Scientiae Mathematicae Japonicae Online, e-2006, 361-369 361

C*-ALGEBRAS ARISING FROM TWO HOMEOMORPHISMS WITH A
CERTAIN RELATION

MOTO O’UCHI
OSAKA PREFECTURE UNIVERSITY

Received January 19, 2006

ABSTRACT. We introduce a notion of an associative trinary relation arising from two
homeomorphisms that satisfy a certain relation and construct an associated C*-algebra.
We prove a sufficient condition for the C*-algebra to have a maximal closed two-sided
ideal. As an example, we study a trinary relation arising from two homeomorphisms
of the ring of p-adic integers and show that the associated C*-algebra has a maximal
closed two-sided ideal.

1. INTRODUCTION

Pentagonal equations for operators play important roles in several aspects in operator
algebras. For example, see [1], [3] and [11]. The author have studied pentagonal equations
on Hilbert C*-modules in [5], [6], [7] and [8]. In these studies, we are led to consider a
tri-module instead of a bi-module, that is, we considered a module with three different
actions of an algebra. One of our main examples comes from a groupoid. But a natural
module arising from a groupoid is a bimodule because we have only the two natural maps,
that is, the source map and the range map. This fact is based on that a groupoid is related
to a binary relation. To consider a more general situation, it is desirable to have a notion
of a trinary relation with three natural map. In this paper, we introduce a notion of a
trinary relation arising from two homeomorphisms that satisfy a certain relation and study
its associated C*-algebra. As an example, we study a trinary relation arising from two
homeomorphisms of the ring of p-adic integers.

In Section 2, we introduce a notion of an associative trinary relation arising from two
homeomorphisms that satisfy a certain relation and construct its associated C*-algebra A.
In Section 3, we study basic properties of A. In Section 4, we study a certain property of a
commutative subalgebra of A. In Section 5, we prove a sufficient condition for A to have a
maximal closed two-sided ideal. In Section 6, we study a trinary relation arising from two
homeomorphisms of the ring of p-adic integers and show that the associated C*-algebra has
a maximal closed two-sided ideal.

The author would like to thank Y. Katayama who read carefully the manuscript and
suggested valuable improvements.

2. ALGEBRAS ASSOCIATED WITH A TRINARY RELATION

Let X be a second countable compact Hausdorff space and let o and 8 be homeomor-
phisms of X onto itself. We suppose that there exists o € Z\ {0, £1} such that Sa = a?S.
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Set o(n) = 0" for n € Z. Then we have f"a™ = ™3™ for (n,m) € N x Z, where
N={0,1,2,---}. Set T = NxZx X. Define maps ¢, r, s : T — X by q(n,m, z) = a™(x),
r(n,m,z) = 8"(x) and s(n, m,z) = "™ (z) respectively. We denote by 7 *,7 the fibered
product {(u,v) € T?; s(u) = q(v)}. Define the fibered product 7 *, 7 similarly. Then we
define amap W : 7T %7 — T *, T by
W ((n1,m1, x(=n1,m2 — mio(n1))), (n2, ma, z))
= ((n27 ma — mlg(nl)v LE), (nl + ng,mi, x(_nla ma — mlg(nl))))v
where z(n,m) = "a™(x) for x € X and (n,m) € Z x Z. Note that W is continuous and
injective with its inverse W~1;
Wﬁl((nlv mi, x)v ('I’LQ, ma, fE(TLl — N2, ml))
= ((n2 — n1,ma2, x(n1 — n2,m1)), (n1, m1 + mao(n2 — m1), x))

but not surjective. If W(u,v) = (u’,v’), then we have q(u) = ¢(v'), r(u) = ¢(u’), r(v) =
r(u') and s(v) = s(v"). We denote by T #,7 x,7 the fibered product {(u,v,w) € T3; s(u) =
q(v), s(v) = g(w)}. Define the fibered products 7 %, T %q T, T %, T %, T and T *, T %, T
similarly. We also denote by (7 x T) * 7 the fibered product {(u,v,w) € T?; s(u) =
q(w),s(v) = r(w)}. Then we can define a map Wxg I : T % T %, T — T %, T %4 T
by (W x4 I)(u,v,w) = (W(u,v),w). Similarly we can define the following maps; I %, W :
T, TxgT — TxgTxp, T, W I : TxgT %, T — T % T % T and I x; W :
TxqT +qT — (T xT)*T. We can also define a map W13 : (T xT)*T — T %, T %, T
by Wasy(u,v,w) = (v, W(u,w)). Then we have the following proposition. The proof is
straightforward and we omit it.

Proposition 2.1. The map W satisfies the following pentagonal equation;
(W 1)L 5, W)W 5 I) = Wipzy (L 54 W).

Since the pentagonal equation means an associativity of an operation represented by W,
we will call the pair (7, W) an associative trinary relation.

For z € X, set 7, = s (x). We denote by A, the counting measure on 7,. Let S be
the image of W and S(v) the set {u € T; (u,v) € S} for v € T. We denote by C.(7T) the
set of complex valued continuous functions on 7" with compact supports. For &, n € C.(7),
define a product £ xn in C.(7) by

(€% m)v) = /S L EEMOV )i )

Theorem 2.2. The linear space Cc(T) is an associative algebra over C with respect to the
product € xn defined above.

Proof. Tt is enough to prove the associativity of the product. Set W=1(u,v) = (¥'(u,v), ¥(u,v))
for (u,v) € S. For &,n,( € C.(T), we have

(€ %) * O)(v)
//A( (E@MD OV 20 D)7 0 20 W)™ 100,00 () ) (0,

where A(v) is the set {(w,u) € T %4 T;w € S(¥'(u,v)),u € S(v)}. On the other hand, we
have

(€5 (n+ C))
// (6® 0@ O g W)™ W3k (w,1,0))dAr o (w0) s o) (),
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where B(v) is the set {(w,u) € T *, T;w € S(¥(u,v)),u € S(v)}. The set A(v) coincides
with the set {(w,u) € T %4 T; (w,u,v) € Im(I %, W)(W x, I)}, and the set B(v) coincides
with the set {(w,u) € T+, T; (w,u,v) € ImW3)(Ix,W)}. Since W satisfies the pentagonal
equation, we have W(A(v)) = B(v). Then we have

// U) u)) d)‘r(u)( )d)‘r(v) (u)
B(v)
- / / OV 00 ) (W (0,0 s (1), 1)

= // f(wa u)XA(v) (wv u) d)‘q(u) (w)d)‘r(v) (u)
TxqT

A(v)

for every f € Co(T %47 ), where X 4(y) is the characteristic function of A(v). It follows from
the pentagonal equation that we have ((£ xn) * () (v) = (§ x (n*())(v). O

We denote by A the opposite algebra of C.(7), that is, the product £n in A is defined
by &n =n €. Then we have

Em(n,m,z) = Y > &Gk +mo(n—j),a”* 8" ())n(n — j,m, ).
0<j<n k€eZ
We denote by Ay and Az the counting measures on N and Z respectively. Let u be a positive
regular Radon measure on X whose support is X. Moreover we suppose that u(X) = 1. We
define a measure A on 7 by A = Ay x Az x p. We denote by H the Hilbert space L(T, \).
For ¢ € A, define a linear map #(€) : Co(T) — C.(T) by #(&)n =n*&.

Lemma 2.3. There exists a positive number M such that |7(E)n||lg < M||n||g for every
neC(T).

Proof. Let K1 and K5 be finite sets of N and Z respectively such that the support of £ is
contained in K7 x Ko x X. Then we have

1/2
|(Em)(nym, )| < €]t (K1) (K2) | D xa (d)In(n = jym, x)?
0<j<n
This implies that [|7(§)nllr < #(K1)#(K2)||€]lolnll - O

It follows from the above lemma that one can extend 7(£) to a bounded operator on
H, which we denote again by 7(£). Then the map 7 : A— B(H) is a homomorphism of
algebras. We denote by A the quotient algebra A/ Ker 7 and denote by 7 the representation
of A on H corresponding to 7. Define a unitary operator U € B(H) by (U¢{)(n,m,z) =
§(n,m +1,2). We denote by A the C*-subalebra of B(H) generated by 7(A)U™ (m € Z).
Let Ag be the set of € € A such that the support of £ is contained in {0} xZ x X. For
¢ € Ao, the operator 7(€) satisfies

#®(E)m)(n,m,z) =Y &0,k + ma(n),a”* 5" (@)n(n, m, z)

kEZ

=3 €0,k a7 F B a™ (2))n(n, m, ).

kEZ

We denote by Ay the C*-subalgebra of A generated by 7(Ap).
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Lemma 2.4. The C*-algebra Ay is x-isomorphic to the C*-algebra C(X) of continuous
functions on X.

Proof. Note that Ker 7 is the set of £ € A such that Y omez §(n,m,a”™(x)) = 0 for every
neNand z € X. We define a map h : Ay — C(X) by h(€)(x) = > omez &(0,m, o (x)).
Let Ag be the subalgebra of A corresponding to Ao. Then there exists an isomorphism £
of Ag onto C(X) such that h([¢]) = h(€), where [€] € A is the class of £ € A. Since we
have ||w(R= ()| = ||| and 7(h=1(f))* = 7(h=1(f))), there exists a %-isomorphism % of
Ay onto C(X) such that h(w(a)) = h(a) for every a € Aj. O

3. BASIC PROPERTIES OF THE ASSOCIATED ALGEBRAS

Define V € B(H) by (V&)(n,m,x) = &(n+ 1,m,x) for £ € H and (n,m,z) € T. Note
that V* is an isometry, that is, VV* = I. Let a. and (. be automorphisms of C(X) defined
by a.(f)(x) = f(a™(z)) and B.(f)(z) = f(B71(x)) respectively for f € C(X) and z € X.
Let d,, and 6,, be Kronecker’s § on N and Z respectively. We have

(7 (65 X S X f))(/,m’,z) = fa™™ B "™ (z))n(n — n,m’, z)

if n/ > nand (7(8, X 6 X f)n)(n',m’,x) = 0if 0 < n’ < n—1, and we have h(J X J,, X f) =
a"(f). Therefore we have

([0 X 0m X f]) = (V)" m([00 X 0m x f])
= (V)"m(h= (o ()

We also have

n(h"H PV = Va(h™ (B(f)))-

For k € Z, define Vi, by Vi = VFif K > 0 and by Vi, = (V*)7% if k < 0 and define
a projection ey of B(H) by e = I if k > 0 and e, = (V*)"*V =k if k < 0. Then we
have Vjer = ej1iV; and V;Vi, = Vjipe_y for j, k € Z. For k € Z, define an injective
s-homomorphism 7, of C(X) to A by

(ﬂ_k(f)g)(nvmvx) = f(ﬂnam_k(x))g(nvmvx)
for f € C(X), £ € H and (n,m,z) € T. Then we have m(h=1(f)) = mo(f) and U *m;(f)U* =

Tj+x(f). We denote by A the dense x-subalgebra of A generated algebraically by w(A)U™
(m € Z) and denote by By the C*-subalgebra of A generated by 7, (C(X)) (k € Z). Then
every element of A is a finite sum of elements of the form eV, U™a with k,n,m € Z
and a € By. We denote by By the commutative C*-subalgebra of A generated by Bge,
(n € 7). Then every element of A is a finite sum of elements of the form V,U™a with
n,m € Z and a € Bj. For (t,s) € T?, define a unitary operator u(t,s) on H by
(u(t, 8)€)(n,m,z) = exp(—2mi(nt + ms))&(n,m,x) and define a homomorphism ¢ of T?
to Aut(A) by ¢ ) = Ad u( ). Then we have ¢y o (VoU™a) = exp(2mi(nt + ms))V,,U™a
for n,m € Z and a € Bj. Define a faithful conditional expectation E of A onto Bj by

E(x) = /11‘2 b(t,s) () dtds.

For x = V,,U™a with a € By, we have E(x) =0 if (n,m) # (0,0) and E(a) = a.
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4. A PROPERTY OF A COMMUTATIVE ALGEBRA

We denote by C,(7) the C*-algebra of bounded continuous functions on 7. For k € Z,
define an injective *-homomorohism & : C(X) — Cy(T) by

ki(f)(n,m,x) = f(B"a™ F(z))
for f € C(X) and (n,m,x) € T. We denote by C the C*-subalgebra of Cy(7) generated
by ki(C(X)) (k € Z). For n € N, define ¢,, € Cy(T) by ep(k,m,z) = 1if k > n and
en(k,m,x) = 0if k < n. We denote by C; the C*-subalgebra of Cy,(7) generated by Ce,
(n € N). For f € Cy, we have f(n,m + 1,2) = f(n,m,a(x)). Define a -isomorphism
pr of Cr onto By by (pr(f)€)(n,m,z) = f(n,m,z){(n,m,z) for f € Cr and £ € H. Set
Co = ko(C(X)). We have p;(C) = By and pr(Cy) = Ag. Define an automorphism u of
Cr by u(f)(n,m,z) = f(n,m + 1,z). For k € N, define a *-endomorhphism vj, of C; by
vg(f)(n,m,x) = f(n+k, m,z) and define a x-endomorphism v_j, of C; by v_i(f)(n,m,z) =
fn—k,m,z)if n > k and v_g(f)(n,m,xz) = 0if 0 < n < k. We consider the following
property, which is an analogue of the Rohlin property (cf. [2], Lemma VIIL.3.7). We say that
Cr has Property (R) if, for every K € N, there exist f; € C; with |f;|=1(j =1,---,N)

such that
N —_
> fivau™(F) =0

for n, m € Z with |n|, |m| < K and (n,m) # (0,0).

Proposition 4.1. Suppose that C; has Property (R). For every a € A and € > 0, there
exist fj € Cr with |f;| =1 (j =1,---,N) such that

2 |

N
Z (f)apr(fi)] <e.

Proof. We have V,U™p;(f) = pr(v,u™(f))V, U™ for f € C; and n,m € Z. Let a € A.
Then we have a = Zfﬁmz_K VU™, my With a(y, ) € Br. There exist functions f; € Cr

(j =1,---,N) which satisfy the equality in Property (R). Then we have
1 & _
N > pilf)apr(F;) = aq) = E(a).
j=1

Since A is dense in A, this completes the proof of the proposition. O

5. A MAXIMAL IDEAL OF A

In this section, we assume that Ct has Property (R). For a subset S of Cr, we say that
S is invariant if u(S) = S and vi(S) C S for every k € Z. For a non-trivial closed invariant
ideal S of C7, we say that S is a maximal closed invariant ideal if there is no non-trivial
closed invariant ideal which contains .S.

Lemma 5.1. Suppose that Cy has Property (R). Let J be a closed two-sided ideal of A.
Then E(J) is a subset of J. Moreover if S is a subset of Cr such that pr(S) = E(J), then
S is a closed invariant ideal of CT.

Proof. Since J is a closed two-sided ideal, it follows from Proposition 4.1 that E(z) is an
element of J for every x € J. Since F is a conditional expectation and py is an isomorphism,
S is an ideal of Cy. Since E(J) C J and J is closed, S is a closed subset. Since we have
pr(u(a)) = Upr(a)U* for a € Cp, we have u(S) = S. Since we have py(vi(a)) = Vipr(a)V_g
for a € C; and k € Z, we have v (S) C S. O
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Theorem 5.2. Suppose that C; has Property (R) and that there exists a mazimal closed
invariant ideal S of Cr. Then there exists a unique maximal closed two-sided ideal J of A
such that E(J) = p1(S).

Proof. Let J be the closed two-sided ideal of A generated by pr(S). For f € Sand g, h €
Cr, set a = pi(f), v = V,Upr(g) and y = VixU7pr(h). Then we have E(zay) = 0 if
(n+k,m+j)# (0,0) and we have E(zay) = pr((vpu™)(gf)e—rh) if (n+k,m+j) = (0,0).
Since S is an invariant ideal, E(zay) is an element of py(S). Since S is closed, this implies
that E(J) C p7(S). The reverse inclusion is clear. Therefore we have E(.J) = pr(S). Let Z
be the set of closed two-sided ideals .J' of A such that E(J') = p;(S). Note that .J belongs
to Z. Since 7 is an inductive set, it has a maximal element J. Since S is a maximal closed
invariant ideal, it follows from Lemma 5.1 that .J is a maximal closed two-sided ideal of A.
Let J’ be another maximal closed two-side ideal of A such that E(J') = p;(S). Let J” be
the closure of J 4+ J'. Then J” is a closed two-sided ideal of A such that E(J") = ps(S).

Since J” is non-trivial and J and J’ are maximal, we have J = J' = J". O

6. AN EXAMPLE

In this section, we discuss the case when X is the ring of p-adic integers. Let p be a
prime and Z, the ring of p-adic integers. As for the notations and facts related to p-adic
numbers, we refer the reader to [4, 9, 10]. For 0 € Z) and o € Z; N7Z with o # 1, we
define homeomorphisms «, 3 : Z, — Z, by a(x) = x+6 and 5(z) = oz respectively. Then
we have fa = 5. The action of « is minimal, that is, {a"(z);n € Z} is dense in Z, for
every x € Z,. For k € Z, let ki : C(Zy) — Cy(N x Z,,) be an injective *-homomorphism
defined by ki (f)(n,z) = f(B"a"*(z)) for f € C(Z,) and (n,z) € N x Z,. We denote by C
the C*-subalgebra of Cy(N x Z,,) generated by k,(C(Zy)) (k € Z). We set Cy = ko(C(Zy)).
For n € N, define ¢, € Cp(N x Z,,) by ep(k,z) = 1if &k > n and e,(k,x) = 0if k < n.
We denote by Cr the C*-subalgebra of Cy(N x Z,,) generated by C and {e,}. Note that
the C*-algebras C' and C] defined here are isomorphic to the algebras C' and Cj defined
in Section 4 respectively. Define an automorphism u of C; by u(f)(n,z) = f(n,a !(x)).
For k € N, define a *-endomorphism vy of C; by vi(f)(n,z) = f(n + k,z) and define a
s-endomorphism v_g of Cr by v_i(f)(n,x) = f(n —k,x) if n > k and by v_(f)(n,z) =0
if n < k — 1. Note that maps u, v, and v_j, defined here correspond to the maps u™!, vy
and v_j, defined in Section 4 respectively.

Let ny be the least positive integer such that o™ = 1 (mod p**1). Since ny_; is a divisor
of ng, (Z/nkZ)k>0 is a projective system in a natural way. We denote by G the projective
limit thZ/ ngZ. Since limg_, o ng = 00, G is a compact additive group which contains Z
as a dense subgroup. For k € N, define an equivalence relation ~j on N as follows; n ~j m
if and only if either n = m if n < nx — 1 or m > ng and n = m (mod ng) if n > ng.
We set Y, = N/ ~j and denote by [n]; the equivalence class of n in Y;. Define a map
Fr. 1Yy, — Yi_1 by Fi([n]k) = [n]k—1. Then (Yi, Fi)r>o0 is a projective system. We denote
by Y the projective limit {gl Y:. Note that Y is a 2nd countable compact Hausdorff space.
We denote by Q and () the spectra of C' and Ct respectively. For n € N and z € Z,,
define we, z) € Q by wi,2)(f) = f(n,2) for f € C. Define a map j : N x Z, — Q by
J(n,x) = Win,z)-

Proposition 6.1. The map j is injective and continuous and the image of j is dense in §2.

Proof. 1t is clear that j is continuous. We can show that the image of j is dense in ) as
in [12] §6.5. We show that j is injective. Suppose that w(, 4y = Wem.y) for (n,z), (m,y) €
N x Zp. Since we have w(, ) (kx(f)) = f(o"(x — k0)) for f € C(Zy) and k € Z, we
have o™(z — kf) = o™ (y — kO) for all k € Z. We have c"x = ¢™y when k£ = 0 and
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o"r — o™y = (6" —0™)0 when k = 1. Then we have ¢"~™ = 1. Since 0 # %1, we have
n=m and z = y. O

For k € N and a € Z/p**1Z, we denote by E((lk) the clopen set consisting of points x € Z,

such that = = a (mod pF*1) and by €™ the set of ES*) with a € Z/p*1Z. Let C(E®)
be the C*-subalgebra of C(Z,) generated by xg (E € £®), where y is the characteristic
function of E and let Cj, be the C*-subalgebra of C' generated by k,(C(E®)) (n € Z).
Then {C} is an increasing sequence whose union is dense in C. We denote by Qj the
spectrum of Cl.

Lemma 6.2. The spectrum Q, is identified with Z/nyZ x Z/p**+1Z.

Proof. For n € N and x € Z,, define wé:)m) € Q. by wgs)z)(f) = f(n,z) for f € Cy and
define a map ji : N x Z, — Q by jip(n,z) = wéfl)z). One can show that the image of
Jr is dense in Qj as in [12] §6.5. Since the equation jx(n,z) = ji(m,y) is equivalent to
the equations n = m (mod n) and z = y (mod pF*!), the image of ji. is identified with
Z/nyZ x Z)p**1Z. Since the image of jj, is finite and dense, jj is surjective. O

Theorem 6.3. The spectrum 2 is homeomorphic to G x Z, and the spectrum Sy is home-
omorphic to'Y X Zy.

Proof. Define a map 9y, : Q — Qg_1 by ¢r(w) = w|Ck_1, the restriction of w to Ck_1.
Then (Qg, ¥r)r>0 is a projective system. Set E = lim Q. Then E is the set of points

(w(k))kzo of [[;>0 2 such that w(w(k)) = w1, Define a map ¢y, : Q@ — Q, by or(w) =
w|Cy and define a map ¢ : Q — E by p(w) = (pr(w))k>0- It is clear that ¢ is injective
and continuous. Since  is compact, ¢(€2) is closed. We can also show that ¢(£2) is dense
in E. Therefore ¢ is surjective and E is homeomorphic to . It follows form Lemma 6.2
that F is identified with G x Z,,.

Let Cr be the C*-subalgebra of C; generated by Cy and eg,--- ,epn,. Then {Cr}
is an increasing sequence whose union is dense in C;. We denote by Qr; the spectrum
of Cr . Then Qy j is identified with Yj x Z/pk‘HZ. Since we have Qy = %iLnQ[,k, Qg is

homeomorphic to Y x Z,,. (|

We denote by uy : Y — Yy, and vy, : G — Z/niZ the canonical maps for the projective
limits ¥ = limYj and G = limZ/n,Z respectively. Define a map g, : Y — Z/niZ

by Gr([n]x) = [n]}, where [n]} is the equivalence class of n € N in Z/ntZ. There exists
a unique surjective continuous map ¢ : ¥ — G such that vyG = Ggur. Define a map
i: N — Y by i(n) = ([n]s)rso. Set ¥ = i(N) and Y = Y \'Y. Then Y is open and
dense in Y. We denote by h the restriction of § to dY. Then the map h : Y — G is
a homeomorphism of 9Y onto G. Define a map v, : Y — Yi by ve([n]x) = [n + 1
and amap v:Y — Y by v((zx)k>0) = (Ve(xk))k>0. Then  is injective and continuous.
Note that the restriction of v to Y is a homeomorphism of Y onto itself and that we have
h(y(x)) = h(z)+1 for z € Y. For a subset T of Y, we say that T is y-invariant if v(T) C T
and y~1(T') C T. The set 9Y is the unique non-trivial closed y-invariant subset of Y. Let
feCr=C xZ,) and (z,y) € Y x Z,. Then we have u(f)(z,y) = f(z,a 1(y)). If
k >0, then vi(f)(z,y) = f(v*(x),y). If k <0, then

k(g if x € Im %
ve(f)(z,y) = {5(7 (®).9) iixZim 1*’“7

We denote by S the subset of C; consisting of elements f such that f(x,y) = 0 for all
x € 0Y and y € Z,. Then the set S is the unique non-trivial closed invariant ideal of Cf.
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Lemma 6.4. The C*-algebra C; has Property (R).

Proof. For every k € N, we show that there exist 5§’“> € Cr i, with |§§k)| =1 (s=0,--+ ,ng—
1) such that

nkfl -

Y Mo, () =0

s=0
forn € Z with0 < |n| < ng. Let pu, : Y — Y}, be the canonical map. For j =0, -, 2n;—1,
set D; = p; ' ([j]x). Then {D;} is a partition of Y by clopen sets. We denote by a; the
characteristic function of D; x Z,. Then a; is an element of Crj. For j =0, -+ ,np — 1,

define b; € Cri by bj = aj + aj4n,. For |n| < ng — 1, we have (1) vn(b) = bj_, if
j—nr+1<n <7, (2) va(by) = bj—nin, 1fj+1<n<nk—1and (3) v n(b])fa],n if
—np+1<n<j—ng Set A =exp(2mv/—1/ni) and set

ng—1

= > Xy
§=0

for s=0,--- ,n — 1. If 0 < n < ng, we have

nkl

g(k) Z )\9(1+n)b

and we have
ni—1 nE—1

Z g(k) g(k) Z AT = ()
s=0

If —nx < n <0, we have

nE—1 nE—n—1
- Z )\S(jJrn)bj_,_ Z As(+n) g
Jj=-n J="nk
and we have
ng—1 ni—1 ng—1 nE—n—1
3 e, (V) = Z AN b+ > g | =0
5=0 Jj=—n J=ng

Similarly, we can show that there exist 77 ) € Cy, with |77tk)| =1 (t=0,---,p"1 - 1)
such that

+11
k k
Z"() ) =0

for m € Z with 0 < |m| < pF*1. For K € N, we choose k to be K < min{ng, p**1}. Then
we can take the family of functions f; (1 <j < npp®*t1) to be fgk)nt(k) (0<s<np—1,0<
t<phtl —1). O

Let A be the C*-algebra associated with the trinary relation arising from the homeomor-
phisms « and g introduced in this section. By virtue of Theorem 5.2, we have the following
theorem.

Theorem 6.5. Let A be the C*-algebra as above and let S be the unique non-trivial closed

invariant ideal of Cr. Then there exists a unique maximal closed two-sided ideal J of A
such that E(J) = pr(S).

Remark. We do not know whether J is the unique maximal closed two-sided ideal of A
or not.
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