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Abstract. We introduce a notion of an associative trinary relation arising from two
homeomorphisms that satisfy a certain relation and construct an associated C∗-algebra.
We prove a sufficient condition for the C∗-algebra to have a maximal closed two-sided
ideal. As an example, we study a trinary relation arising from two homeomorphisms
of the ring of p-adic integers and show that the associated C∗-algebra has a maximal
closed two-sided ideal.

1. Introduction

Pentagonal equations for operators play important roles in several aspects in operator
algebras. For example, see [1], [3] and [11]. The author have studied pentagonal equations
on Hilbert C∗-modules in [5], [6], [7] and [8]. In these studies, we are led to consider a
tri-module instead of a bi-module, that is, we considered a module with three different
actions of an algebra. One of our main examples comes from a groupoid. But a natural
module arising from a groupoid is a bimodule because we have only the two natural maps,
that is, the source map and the range map. This fact is based on that a groupoid is related
to a binary relation. To consider a more general situation, it is desirable to have a notion
of a trinary relation with three natural map. In this paper, we introduce a notion of a
trinary relation arising from two homeomorphisms that satisfy a certain relation and study
its associated C∗-algebra. As an example, we study a trinary relation arising from two
homeomorphisms of the ring of p-adic integers.

In Section 2, we introduce a notion of an associative trinary relation arising from two
homeomorphisms that satisfy a certain relation and construct its associated C∗-algebra A.
In Section 3, we study basic properties of A. In Section 4, we study a certain property of a
commutative subalgebra of A. In Section 5, we prove a sufficient condition for A to have a
maximal closed two-sided ideal. In Section 6, we study a trinary relation arising from two
homeomorphisms of the ring of p-adic integers and show that the associated C∗-algebra has
a maximal closed two-sided ideal.

The author would like to thank Y. Katayama who read carefully the manuscript and
suggested valuable improvements.

2. Algebras associated with a trinary relation

Let X be a second countable compact Hausdorff space and let α and β be homeomor-
phisms of X onto itself. We suppose that there exists σ ∈ Z \ {0,±1} such that βα = ασβ.
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Set σ(n) = σn for n ∈ Z. Then we have βnαm = αmσ(n)βn for (n,m) ∈ N × Z, where
N = {0, 1, 2, · · · }. Set T = N×Z×X . Define maps q, r, s : T −→ X by q(n,m, x) = αm(x),
r(n,m, x) = βn(x) and s(n,m, x) = βnαm(x) respectively. We denote by T ∗q T the fibered
product {(u, v) ∈ T 2; s(u) = q(v)}. Define the fibered product T ∗r T similarly. Then we
define a map W : T ∗q T −→ T ∗r T by

W ((n1,m1, x(−n1,m2 −m1σ(n1))), (n2,m2, x))

= ((n2,m2 −m1σ(n1), x), (n1 + n2,m1, x(−n1,m2 −m1σ(n1)))),

where x(n,m) = βnαm(x) for x ∈ X and (n,m) ∈ Z × Z. Note that W is continuous and
injective with its inverse W−1;

W−1((n1,m1, x), (n2,m2, x(n1 − n2,m1))

= ((n2 − n1,m2, x(n1 − n2,m1)), (n1,m1 +m2σ(n2 − n1), x))

but not surjective. If W (u, v) = (u′, v′), then we have q(u) = q(v′), r(u) = q(u′), r(v) =
r(u′) and s(v) = s(v′). We denote by T ∗qT ∗qT the fibered product {(u, v, w) ∈ T 3; s(u) =
q(v), s(v) = q(w)}. Define the fibered products T ∗r T ∗q T , T ∗q T ∗r T and T ∗r T ∗r T
similarly. We also denote by (T × T ) ∗ T the fibered product {(u, v, w) ∈ T 2; s(u) =
q(w), s(v) = r(w)}. Then we can define a map W ∗q I : T ∗q T ∗q T −→ T ∗r T ∗q T
by (W ∗q I)(u, v, w) = (W (u, v), w). Similarly we can define the following maps; I ∗r W :
T ∗r T ∗q T −→ T ∗q T ∗r T , W ∗r I : T ∗q T ∗r T −→ T ∗r T ∗r T and I ∗q W :
T ∗q T ∗q T −→ (T ×T ) ∗ T . We can also define a map W(13) : (T ×T ) ∗ T −→ T ∗r T ∗r T
by W(13)(u, v, w) = (v,W (u,w)). Then we have the following proposition. The proof is
straightforward and we omit it.

Proposition 2.1. The map W satisfies the following pentagonal equation;

(W ∗r I)(I ∗r W )(W ∗q I) = W(13)(I ∗q W ).

Since the pentagonal equation means an associativity of an operation represented by W ,
we will call the pair (T ,W ) an associative trinary relation.

For x ∈ X , set Tx = s−1(x). We denote by λx the counting measure on Tx. Let S be
the image of W and S(v) the set {u ∈ T ; (u, v) ∈ S} for v ∈ T . We denote by Cc(T ) the
set of complex valued continuous functions on T with compact supports. For ξ, η ∈ Cc(T ),
define a product ξ ∗ η in Cc(T ) by

(ξ ∗ η)(v) =
∫
S(v)

(ξ ⊗ η)(W−1(u, v))dλr(v)(u).

Theorem 2.2. The linear space Cc(T ) is an associative algebra over C with respect to the
product ξ ∗ η defined above.

Proof. It is enough to prove the associativity of the product. SetW−1(u, v) = (Ψ′(u, v),Ψ(u, v))
for (u, v) ∈ S. For ξ, η, ζ ∈ Cc(T ), we have

((ξ ∗ η) ∗ ζ)(v)

=
∫∫

A(v)

(ξ ⊗ η ⊗ ζ)((W ∗q I)−1(I ∗r W )−1(w,u, v))dλq(u)(w)dλr(v)(u),

where A(v) is the set {(w, u) ∈ T ∗q T ;w ∈ S(Ψ′(u, v)), u ∈ S(v)}. On the other hand, we
have

(ξ ∗ (η ∗ ζ))(v)

=
∫∫

B(v)

(ξ ⊗ η ⊗ ζ)((I ∗q W )−1W−1
(13)(w,u, v))dλr(u)(w)dλr(v)(u),
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where B(v) is the set {(w, u) ∈ T ∗r T ;w ∈ S(Ψ(u, v)), u ∈ S(v)}. The set A(v) coincides
with the set {(w, u) ∈ T ∗q T ; (w,u, v) ∈ Im(I ∗r W )(W ∗q I)}, and the set B(v) coincides
with the set {(w, u) ∈ T ∗rT ; (w,u, v) ∈ ImW(13)(I∗qW )}. Since W satisfies the pentagonal
equation, we have W (A(v)) = B(v). Then we have∫∫

B(v)

f(W−1(w,u)) dλr(u)(w)dλr(v)(u)

=
∫∫

S
f(W−1(w,u))χA(v)(W−1(w,u)) dλr(u)(w)dλr(v)(u)

=
∫∫

T ∗qT
f(w,u)χA(v)(w,u) dλq(u)(w)dλr(v)(u)

=
∫∫

A(v)

f(w,u) dλq(u)(w)dλr(v)(u)

for every f ∈ Cc(T ∗q T ), where χA(v) is the characteristic function of A(v). It follows from
the pentagonal equation that we have ((ξ ∗ η) ∗ ζ)(v) = (ξ ∗ (η ∗ ζ))(v).

We denote by Ã the opposite algebra of Cc(T ), that is, the product ξη in Ã is defined
by ξη = η ∗ ξ. Then we have

(ξη)(n,m, x) =
∑

0≤j≤n

∑
k∈Z

ξ(j, k +mσ(n− j), α−kβn−j(x))η(n − j,m, x).

We denote by λN and λZ the counting measures on N and Z respectively. Let µ be a positive
regular Radon measure on X whose support is X . Moreover we suppose that µ(X) = 1. We
define a measure λ on T by λ = λN × λZ × µ. We denote by H the Hilbert space L2(T , λ).
For ξ ∈ Ã, define a linear map π̃(ξ) : Cc(T ) −→ Cc(T ) by π̃(ξ)η = η ∗ ξ.

Lemma 2.3. There exists a positive number M such that ‖π̃(ξ)η‖H ≤ M‖η‖H for every
η ∈ Cc(T ).

Proof. Let K1 and K2 be finite sets of N and Z respectively such that the support of ξ is
contained in K1 ×K2 ×X . Then we have

|(ξη)(n,m, x)| ≤ ‖ξ‖∞#(K1)1/2#(K2)

⎛⎝ ∑
0≤j≤n

χK1(j)|η(n− j,m, x)|2
⎞⎠1/2

.

This implies that ‖π̃(ξ)η‖H ≤ #(K1)#(K2)‖ξ‖∞‖η‖H .

It follows from the above lemma that one can extend π̃(ξ) to a bounded operator on
H , which we denote again by π̃(ξ). Then the map π̃ : Ã −→ B(H) is a homomorphism of
algebras. We denote by A the quotient algebra Ã/Ker π̃ and denote by π the representation
of A on H corresponding to π̃. Define a unitary operator U ∈ B(H) by (Uξ)(n,m, x) =
ξ(n,m+ 1, x). We denote by A the C∗-subalebra of B(H) generated by π(A)Um (m ∈ Z).
Let Ã0 be the set of ξ ∈ Ã such that the support of ξ is contained in {0} × Z × X . For
ξ ∈ Ã0, the operator π̃(ξ) satisfies

(π̃(ξ)η)(n,m, x) =
∑
k∈Z

ξ(0, k +mσ(n), α−kβn(x)η(n,m, x)

=
∑
k∈Z

ξ(0, k, α−kβnαm(x))η(n,m, x).

We denote by A0 the C∗-subalgebra of A generated by π̃(Ã0).
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Lemma 2.4. The C∗-algebra A0 is ∗-isomorphic to the C∗-algebra C(X) of continuous
functions on X.

Proof. Note that Ker π̃ is the set of ξ ∈ Ã such that
∑

m∈Z
ξ(n,m, α−m(x)) = 0 for every

n ∈ N and x ∈ X . We define a map h̃ : Ã0 −→ C(X) by h̃(ξ)(x) =
∑

m∈Z
ξ(0,m, α−m(x)).

Let A0 be the subalgebra of A corresponding to Ã0. Then there exists an isomorphism h
of A0 onto C(X) such that h([ξ]) = h̃(ξ), where [ξ] ∈ A is the class of ξ ∈ Ã. Since we
have ‖π(h−1(f))‖ = ‖f‖ and π(h−1(f))∗ = π(h−1(f̄))), there exists a ∗-isomorphism ĥ of
A0 onto C(X) such that ĥ(π(a)) = h(a) for every a ∈ A0.

3. Basic properties of the associated algebras

Define V ∈ B(H) by (V ξ)(n,m, x) = ξ(n + 1,m, x) for ξ ∈ H and (n,m, x) ∈ T . Note
that V ∗ is an isometry, that is, V V ∗ = I. Let α∗ and β∗ be automorphisms of C(X) defined
by α∗(f)(x) = f(α−1(x)) and β∗(f)(x) = f(β−1(x)) respectively for f ∈ C(X) and x ∈ X .
Let δn and δm be Kronecker’s δ on N and Z respectively. We have

(π̃(δn × δm × f)η)(n′,m′, x) = f(α−mβn′−nαm′
(x))η(n′ − n,m′, x)

if n′ ≥ n and (π̃(δn×δm×f)η)(n′,m′, x) = 0 if 0 ≤ n′ ≤ n−1, and we have h̃(δ0×δm×f) =
αm
∗ (f). Therefore we have

π([δn × δm × f ]) = (V ∗)nπ([δ0 × δm × f ])

= (V ∗)nπ(h−1(αm
∗ (f))).

We also have

π(h−1(f))V = V π(h−1(β∗(f))).

For k ∈ Z, define Vk by Vk = V k if k ≥ 0 and by Vk = (V ∗)−k if k < 0 and define
a projection ek of B(H) by ek = I if k ≥ 0 and ek = (V ∗)−kV −k if k < 0. Then we
have Vjek = ej+kVj and VjVk = Vj+ke−k for j, k ∈ Z. For k ∈ Z, define an injective
∗-homomorphism πk of C(X) to A by

(πk(f)ξ)(n,m, x) = f(βnαm−k(x))ξ(n,m, x)

for f ∈ C(X), ξ ∈ H and (n,m, x) ∈ T . Then we have π(h−1(f)) = π0(f) and U−kπj(f)Uk =
πj+k(f). We denote by Ã the dense ∗-subalgebra of A generated algebraically by π(A)Um

(m ∈ Z) and denote by B0 the C∗-subalgebra of A generated by πk(C(X)) (k ∈ Z). Then
every element of Ã is a finite sum of elements of the form ekVnU

ma with k, n,m ∈ Z

and a ∈ B0. We denote by BI the commutative C∗-subalgebra of A generated by B0en

(n ∈ Z). Then every element of Ã is a finite sum of elements of the form VnU
ma with

n,m ∈ Z and a ∈ BI . For (t, s) ∈ T2, define a unitary operator u(t, s) on H by
(u(t, s)ξ)(n,m, x) = exp(−2πi(nt + ms))ξ(n,m, x) and define a homomorphism φ of T2

to Aut(A) by φ(t,s) = Ad u(t,s). Then we have φ(t,s)(VnU
ma) = exp(2πi(nt+ms))VnU

ma
for n,m ∈ Z and a ∈ BI . Define a faithful conditional expectation E of A onto BI by

E(x) =
∫

T2
φ(t,s)(x) dtds.

For x = VnU
ma with a ∈ BI , we have E(x) = 0 if (n,m) �= (0, 0) and E(a) = a.
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4. A property of a commutative algebra

We denote by Cb(T ) the C∗-algebra of bounded continuous functions on T . For k ∈ Z,
define an injective ∗-homomorohism κk : C(X) −→ Cb(T ) by

κk(f)(n,m, x) = f(βnαm−k(x))

for f ∈ C(X) and (n,m, x) ∈ T . We denote by C the C∗-subalgebra of Cb(T ) generated
by κk(C(X)) (k ∈ Z). For n ∈ N, define εn ∈ Cb(T ) by εn(k,m, x) = 1 if k ≥ n and
εn(k,m, x) = 0 if k < n. We denote by CI the C∗-subalgebra of Cb(T ) generated by Cεn

(n ∈ N). For f ∈ CI , we have f(n,m + 1, x) = f(n,m, α(x)). Define a ∗-isomorphism
ρI of CI onto BI by (ρI(f)ξ)(n,m, x) = f(n,m, x)ξ(n,m, x) for f ∈ CI and ξ ∈ H . Set
C0 = κ0(C(X)). We have ρI(C) = B0 and ρI(C0) = A0. Define an automorphism u of
CI by u(f)(n,m, x) = f(n,m + 1, x). For k ∈ N, define a ∗-endomorhphism vk of CI by
vk(f)(n,m, x) = f(n+k,m, x) and define a ∗-endomorphism v−k of CI by v−k(f)(n,m, x) =
f(n − k,m, x) if n ≥ k and v−k(f)(n,m, x) = 0 if 0 ≤ n < k. We consider the following
property, which is an analogue of the Rohlin property (cf. [2], Lemma VIII.3.7). We say that
CI has Property (R) if, for every K ∈ N, there exist fj ∈ CI with |fj | = 1 (j = 1, · · · , N)
such that

N∑
j=1

fjvnu
m(fj) = 0

for n, m ∈ Z with |n|, |m| ≤ K and (n,m) �= (0, 0).

Proposition 4.1. Suppose that CI has Property (R). For every a ∈ A and ε > 0, there
exist fj ∈ CI with |fj| = 1 (j = 1, · · · , N) such that∥∥∥∥∥∥E(a) − 1

N

N∑
j=1

ρI(fj)aρI(fj)

∥∥∥∥∥∥ < ε.

Proof. We have VnU
mρI(f) = ρI(vnu

m(f))VnU
m for f ∈ CI and n,m ∈ Z. Let a ∈ Ã.

Then we have a =
∑K

n,m=−K VnU
ma(n,m) with a(n,m) ∈ BI . There exist functions fj ∈ CI

(j = 1, · · · , N) which satisfy the equality in Property (R). Then we have

1
N

N∑
j=1

ρI(fj)aρI(fj) = a(0,0) = E(a).

Since Ã is dense in A, this completes the proof of the proposition.

5. A maximal ideal of A

In this section, we assume that CI has Property (R). For a subset S of CI , we say that
S is invariant if u(S) = S and vk(S) ⊂ S for every k ∈ Z. For a non-trivial closed invariant
ideal S of CI , we say that S is a maximal closed invariant ideal if there is no non-trivial
closed invariant ideal which contains S.

Lemma 5.1. Suppose that CI has Property (R). Let J be a closed two-sided ideal of A.
Then E(J) is a subset of J . Moreover if S is a subset of CI such that ρI(S) = E(J), then
S is a closed invariant ideal of CI .

Proof. Since J is a closed two-sided ideal, it follows from Proposition 4.1 that E(x) is an
element of J for every x ∈ J . Since E is a conditional expectation and ρI is an isomorphism,
S is an ideal of CI . Since E(J) ⊂ J and J is closed, S is a closed subset. Since we have
ρI(u(a)) = UρI(a)U∗ for a ∈ CI , we have u(S) = S. Since we have ρI(vk(a)) = VkρI(a)V−k

for a ∈ CI and k ∈ Z, we have vk(S) ⊂ S.
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Theorem 5.2. Suppose that CI has Property (R) and that there exists a maximal closed
invariant ideal S of CI . Then there exists a unique maximal closed two-sided ideal J of A
such that E(J) = ρI(S).

Proof. Let J̃ be the closed two-sided ideal of A generated by ρI(S). For f ∈ S and g, h ∈
CI , set a = ρI(f), x = VnU

mρI(g) and y = VkU
jρI(h). Then we have E(xay) = 0 if

(n+k,m+ j) �= (0, 0) and we have E(xay) = ρI((vnu
m)(gf)ε−kh) if (n+k,m+ j) = (0, 0).

Since S is an invariant ideal, E(xay) is an element of ρI(S). Since S is closed, this implies
that E(J̃) ⊂ ρI(S). The reverse inclusion is clear. Therefore we have E(J̃) = ρI(S). Let I
be the set of closed two-sided ideals J ′ of A such that E(J ′) = ρI(S). Note that J̃ belongs
to I. Since I is an inductive set, it has a maximal element J . Since S is a maximal closed
invariant ideal, it follows from Lemma 5.1 that J is a maximal closed two-sided ideal of A.
Let J ′ be another maximal closed two-side ideal of A such that E(J ′) = ρI(S). Let J ′′ be
the closure of J + J ′. Then J ′′ is a closed two-sided ideal of A such that E(J ′′) = ρI(S).
Since J ′′ is non-trivial and J and J ′ are maximal, we have J = J ′ = J ′′.

6. An example

In this section, we discuss the case when X is the ring of p-adic integers. Let p be a
prime and Zp the ring of p-adic integers. As for the notations and facts related to p-adic
numbers, we refer the reader to [4, 9, 10]. For θ ∈ Z×p and σ ∈ Z×p ∩ Z with σ �= ±1, we
define homeomorphisms α, β : Zp −→ Zp by α(x) = x+θ and β(x) = σx respectively. Then
we have βα = ασβ. The action of α is minimal, that is, {αn(x);n ∈ Z} is dense in Zp for
every x ∈ Zp. For k ∈ Z, let κk : C(Zp) −→ Cb(N × Zp) be an injective ∗-homomorphism
defined by κk(f)(n, x) = f(βnα−k(x)) for f ∈ C(Zp) and (n, x) ∈ N×Zp. We denote by C
the C∗-subalgebra of Cb(N×Zp) generated by κk(C(Zp)) (k ∈ Z). We set C0 = κ0(C(Zp)).
For n ∈ N, define εn ∈ Cb(N × Zp) by εn(k, x) = 1 if k ≥ n and εn(k, x) = 0 if k < n.
We denote by CI the C∗-subalgebra of Cb(N × Zp) generated by C and {εn}. Note that
the C∗-algebras C and CI defined here are isomorphic to the algebras C and CI defined
in Section 4 respectively. Define an automorphism u of CI by u(f)(n, x) = f(n, α−1(x)).
For k ∈ N, define a ∗-endomorphism vk of CI by vk(f)(n, x) = f(n + k, x) and define a
∗-endomorphism v−k of CI by v−k(f)(n, x) = f(n− k, x) if n ≥ k and by v−k(f)(n, x) = 0
if n ≤ k − 1. Note that maps u, vk and v−k defined here correspond to the maps u−1, vk

and v−k defined in Section 4 respectively.
Let nk be the least positive integer such that σn ≡ 1 (mod pk+1). Since nk−1 is a divisor

of nk, (Z/nkZ)k≥0 is a projective system in a natural way. We denote by G the projective
limit lim

←−
Z/nkZ. Since limk→∞ nk = ∞, G is a compact additive group which contains Z

as a dense subgroup. For k ∈ N, define an equivalence relation ∼k on N as follows; n ∼k m
if and only if either n = m if n ≤ nk − 1 or m ≥ nk and n ≡ m (mod nk) if n ≥ nk.
We set Yk = N/ ∼k and denote by [n]k the equivalence class of n in Yk. Define a map
Fk : Yk −→ Yk−1 by Fk([n]k) = [n]k−1. Then (Yk, Fk)k≥0 is a projective system. We denote
by Y the projective limit lim

←−
Yk. Note that Y is a 2nd countable compact Hausdorff space.

We denote by Ω and ΩI the spectra of C and CI respectively. For n ∈ N and x ∈ Zp,
define ω(n,x) ∈ Ω by ω(n,x)(f) = f(n, x) for f ∈ C. Define a map j : N × Zp −→ Ω by
j(n, x) = ω(n,x).

Proposition 6.1. The map j is injective and continuous and the image of j is dense in Ω.

Proof. It is clear that j is continuous. We can show that the image of j is dense in Ω as
in [12] §6.5. We show that j is injective. Suppose that ω(n,x) = ω(m,y) for (n, x), (m, y) ∈
N × Zp. Since we have ω(n,x)(κk(f)) = f(σn(x − kθ)) for f ∈ C(Zp) and k ∈ Z, we
have σn(x − kθ) = σm(y − kθ) for all k ∈ Z. We have σnx = σmy when k = 0 and
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σnx − σmy = (σn − σm)θ when k = 1. Then we have σn−m = 1. Since σ �= ±1, we have
n = m and x = y.

For k ∈ N and a ∈ Z/pk+1Z, we denote by E(k)
a the clopen set consisting of points x ∈ Zp

such that x ≡ a (mod pk+1) and by E(k) the set of E(k)
a with a ∈ Z/pk+1

Z. Let C(E(k))
be the C∗-subalgebra of C(Zp) generated by χE (E ∈ E(k)), where χE is the characteristic
function of E and let Ck be the C∗-subalgebra of C generated by κn(C(E(k))) (n ∈ Z).
Then {Ck} is an increasing sequence whose union is dense in C. We denote by Ωk the
spectrum of Ck.

Lemma 6.2. The spectrum Ωk is identified with Z/nkZ × Z/pk+1Z.

Proof. For n ∈ N and x ∈ Zp, define ω(k)
(n,x) ∈ Ωk by ω

(k)
(n,x)(f) = f(n, x) for f ∈ Ck and

define a map jk : N × Zp −→ Ωk by jk(n, x) = ω
(k)
(n,x). One can show that the image of

jk is dense in Ωk as in [12] §6.5. Since the equation jk(n, x) = jk(m, y) is equivalent to
the equations n ≡ m (mod nk) and x ≡ y (mod pk+1), the image of jk is identified with
Z/nkZ × Z/pk+1Z. Since the image of jk is finite and dense, jk is surjective.

Theorem 6.3. The spectrum Ω is homeomorphic to G×Zp and the spectrum ΩI is home-
omorphic to Y × Zp.

Proof. Define a map ψk : Ωk −→ Ωk−1 by ψk(ω) = ω|Ck−1, the restriction of ω to Ck−1.
Then (Ωk, ψk)k≥0 is a projective system. Set E = lim

←−
Ωk. Then E is the set of points

(ω(k))k≥0 of
∏

k≥0 Ωk such that ψ(ω(k)) = ω(k−1). Define a map ϕk : Ω −→ Ωk by ϕk(ω) =
ω|Ck and define a map ϕ : Ω −→ E by ϕ(ω) = (ϕk(ω))k≥0. It is clear that ϕ is injective
and continuous. Since Ω is compact, ϕ(Ω) is closed. We can also show that ϕ(Ω) is dense
in E. Therefore ϕ is surjective and E is homeomorphic to Ω. It follows form Lemma 6.2
that E is identified with G× Zp.

Let CI,k be the C∗-subalgebra of CI generated by Ck and ε0, · · · , εnk
. Then {CI,k}

is an increasing sequence whose union is dense in CI . We denote by ΩI,k the spectrum
of CI,k. Then ΩI,k is identified with Yk × Z/pk+1

Z. Since we have ΩI = lim
←−

ΩI,k, ΩI is
homeomorphic to Y × Zp.

We denote by µk : Y −→ Yk and νk : G −→ Z/nkZ the canonical maps for the projective
limits Y = lim

←−
Yk and G = lim

←−
Z/nkZ respectively. Define a map q̃k : Yk −→ Z/nkZ

by q̃k([n]k) = [n]′k, where [n]′k is the equivalence class of n ∈ N in Z/nkZ. There exists
a unique surjective continuous map q̃ : Y −→ G such that νk q̃ = q̃kµk. Define a map
i : N −→ Y by i(n) = ([n]k)k≥0. Set Ỹ = i(N) and ∂Y = Y \ Ỹ . Then Ỹ is open and
dense in Y . We denote by h the restriction of q̃ to ∂Y . Then the map h : ∂Y −→ G is
a homeomorphism of ∂Y onto G. Define a map γk : Yk −→ Yk by γk([n]k) = [n + 1]k
and a map γ : Y −→ Y by γ((xk)k≥0) = (γk(xk))k≥0. Then γ is injective and continuous.
Note that the restriction of γ to ∂Y is a homeomorphism of ∂Y onto itself and that we have
h(γ(x)) = h(x)+1 for x ∈ ∂Y . For a subset T of Y , we say that T is γ-invariant if γ(T ) ⊂ T
and γ−1(T ) ⊂ T . The set ∂Y is the unique non-trivial closed γ-invariant subset of Y . Let
f ∈ CI = C(Y × Zp) and (x, y) ∈ Y × Zp. Then we have u(f)(x, y) = f(x,α−1(y)). If
k ≥ 0, then vk(f)(x, y) = f(γk(x), y). If k < 0, then

vk(f)(x, y) =

{
f(γk(x), y) if x ∈ Im γ−k,

0 if x /∈ Im γ−k.

We denote by S the subset of CI consisting of elements f such that f(x, y) = 0 for all
x ∈ ∂Y and y ∈ Zp. Then the set S is the unique non-trivial closed invariant ideal of CI .
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Lemma 6.4. The C∗-algebra CI has Property (R).

Proof. For every k ∈ N, we show that there exist ξ(k)
s ∈ CI,k with |ξ(k)

s | = 1 (s = 0, · · · , nk−
1) such that

nk−1∑
s=0

ξ(k)
s vn(ξ(k)

s ) = 0

for n ∈ Z with 0 < |n| < nk. Let µk : Y −→ Yk be the canonical map. For j = 0, · · · , 2nk−1,
set Dj = µ−1

k ([j]k). Then {Dj} is a partition of Y by clopen sets. We denote by aj the
characteristic function of Dj × Zp. Then aj is an element of CI,k. For j = 0, · · · , nk − 1,
define bj ∈ CI,k by bj = aj + aj+nk

. For |n| ≤ nk − 1, we have (1) vn(bj) = bj−n if
j − nk + 1 ≤ n ≤ j, (2) vn(bj) = bj−n+nk

if j + 1 ≤ n ≤ nk − 1 and (3) vn(bj) = aj−n if
−nk + 1 ≤ n ≤ j − nk. Set λ = exp(2π

√
−1/nk) and set

ξ(k)
s =

nk−1∑
j=0

λsjbj

for s = 0, · · · , nk − 1. If 0 < n < nk, we have

vn(ξ(k)
s ) =

nk−1∑
j=0

λs(j+n)bj

and we have
nk−1∑
s=0

ξ(k)
s vn(ξ(k)

s ) =
nk−1∑
s=0

λ−sn = 0.

If −nk < n < 0, we have

vn(ξ(k)
s ) =

nk−1∑
j=−n

λs(j+n)bj +
nk−n−1∑

j=nk

λs(j+n)aj

and we have
nk−1∑
s=0

ξ(k)
s vn(ξ(k)

s ) =
nk−1∑
s=0

λ−sn

⎛⎝nk−1∑
j=−n

bj +
nk−n−1∑

j=nk

aj

⎞⎠ = 0.

Similarly, we can show that there exist η(k)
t ∈ Ck with |η(k)

t | = 1 (t = 0, · · · , pk+1 − 1)
such that

pk+1−1∑
t=0

η
(k)
t um(η(k)

t ) = 0

for m ∈ Z with 0 < |m| < pk+1. For K ∈ N, we choose k to be K < min{nk, p
k+1}. Then

we can take the family of functions fj (1 ≤ j ≤ nkp
k+1) to be ξ(k)

s η
(k)
t (0 ≤ s ≤ nk −1, 0 ≤

t ≤ pk+1 − 1).

Let A be the C∗-algebra associated with the trinary relation arising from the homeomor-
phisms α and β introduced in this section. By virtue of Theorem 5.2, we have the following
theorem.

Theorem 6.5. Let A be the C∗-algebra as above and let S be the unique non-trivial closed
invariant ideal of CI . Then there exists a unique maximal closed two-sided ideal J of A
such that E(J) = ρI(S).

Remark. We do not know whether J is the unique maximal closed two-sided ideal of A
or not.
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