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Abstract. In the present paper, we initiate a study of a concept of amenability for
discrete semigroups S with identity called strict inner amenability. We first study
the relations between the concepts inner amenability, strict inner amenability, and
amenability of S. We then introduce some suitable tools and properties to give several
characterizations of strict inner amenability of S such as Reiter’s condition and Følner’s
condition. We also offer a characterization of strict inner amenability in terms of a
fixed point property. As applications of these results to discrete groups G, we obtain
a number of equivalent statements describing strict inner amenability of G.

1 Introduction Throughout this paper, S denotes a discrete semigroup. We denote
by �∞(S) the set of all complex-valued bounded functions on S, and by 1A ∈ �∞(S) the
characteristic function of a subset A of S. Then �∞(S) with the complex conjugation as
involution, the pointwise operations and the sup-norm ‖.‖∞ is a commutative C∗-algebra
with identity 1 := 1S.

Also, for 1 ≤ p <∞, let �p(S) denote the Banach space of all complex-valued functions
ϕ on S such that

‖ϕ‖p :=

(∑
x∈S

|ϕ(x)|p
)1/p

<∞.

Then �1(S) with the convolution multiplication defined by

(ϕ ∗ ψ)(x) =
∑

y∈S,x=yz

ϕ(y) ψ(z) (x ∈ S)

is a Banach algebra. Let us recall that every ϕ ∈ �p(S) is of the form

ϕ =
∑
x∈S

ϕ(x) δx,

where δx denotes the Dirac measure at x ∈ S.
A mean on �∞(S) (or simply on S) is a positive functional m on �∞(S) with norm one;

m is called invariant if
m(xf) = m(fx) = m(f)

for all x ∈ S and f ∈ �∞(S), where xf and fx are defined on S by

xf(y) = f(xy) and fx(y) = f(yx)
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for all y ∈ S. The semigroup S is called amenable if there is an invariant mean on �∞(S).
We refer the reader to Day [4] for an introductory exposition on amenable semigroup; see
also Namioka [13].

A mean m on �∞(S) is said to be inner invariant if

m(xf) = m(fx)

for all x ∈ S and f ∈ �∞(S). Following Ling [12], S is called inner amenable if there is an
inner invariant mean on �∞(S).

In the case where S has an identity e, clearly δe as a functional on �∞(S) is an inner
invariant mean, and hence S is inner amenable; in particular, discrete groups are always
inner amenable. So, all of the interesting statements equivalent to inner amenability of
discrete semigroups obtained in [12] are automatically true for S and of course for discrete
groups. This motivates us to consider means on �∞(S) that are not equal to δe.

We say that a discrete semigroup S with identity e is strictly inner amenable if there is
an inner invariant mean m on �∞(S) such that m �= δe.

Note that if G is a discrete group, then a mean m is inner invariant if and only if

m(xfx−1) = m(f)

for all x ∈ G and f ∈ �∞(G), where xfx−1(y) = f(xyx−1) for all y ∈ G. The study of strict
inner amenability for discrete groups was initiated by Effros [10] and pursued by Akemann
[2], H. Choda and M. Choda [3], M. Choda [4, 5, 6], Choda and Watatani [7], Kaniuth
and Markfort [11], Paschke [14], and Watatani [15]. However, strict inner amenability of
discrete semigroups has not been touched so far.

Our purpose in this paper is to initiate a study of strict inner amenability of a discrete
semigroup S with identity. In Section 2, we first have shown that the concept of strict inner
amenability is stronger than inner amenability and weaker than amenability. We then have
introduced a suitable subspace of �∞(S) to recover some classical characterizations for strict
inner amenability of S. Section 3 is devoted to a Reiter’s condition describing strict inner
amenability. In Section 4, we have characterized strict inner amenability in terms of a fixed
point property. Finally, in Section 5, we have investigated some Følner’s conditions for
strict inner amenability under some cancellative properties on S.

2 The general results We begin this section with the following result.

Proposition 2.1 Let S and T be semigroups with identity. If S is strictly inner amenable,
then S × T is strictly inner amenable.

Proof. Let e and e′ denote the identities of S and T respectively. Let n be an inner invariant
mean on �∞(S) with n �= δe. For each f ∈ �∞(S × T ) and t ∈ T , define p(t)f ∈ �∞(S) by

(p(t)f)(s) = f(s, t)

for all s ∈ S. It follows that

p(e′)((x,y)f ) = x(p(y)f) and p(e′)(f(x,y)) = (p(y)f)x

for all x ∈ S and y ∈ T . Now, define the mean m on �∞(S × T ) by

m(f) = n(p(e′)f) (f ∈ �∞(S × T )).
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Then for each x ∈ S and y ∈ T ,

m((x,y)f) = n(p(e′)((x,y)f)) = n(x(p(y)f))
= n((p(y)f)x)) = n((p(e′)(f(x,y)))
= m(f(x,y)).

That is m is inner invariant mean.
Furthermore, m �= δ(e, e′ ). Indeed, we have n(h) �= h(e) for some h ∈ �∞(S). Now,

define the function f ∈ �∞(S × T ) by f(s, t) = h(s) for all s ∈ S and t ∈ T . Therefore
m(f) = n(h) �= h(e) = f(e, e′ ) as required. �

Remark 2.2 (a) It is easy to see that any amenable non-trivial semigroup with identity,
is strictly inner amenable. But the converse is not true in general. In fact, there exists an
extensive family of strictly inner amenable semigroups with identity which are not amenable.
Indeed, let S be a strictly inner amenable semigroup with identity; for example a discrete
semigroup with non-trivial center. Then for every non-amenable semigroup T with identity,
S×T is not amenable; see for example [8], page 515. Now invoke Proposition 2.1 to conclude
that S × T is strictly inner amenable.

(b) The strictly inner amenable semigroups with identity form a proper subclass of inner
amenable semigroups. For example, let S be a set with at least three elements and choose
e ∈ S. Then S with the multiplication defined by xy = x for all x, y ∈ S − {e} and
xe = ex = x for all x ∈ S is an inner amenable semigroup with identity e which is not
strictly inner amenable.

Proposition 2.3 Let S be an inner amenable semigroup. Suppose that T is a semigroup
with identity e which is not strictly inner amenable and σ is a homomorphism from S onto
T . Then m(f) = m(f1σ−1({e})) for all inner invariant means m on �∞(S) and f ∈ �∞(S).

Proof. For each s, a ∈ S and g ∈ �∞(T ) we have

[(σ(s)g − gσ(s)) ◦ σ](a) = g(σ(s)σ(a)) − g(σ(a)σ(s))
= g(σ(sa) − g(σ(as))
= (g ◦ σ)(sa) − (g ◦ σ)(as)
= s(g ◦ σ)(a)) − (g ◦ σ)s(a).

That is
(σ(s)g − gσ(s)) ◦ σ =s (g ◦ σ) − (g ◦ σ)s.

Now, suppose m is an inner invariant mean on �∞(S). Then the mean n : g �→ m(g ◦ σ)
is inner invariant on �∞(T ); indeed, for each s ∈ S we have

n(σ(s)g − gσ(s)) = n(s(g ◦ σ) − (g ◦ σ)s) = 0.

Since σ is onto, this implies that n is inner invariant. Thus n = δe. This implies that

m(1σ−1({e})) = m(1{e} ◦ σ) = n(1{e}) = 1

Therefore for any f ∈ �∞(S) we have

|m(f − f1σ−1({e}))| ≤ m(|f − f1σ−1({e})|)
≤ ‖f‖∞ m(1 − 1σ−1({e})) = 0
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That is m(f) = m(f1σ−1({e})) for all f ∈ �∞(S). �

As an immediate consequence of Proposition 2.3 we have the following improvement of
Lemma 1.2 of Kaniuth and Markfort [11].

Corollary 2.4 Let G and H be groups, e be the identity of H and σ be a homomorphism
from G onto H. If H is not strictly inner amenable, then

m(f) = m(f1σ−1({e}))

] for all inner invariant means m on �∞(G) and f ∈ �∞(G).

Let R be a congruence relation on S; that is, an equivalence relation R such that xt R yt
and tx R ty for all x, y, t ∈ S with x R y. We denote by S/R the semigroup of all equivalence
classes x/R (x ∈ S) induced by R with the usual operation

(x/R) (y/R) = xy/R (x, y ∈ S).

Corollary 2.5 Let S be a semigroup with identity e and R be a congruence relation such
that S/R is not strictly inner amenable. Then

m(f) = m(f1e/R)

for all inner invariant means m on �∞(S) and f ∈ �∞(S).

Proof. This follows from Proposition 2.3 together with the fact that the quotient map
π : S −→ S/R is an onto homomorphism. �

Before we give some characterizations of strict inner amenability, let us give a lemma.

Lemma 2.6 Let S be a semigroup with identity e. Then S is strictly inner amenable if
and only if there is an inner invariant mean m on �∞(S) with m(1{e}) = 0.

Proof. The “if” part is trivial. To prove the converse, suppose that S is inner amenable,
and let n be an inner invariant mean on �∞(S) not equal to δe. It follows that n(1{e}) < 1.
Now define the functional m on �∞(S) by

m(f) =
1

1 − n(1{e})
[ n(f) − n(1{e})f(e) ] (f ∈ �∞(S)).

Then m is an inner invariant mean on �∞(S) with m(1{e}) = 0. �

Let S be a semigroup. Let H(S) denote the complex linear span of functions of the form
xf − fx , where x ∈ S and f ∈ �∞(S). Also, let HR(S) denote the real linear space of all
real-valued functions in H(S).

Theorem 2.7 Let S be a semigroup with identity e. Then the following statements are
equivalent.

(a) S is strictly inner amenable.
(b) sup{h(x) : x ∈ S} ≥ 0 for all h ∈ HR(S) ⊕ R 1{e}.
(c) inf

{‖ 1 − h ‖∞: h ∈ H(S) ⊕ C 1{e}
}

= 1.
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Proof. (a)⇒(b). Suppose that m is an inner invariant mean on �∞(S) with m(1{e}) = 0.
Then

sup{h(x) : x ∈ S} ≥ m(h) = 0 for all h ∈ HR(S) ⊕ R 1{e}.

(b)⇒(c). It follows from 0 ∈ H(S) ⊕ C 1{e} that

inf
{‖1 − h‖∞ : h ∈ H(S) ⊕ C 1{e}

} ≤ 1.

If the equality does not hold, then

sup{−Re h(x) : x ∈ S} < 0

for some h ∈ H(S) ⊕ C 1{e}. Since

−Re h ∈ HR(S) ⊕ R 1{e},

this contradicts the assumption.
(c)⇒(a). By the Hahn-Banach theorem, there is a linear functional n on �∞(S) with

norm one such that n(H(S) ⊕ C 1{e}) = {0} and

n(1) = inf
{‖1 − h‖∞ : h ∈ H(S) ⊕ C 1{e}

}
.

It follows that if (c) holds, then n is an inner invariant mean on �∞(S) with n(1{e}) = 0.
�

Theorem 2.8 Let S be a left or right cancellative semigroup with identity e. Then S is
strictly inner amenable if and only if H(S) ⊕ C 1{e} is not norm dense in �∞(S).

Proof. The “only if” part is trivial. To prove the converse, choose a nonzero self-adjoint
functional n ∈ �∞(S)∗ such that

n(H(S) ⊕ C 1{e}) = {0}.

Then we may write n = n+ − n−, where

n+(f) = sup{n(g) : 0 ≤ g ≤ f}
n−(f) = − inf{n(g) : 0 ≤ g ≤ f}

for all f ∈ �∞(S) with f ≥ 0. Now the argument as in the proof of Theorem 2 of [12] shows
that n+ and n− are inner invariant positive functional on �∞(S). The result will follow if
we note that n(1{e}) = 0 and therefore n+(1{e}) = n−(1{e}) = 0. �

Corollary 2.9 Let G be a discrete group with identity e. Then the following statements
are equivalent.

(a) G is strictly inner amenable.
(b) sup{h(x) : x ∈ G} ≥ 0 for all h ∈ HR(G) ⊕ R 1{e}.
(c) inf

{‖ 1 − h ‖∞: h ∈ H(G) ⊕ C 1{e}
}

= 1.
(d) H(G) ⊕ C 1{e} is not norm dense in �∞(G).



342 B. MOHAMMADZADEH AND R. NASR-ISFAHANI

3 Reiter’s condition We commence with the following characterizations of strict inner
amenability called Reiter’s condition. First, let us recall that a mean in �1(S) is called a
finite mean if it is a convex combination of the Dirac measures.

Theorem 3.1 Let S be a semigroup with identity and 1 ≤ p < ∞. Then the following
statements are equivalent.

(a) S is strictly inner amenable.
(b) There exists a net (ϕα) of finite means such that ϕα(e) = 0 and

‖δx ∗ ϕα − ϕα ∗ δx‖1 −→ 0 (x ∈ S).

(c) There exists a net (φα) in �p(S) with ‖φα‖p =
∑

x∈S φα(x)p = 1 such that φα(e) = 0
and

‖δx ∗ φα − φα ∗ δx‖p −→ 0 (x ∈ S).
Proof. (a) ⇒ (b). Suppose that there is an inner invariant mean m on �∞(S) such that
m �= δe. Since the finite means are weak∗ dense in the set of means, we can find a net (ξβ)
of finite means such that

δx ∗ ξβ − ξβ ∗ δx −→ 0 (x ∈ S)

in the weak∗ topology of �∞(S)∗, the dual of �∞(S). Since m(1{e}) = 0, we may assume
that ξβ(e) = 0 for all β. Now, by a standard argument, we can obtained a net (ϕα) such
that every ϕα is a convex combination of the elements of (ξβ) and

‖δx ∗ ϕα − ϕα ∗ δx‖1 −→ 0 (x ∈ S).

Clearly ϕα(e) = 0 for all α.
(b) ⇒ (c). For every α, set φα = ϕ

1/p
α and note that

‖φα‖p =
∑
x∈S

φα(x)p = 1 and φα(e) = 0.

Furthermore, for each x ∈ S we have

‖δx ∗ φα − φα ∗ δx‖p ≤ ‖δx ∗ ϕα − ϕα ∗ δx‖1/p
1 −→ 0.

(c) ⇒ (a). Since for every x ∈ S,

‖δx ∗ φp
α − φp

α ∗ δx‖ = ‖(δx ∗ φα − φα ∗ δx)p‖1

= ‖δx ∗ φα − φα ∗ δx‖p
p −→ 0.

it follows that
δx ∗ φp

α − φp
α ∗ δx −→ 0

in the weak∗ topology of �∞(S)∗. On the other hand, ‖φp
α‖1 = 1, φp

α ≥ 0 and φp
α(e) = 0

for each α. Therefore any weak∗ cluster point of (φp
α) is an inner invariant mean with

m �= δe. �

Let G be a discrete group and f ∈ �∞(G). Then f∗ ∈ �∞(G) is defined by

f∗(x) = f(x−1) (x ∈ G).

Recall that a mean m on �∞(G) is symmetric if

m(f∗) = m(f) (f ∈ �∞(G)).



INNER INVARIANT MEANS ON DISCRETE SEMIGROUPS WITH IDENTITY 343

Theorem 3.2 Let G be a discrete group with identity e and 1 ≤ p <∞. Then the following
statements are equivalent.

(a) G is strictly inner amenable.
(b) There exists a net (ψα) of symmetric finite means such that ψα(e) = 0 and

‖δx ∗ ψα − ψα ∗ δx‖1 −→ 0 (x ∈ G).

(c) There exists a net (ψα) in �p(G) with ‖ψα‖p =
∑

x∈S ψα(x)p = 1 and ψα = ψ∗
α such

that ψα(e) = 0 and
‖δx ∗ ψα − ψα ∗ δx‖p −→ 0 (x ∈ G).

(d) There exists a symmetric inner invariant mean m on �∞(G) such that m(1{e}) = 0.

Proof. Suppose that S is strictly inner amenable. By Theorem 3.1, there exists a net (ϕα)
of finite means such that ϕα(e) = 0 and

‖δx ∗ ϕα − ϕα ∗ δx‖1 −→ 0 (x ∈ G).

So if we put ψα = 2−1(ϕα + ϕ∗
α), then ψα is a symmetric finite mean, ψα(e) = 0 and

‖δx ∗ ψα − ψα ∗ δx‖1 −→ 0 (x ∈ G).

That is (b) holds. The other implications are trivial. �

4 A fixed point property Let S be a semigroup and let us point out that �∞(S) can
be considered as the dual space �1(S)∗ of �1(S) under the duality given by

f(ϕ) =
∑
x∈S

f(x) ϕ(x) (f ∈ �∞(S), ϕ ∈ �1(S) ).

Furthermore, �∞(S)∗ is a Banach algebra with the first Arens product  defined by the
equations

(m n)(f) = m(nf)
(nf)(ϕ) = n(fϕ),
(fϕ)(ψ) = f(ϕ ∗ ψ)

for all m,n ∈ �∞(S)∗, f ∈ �∞(S), and ϕ,ψ ∈ �1(S); see Arens [1].
Let B(�∞(S)∗) denote the Banach space of bounded linear operators on �∞(S)∗. For

every ϕ ∈ �1(S), define the operator Tϕ ∈ B(�∞(S)∗) by

Tϕ(m) = ϕm (m ∈ �∞(S)∗).

and set Tx := Tδx for all x ∈ S.
By weak∗ operator topology on B(�∞(S)∗), we shall mean the locally convex topology

determined by the family

{q(m, f) : m ∈ �∞(S)∗, f ∈ �∞(S)}

of seminorms on B(�∞(S)∗), where

q(m, f)(T ) = |T (m)(f)| (T ∈ B(�∞(S)∗)).
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We denote by P(�∞(S)∗) the closure of the set{
Tϕ : ϕ ∈ �1(S), ‖ϕ‖1 =

∑
x∈S

ϕ(x) = 1

}
in the weak∗ operator topology of B(�∞(S)∗). Note that Te ∈ P(�∞(S)∗) is the identity
operator on �∞(S)∗, and that P(�∞(S)∗) is a subsemigroup of the semigroup B(�∞(S)∗)
with the ordinary multiplication of linear operators.

Theorem 4.1 Let S be a semigroup with identity e. Then the following assertions are
equivalent.

(a) S is strictly inner amenable.
(b) There exists T ∈ P(�∞(S)∗) with T �= Te such that TxT = TTx for all x ∈ S.

Proof. The operator algebra B(�∞(S)∗) can be identified with the dual space (�∞(S)∗⊗̂�∞(S))∗

of the projective tensor product �∞(S)∗⊗̂�∞(S) in a natural way; see for example Corollary
VIII.2.2 of [9]. In particular, the weak∗ operator topology of B(�∞(S)∗) coincides with
the weak∗ topology of (�∞(S)∗ ⊗ �∞(S))∗ on bounded subsets of B(�∞(S)∗), and therefore
P(�∞(S)∗) is compact in the weak∗ operator topology of B(�∞(S)∗) by the Banach-Alaoglu
theorem.

Now, suppose that S is strictly inner amenable. Using Theorem 3.1, there exists a net
(ϕα) of finite means such that ϕα(e) = 0 and

‖ ϕα ∗ δx − δx ∗ ϕα ‖1−→ 0

for all x ∈ S. It follows that there is a subnet (ϕβ) of (ϕα) such that Tϕβ
−→ T in the

weak∗ operator topology for some T ∈ P(�∞(S)∗) with ‖ T ‖≤ 1. Thus, on the one hand,
for each x ∈ S we have

‖ Tϕβ
Tx − TxTϕβ

‖≤‖ ϕβ ∗ δx − δx ∗ ϕβ ‖1−→ 0,

and on the other hand
Tϕβ

Tx −→ TTx

and
TxTϕβ

−→ TxT

in the weak∗ operator topology. This shows that TTx = TxT . Furthermore,

Tϕβ
(δe)(1{e}) = ϕβ(1{e}) = ϕβ(e) = 0.

for all β from which it follows that T (δe)(1{e}) = 0. In particular, T �= Te.
Conversely, suppose that (b) holds and choose an element T of P(�∞(S)∗) such that

T �= Te and TTx = TxT for all x ∈ S. To prove (a), choose a net (ϕα) in �1(S) with

‖ϕα‖1 =
∑
x∈S

ϕα(x) = 1

such that Tϕα −→ T in the weak∗ operator topology of B(�∞(S)∗). Let m be a weak∗

cluster point of (ϕα) in �∞(S)∗. We show that m is an inner invariant mean on �∞(S) with
m �= δe. It is clear that m is a mean. Also, for each x ∈ S we have

(Tϕαδx)(f) = (ϕα  δx)(f)
= ϕα(δxf)
→ m(δxf)
= (m δx)(f)
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and hence T (δx) = mδx. This together with that T �= Te shows thatm �= δe. Furthermore,
for each f ∈ �∞(S) and x ∈ S we have

m δx = T (δx)
= T (δx  δe)
= T (Txδe)
= Tx(Tδe)
= Tx(m δe)
= Txm

= δx m.

It follows that m is also inner invariant. �

Recall that a discrete group G satisfies Kazhdan’s property T if the trivial representation
is isolated in the dual space Ĝ of equivalence classes of irreducible unitary representations of
G endowed with the Jacobson topology; this property, presented by Kazhdan in 1968, has
important applications to discrete groups. G is said to be an ICC group, if {xyx−1 : x ∈ G}
is infinite for all y ∈ G \ {e}.
Corollary 4.2 Let G be an ICC discrete group with identity e. If there exists T ∈
P(�∞(G)∗) with T �= Te such that TxT = TTx for all x ∈ G, then G does not satisfy
Kazhdan’s property T.

Proof. If G has Kazhdan’s property T, then δe is the only inner invariant mean on �∞(G)
by Theorem 1.1 of [11]. Now apply Theorem 4.1. �

5 Følner’s condition Our results in this section give some characterizations of strict
inner amenability known as Følner’s condition. In the following, we denote the cardinal
number of a set A by |A|.
Proposition 5.1 Let S be a right cancellative semigroup with identity e. Then S is strictly
inner amenable if for every finite set F ⊆ S and ε > 0, there exists a finite nonempty set
A ⊆ S \ {e} such that |Ax \ xA| < ε|A| for all x ∈ F .

Proof. By the assumption, there exists a net of finite nonempty sets Aα ⊆ S with e /∈ Aα

such that
|Aαx \ xAα|/|Aα| −→ 0 (x ∈ S).

By Lemma 9 of [12] we have

‖1Aα ∗ δx − δx ∗ 1Aα‖1 = |Aαx \ xAα|.
Set ϕα = |Aα|−11Aα . Then ϕα(e) = 0 for each α and

‖δx ∗ ϕα − ϕα ∗ δx‖1 −→ 0 (x ∈ S).

Now the proof is complete by Theorem 3.1. �

Theorem 5.2 Let S be a cancellative semigroup with identity e. Then S is strictly inner
amenable if and only if for every finite set F ⊆ S and ε > 0, there is a finite nonempty set
A ⊆ S \ {e} such that |Ax∆xA| < ε|A| for all x ∈ F .
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Proof. The “if” part follows from Proposition 5.1 and its dual together with the fact that
for any A ⊆ S,

|Ax∆xA| = |Ax \ xA| + |xA \Ax|.
Conversely, suppose that S is strictly inner amenable. By Theorem 3.1, for every finite

subset F of S and ε > 0, there exist a finite mean ϕ with ϕ(e) = 0 such that

|F | ‖δx ∗ ϕ− ϕ ∗ δx‖1 < ε

for all x ∈ F . We know from [8] that ϕ is of the form

ϕ =
n∑

i=1

ri |Ai|−1 1Ai

for some nonempty finite subsets A1, ..., An with A1 � ... � An and positive numbers
r1, ..., rn with r1 + ...+ rn = 1. By Lemma 13 of [12] we have

‖δx ∗ ϕ− ϕ ∗ δx‖1 =
n∑

i=1

ri |Ai|−1 |Aix∆xAi| (x ∈ S).

It follows that
n∑

i=1

∑
x∈F

ri |Ai|−1 |Aix∆xAi| < ε.

Therefore there is 1 ≤ i0 ≤ n such that

|Ai0x∆xAi0 | < ε|Ai0 |

for all x ∈ F . Since ϕ(e) = 0 we have e /∈ Ai0 and the proof is complete. �

Before stating our last result, recall that a subset A of a group G is symmetric if
A = {x−1 : x ∈ A}.

Theorem 5.3 Let G be a discrete group with identity e. Then G is strictly inner amenable
if and only if for every finite set F ⊆ S and ε > 0, there is a finite nonempty symmetric
set A ⊆ S \ {e} such that |Ax∆xA| < ε|A| for all x ∈ F .

Proof. First recall from Lemma 18 of [12] that if

ϕ =
n∑

i=1

ri |Ai|−1 1Ai

is a symmetric finite mean, then the sets Ai are symmetric. So an argument similar to the
proof of Theorem 5.2 by the aid of Theorem 3.2 instead of Theorem 3.1 gives the result. �
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