\left(Y_{k}, F_{k}\right)_{k \geq 0}$ is a projective system. We denote by Y the projective limit $\lim Y_{k}$. Note that Y is a 2 nd countable compact Hausdorff space. We denote by Ω and Ω_{I} the spectra of C and C_{I} respectively. For $n \in \mathbb{N}$ and $x \in \mathbb{Z}_{p}$, define $\omega_{(n, x)} \in \Omega$ by $\omega_{(n, x)}(f)=f(n, x)$ for $f \in C$. Define a map $j: \mathbb{N} \times \mathbb{Z}_{p} \longrightarrow \Omega$ by $j(n, x)=\omega_{(n, x)}$.
Proposition 6.1. The map j is injective and continuous and the image of j is dense in Ω.
Proof. It is clear that j is continuous. We can show that the image of j is dense in Ω as in [12] §6.5. We show that j is injective. Suppose that $\omega_{(n, x)}=\omega_{(m, y)}$ for $(n, x),(m, y) \in$ $\mathbb{N} \times \mathbb{Z}_{p}$. Since we have $\omega_{(n, x)}\left(\kappa_{k}(f)\right)=f\left(\sigma^{n}(x-k \theta)\right)$ for $f \in C\left(\mathbb{Z}_{p}\right)$ and $k \in \mathbb{Z}$, we have $\sigma^{n}(x-k \theta)=\sigma^{m}(y-k \theta)$ for all $k \in \mathbb{Z}$. We have $\sigma^{n} x=\sigma^{m} y$ when $k=0$ and
$\sigma^{n} x-\sigma^{m} y=\left(\sigma^{n}-\sigma^{m}\right) \theta$ when $k=1$. Then we have $\sigma^{n-m}=1$. Since $\sigma \neq \pm 1$, we have $n=m$ and $x=y$.

For $k \in \mathbb{N}$ and $a \in \mathbb{Z} / p^{k+1} \mathbb{Z}$, we denote by $E_{a}^{(k)}$ the clopen set consisting of points $x \in \mathbb{Z}_{p}$ such that $x \equiv a\left(\bmod p^{k+1}\right)$ and by $\mathcal{E}^{(k)}$ the set of $E_{a}^{(k)}$ with $a \in \mathbb{Z} / p^{k+1} \mathbb{Z}$. Let $C\left(\mathcal{E}^{(k)}\right)$ be the C^{*}-subalgebra of $C\left(\mathbb{Z}_{p}\right)$ generated by $\chi_{E}\left(E \in \mathcal{E}^{(k)}\right)$, where χ_{E} is the characteristic function of E and let C_{k} be the C^{*}-subalgebra of C generated by $\kappa_{n}\left(C\left(\mathcal{E}^{(k)}\right)\right)(n \in \mathbb{Z})$. Then $\left\{C_{k}\right\}$ is an increasing sequence whose union is dense in C. We denote by Ω_{k} the spectrum of C_{k}.
Lemma 6.2. The spectrum Ω_{k} is identified with $\mathbb{Z} / n_{k} \mathbb{Z} \times \mathbb{Z} / p^{k+1} \mathbb{Z}$.
Proof. For $n \in \mathbb{N}$ and $x \in \mathbb{Z}_{p}$, define $\omega_{(n, x)}^{(k)} \in \Omega_{k}$ by $\omega_{(n, x)}^{(k)}(f)=f(n, x)$ for $f \in C_{k}$ and define a map $j_{k}: \mathbb{N} \times \mathbb{Z}_{p} \longrightarrow \Omega_{k}$ by $j_{k}(n, x)=\omega_{(n, x)}^{(k)}$. One can show that the image of j_{k} is dense in Ω_{k} as in [12] $\S 6.5$. Since the equation $j_{k}(n, x)=j_{k}(m, y)$ is equivalent to the equations $n \equiv m\left(\bmod n_{k}\right)$ and $x \equiv y\left(\bmod p^{k+1}\right)$, the image of j_{k} is identified with $\mathbb{Z} / n_{k} \mathbb{Z} \times \mathbb{Z} / p^{k+1} \mathbb{Z}$. Since the image of j_{k} is finite and dense, j_{k} is surjective.

Theorem 6.3. The spectrum Ω is homeomorphic to $G \times \mathbb{Z}_{p}$ and the spectrum Ω_{I} is homeomorphic to $Y \times \mathbb{Z}_{p}$.
Proof. Define a map $\psi_{k}: \Omega_{k} \longrightarrow \Omega_{k-1}$ by $\psi_{k}(\omega)=\omega \mid C_{k-1}$, the restriction of ω to C_{k-1}. Then $\left(\Omega_{k}, \psi_{k}\right)_{k \geq 0}$ is a projective system. Set $E=\lim _{\longleftarrow} \Omega_{k}$. Then E is the set of points $\left(\omega^{(k)}\right)_{k \geq 0}$ of $\prod_{k \geq 0} \Omega_{k}$ such that $\psi\left(\omega^{(k)}\right)=\omega^{(k-1)}$. Define a map $\varphi_{k}: \Omega \longrightarrow \Omega_{k}$ by $\varphi_{k}(\omega)=$ $\omega \mid C_{k}$ and define a map $\varphi: \Omega \longrightarrow E$ by $\varphi(\omega)=\left(\varphi_{k}(\omega)\right)_{k \geq 0}$. It is clear that φ is injective and continuous. Since Ω is compact, $\varphi(\Omega)$ is closed. We can also show that $\varphi(\Omega)$ is dense in E. Therefore φ is surjective and E is homeomorphic to Ω. It follows form Lemma 6.2 that E is identified with $G \times \mathbb{Z}_{p}$.

Let $C_{I, k}$ be the C^{*}-subalgebra of C_{I} generated by C_{k} and $\varepsilon_{0}, \cdots, \varepsilon_{n_{k}}$. Then $\left\{C_{I, k}\right\}$ is an increasing sequence whose union is dense in C_{I}. We denote by $\Omega_{I, k}$ the spectrum of $C_{I, k}$. Then $\Omega_{I, k}$ is identified with $Y_{k} \times \mathbb{Z} / p^{k+1} \mathbb{Z}$. Since we have $\Omega_{I}=\lim \Omega_{I, k}, \Omega_{I}$ is homeomorphic to $Y \times \mathbb{Z}_{p}$.

We denote by $\mu_{k}: Y \longrightarrow Y_{k}$ and $\nu_{k}: G \longrightarrow \mathbb{Z} / n_{k} \mathbb{Z}$ the canonical maps for the projective limits $Y=\lim _{\leftarrow} Y_{k}$ and $G=\lim _{\leftarrow} \mathbb{Z} / n_{k} \mathbb{Z}$ respectively. Define a map $\tilde{q}_{k}: Y_{k} \longrightarrow \mathbb{Z} / n_{k} \mathbb{Z}$ by $\tilde{q}_{k}\left([n]_{k}\right)=[n]_{k}^{\prime}$, where $[n]_{k}^{\prime}$ is the equivalence class of $n \in \mathbb{N}$ in $\mathbb{Z} / n_{k} \mathbb{Z}$. There exists a unique surjective continuous map $\tilde{q}: Y \longrightarrow G$ such that $\nu_{k} \tilde{q}=\tilde{q}_{k} \mu_{k}$. Define a map $i: \mathbb{N} \longrightarrow Y$ by $i(n)=\left([n]_{k}\right)_{k \geq 0}$. Set $\widetilde{Y}=i(\mathbb{N})$ and $\partial Y=Y \backslash \widetilde{Y}$. Then \widetilde{Y} is open and dense in Y. We denote by h the restriction of \tilde{q} to ∂Y. Then the map $h: \partial Y \longrightarrow G$ is a homeomorphism of ∂Y onto G. Define a map $\gamma_{k}: Y_{k} \longrightarrow Y_{k}$ by $\gamma_{k}\left([n]_{k}\right)=[n+1]_{k}$ and a map $\gamma: Y \longrightarrow Y$ by $\gamma\left(\left(x_{k}\right)_{k \geq 0}\right)=\left(\gamma_{k}\left(x_{k}\right)\right)_{k \geq 0}$. Then γ is injective and continuous. Note that the restriction of γ to ∂Y is a homeomorphism of ∂Y onto itself and that we have $h(\gamma(x))=h(x)+1$ for $x \in \partial Y$. For a subset T of Y, we say that T is γ-invariant if $\gamma(T) \subset T$ and $\gamma^{-1}(T) \subset T$. The set ∂Y is the unique non-trivial closed γ-invariant subset of Y. Let $f \in C_{I}=C\left(Y \times \mathbb{Z}_{p}\right)$ and $(x, y) \in Y \times \mathbb{Z}_{p}$. Then we have $u(f)(x, y)=f\left(x, \alpha^{-1}(y)\right)$. If $k \geq 0$, then $v_{k}(f)(x, y)=f\left(\gamma^{k}(x), y\right)$. If $k<0$, then

$$
v_{k}(f)(x, y)= \begin{cases}f\left(\gamma^{k}(x), y\right) & \text { if } x \in \operatorname{Im} \gamma^{-k} \\ 0 & \text { if } x \notin \operatorname{Im} \gamma^{-k}\end{cases}
$$

We denote by S the subset of C_{I} consisting of elements f such that $f(x, y)=0$ for all $x \in \partial Y$ and $y \in \mathbb{Z}_{p}$. Then the set S is the unique non-trivial closed invariant ideal of C_{I}.

Lemma 6.4. The C^{*}-algebra C_{I} has Property (R).
Proof. For every $k \in \mathbb{N}$, we show that there exist $\xi_{s}^{(k)} \in C_{I, k}$ with $\left|\xi_{s}^{(k)}\right|=1 \quad\left(s=0, \cdots, n_{k}-\right.$ 1) such that

$$
\sum_{s=0}^{n_{k}-1} \xi_{s}^{(k)} v_{n}\left(\overline{\xi_{s}^{(k)}}\right)=0
$$

for $n \in \mathbb{Z}$ with $0<|n|<n_{k}$. Let $\mu_{k}: Y \longrightarrow Y_{k}$ be the canonical map. For $j=0, \cdots, 2 n_{k}-1$, set $D_{j}=\mu_{k}^{-1}\left([j]_{k}\right)$. Then $\left\{D_{j}\right\}$ is a partition of Y by clopen sets. We denote by a_{j} the characteristic function of $D_{j} \times \mathbb{Z}_{p}$. Then a_{j} is an element of $C_{I, k}$. For $j=0, \cdots, n_{k}-1$, define $b_{j} \in C_{I, k}$ by $b_{j}=a_{j}+a_{j+n_{k}}$. For $|n| \leq n_{k}-1$, we have (1) $v_{n}\left(b_{j}\right)=b_{j-n}$ if $j-n_{k}+1 \leq n \leq j$, (2) $v_{n}\left(b_{j}\right)=b_{j-n+n_{k}}$ if $j+1 \leq n \leq n_{k}-1$ and (3) $v_{n}\left(b_{j}\right)=a_{j-n}$ if $-n_{k}+1 \leq n \leq j-n_{k}$. Set $\lambda=\exp \left(2 \pi \sqrt{-1} / n_{k}\right)$ and set

$$
\xi_{s}^{(k)}=\sum_{j=0}^{n_{k}-1} \lambda^{s j} b_{j}
$$

for $s=0, \cdots, n_{k}-1$. If $0<n<n_{k}$, we have

$$
v_{n}\left(\xi_{s}^{(k)}\right)=\sum_{j=0}^{n_{k}-1} \lambda^{s(j+n)} b_{j}
$$

and we have

$$
\sum_{s=0}^{n_{k}-1} \xi_{s}^{(k)} v_{n}\left(\overline{\xi_{s}^{(k)}}\right)=\sum_{s=0}^{n_{k}-1} \lambda^{-s n}=0
$$

If $-n_{k}<n<0$, we have

$$
v_{n}\left(\xi_{s}^{(k)}\right)=\sum_{j=-n}^{n_{k}-1} \lambda^{s(j+n)} b_{j}+\sum_{j=n_{k}}^{n_{k}-n-1} \lambda^{s(j+n)} a_{j}
$$

and we have

$$
\sum_{s=0}^{n_{k}-1} \xi_{s}^{(k)} v_{n}\left(\overline{\xi_{s}^{(k)}}\right)=\sum_{s=0}^{n_{k}-1} \lambda^{-s n}\left(\sum_{j=-n}^{n_{k}-1} b_{j}+\sum_{j=n_{k}}^{n_{k}-n-1} a_{j}\right)=0 .
$$

Similarly, we can show that there exist $\eta_{t}^{(k)} \in C_{k}$ with $\left|\eta_{t}^{(k)}\right|=1 \quad\left(t=0, \cdots, p^{k+1}-1\right)$ such that

$$
\sum_{t=0}^{p^{k+1}-1} \eta_{t}^{(k)} u^{m}\left(\overline{\eta_{t}^{(k)}}\right)=0
$$

for $m \in \mathbb{Z}$ with $0<|m|<p^{k+1}$. For $K \in \mathbb{N}$, we choose k to be $K<\min \left\{n_{k}, p^{k+1}\right\}$. Then we can take the family of functions $f_{j} \quad\left(1 \leq j \leq n_{k} p^{k+1}\right)$ to be $\xi_{s}^{(k)} \eta_{t}^{(k)} \quad\left(0 \leq s \leq n_{k}-1,0 \leq\right.$ $t \leq p^{k+1}-1$).

Let A be the C^{*}-algebra associated with the trinary relation arising from the homeomorphisms α and β introduced in this section. By virtue of Theorem 5.2, we have the following theorem.

Theorem 6.5. Let A be the C^{*}-algebra as above and let S be the unique non-trivial closed invariant ideal of C_{I}. Then there exists a unique maximal closed two-sided ideal J of A such that $E(J)=\rho_{I}(S)$.

Remark. We do not know whether J is the unique maximal closed two-sided ideal of A or not.

References

[1] S. Baaj and G. Skandalis, Unitaires multiplicatifs et dualité pour les produits croisés de C^{*}-algèbres, Ann. Sci. École. Norm. Sup. 26(1993), 425-488.
[2] K. R. Davidson, C^{*}-algebras by example, Amer. Math. Soc., Providence, 1996.
[3] M. Enock and J. M. Vallin, Inclusions of von Neumann algebras, and quantum groupoïds, J. Funct. Analysis 172(2000), 249-300.
[4] F. Q. Gouvêa, p-adic numbers, second edition, Universitext, Springer-Verlag, Berlin, Heidelberg, New York, 1997.
[5] M. O'uchi, Pseudo-multiplicative unitaries on Hilbert C^{*}-modules, Far East J. Math. Sci.(FJMS), Special Volume(2001), Part2, (Functional Analysis and its Applications), 229-249.
[6] M. O'uchi, Pseudo-multiplicative unitaries associated with inclusions of finite dimensional C^{*}-algebras, Linear Algebra Appl. 341(2002), 201-218.
[7] M. O'uchi, Pentagonal equations for operators associated with inclusions of C^{*}-algebras, Sci. Math. Japonicae 56(2002), 71-94.
[8] M. O'uchi, Coring structures associated with multiplicative unitary operators on Hilbert C^{*}-modules, Far East J. Math. Sci.(FJMS), 11(2003), 121-136.
[9] D. Ramakrishnan and R. J. Valenza, Fourier analysis on number fields, Graduate Texts in Mathematics 186, Springer-Verlag, Berlin, Heidelberg, New York, 1999.
[10] A. M. Robert, A course in p-adic analysis, Graduate Texts in Mathematics 198, Springer-Verlag, Berlin, Heidelberg, New York, 2000.
[11] J. M. Vallin, Unitaire pseudo-multiplicatif associé à un groupoïde applications à la moyennabilité, J. Operator Theory 44(2000), 347-368.
[12] K. Zhu, An introduction to operator algebras, CRC Press, Boca Raton, 1993.
Department of Mathematics and Information Sciences, Graduate School of Science, Osaka
Prefecture University, Daisen-cho, Sakai City, Osaka 590-0035, Japan
E-mail address: ouchi@mi.s.osakafu-u.ac.jp

[^0]: 2000 Mathematics Subject Classification. 46L08.
 Key words and phrases. C^{*}-algebra, trinary relation, pentagonal equation, p-adic integer.

