
Scientiae Mathematicae Japonicae Online, e-2006, 329–336 329

ON BRANCHES IN POSITIVE IMPLICATIVE
BCI-ALGEBRAS WITH CONDITION (S)
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Abstract. In this paper we show that given a positive implicative BCI-algebra X
with condition (S), every branch V (a) of X with respect to the BCI-ordering � on
X forms an upper semilattice (V (a); �); especially, if V (a) is a finite set, (V (a); �)
forms a lattice; moreover, if (V (a); �) is a lattice, it must be distributive. We also
obtain some interesting identities on V (a).

K. Iséki and S. Tanaka in [7] discussed more systematically positive implicative BCK-
algebras. The author in [3] considered the relations between lattices and positive implicative
BCK-algebras with condition (S).

In order to generalize the positive implicativity from BCK-algebras to BCI-algebras, J.
Meng and X. L. Xin in [9] introduced positive implicative BCI-algebras, M. A. Chaudhry in
[1] introduced weakly positive implicative BCI-algebras. Based on [1], S. M. Wei and Y. B.
Jun in [10] investigated a series of properties of weakly positive implicative BCI-algebras.
Based on [9], the author in [4] showed that positive implicative BCI-algebras are equivalent
to weakly positive implicative BCI-algebras, and obtained some further properties of theirs.

In this paper we will continue our discussion of [3], [4] and [10]. We will first consider
the relations between lattices and the branches of a positive implicative BCI-algebra with
condition (S), and next give several interesting identities on such a branch.

0 Preliminaries For the notations and elementary properties of BCK and BCI-algebras,
we refer the reader to [7], [6] and [8]. And we will use some familiar notions and properties
of lattices without explanation.

Recall that given a BCI-algebra (X ; ∗, 0), the following identities hold:

x ∗ x = 0, x ∗ 0 = x and (x ∗ y) ∗ x = 0 ∗ y,

(x ∗ y) ∗ z = (x ∗ z) ∗ y, (0.1)
0 ∗ (x ∗ y) = (0 ∗ x) ∗ (0 ∗ y). (0.2)

And X with respect to its BCI-ordering � forms a partially ordered set (X ; �) satisfying
the following quasi-identities:

(x ∗ y) ∗ (x ∗ z) � z ∗ y, (0.3)
(x ∗ z) ∗ (y ∗ z) � x ∗ y, (0.4)

x ∗ (x ∗ y) � y, (0.5)
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where the binary relation � on X is defined as follows: x � y if and only if x ∗ y = 0.
Moreover, the following assertions are valid: for any x, y, z ∈ X ,

x � y implies z ∗ y � z ∗ x, (0.6)
x � y implies x ∗ z � y ∗ z, (0.7)
x ∗ y � z implies x ∗ z � y. (0.8)

A branch V (a) of a BCI-algebra X is such set {x ∈ X | x � a} in which a is a minimal
element of X in the sense that x � a implies x = a for all x ∈ X . It has been known (see,
e.g., [8], §1.3) that the collection {V (a) | a ∈ L(X)} of branches of X forms a partition of
X , that is, X =

⋃
a∈L(X) V (a) and V (a)∩V (b) = ∅ whenever a �= b, where L(X) is the set

of the entire minimal elements of X . And the following assertions are true:
x ∈ V (a) implies 0 ∗ x = 0 ∗ a, (0.9)
x ∈ V (a) and y ∈ V (b) imply x ∗ y ∈ V (a ∗ b), (0.10)
x � y implies that x and y are in the same branch of X . (0.11)

It has been known (see, e.g., [8], §2.8) that a BCI-algebra X is with condition (S) if
and only if there is a binary operation ◦ on X such that (X ; ◦, 0) is a commutative monoid
satisfying the identity

x ∗ (y ◦ z) = (x ∗ y) ∗ z. (0.12)

Moreover, if X is with condition (S), the following hold: for any x, y, z ∈ X ,
(x ◦ y) ∗ x � y, (0.13)
x ∗ y � z if and only if x � y ◦ z. (0.14)

A BCI-algebra X is called positive implicative if it satisfies the identity

(x ∗ (x ∗ y)) ∗ (y ∗ x) = x ∗ (x ∗ (y ∗ (y ∗ x)));
it is called weakly positive implicative if it satisfies the identity

(x ∗ y) ∗ z = ((x ∗ z) ∗ z) ∗ (y ∗ z). (0.15)
It is known (see, [4], Theorem 2) that a BCI-algebra is positive implicative if and only if it
is weakly positive implicative. Thus, if X is positive implicative, (0.15) is valid. Replacing
y by 0 and z by y in (0.15), the following holds: for any x, y ∈ X ,

x ∗ y = ((x ∗ y) ∗ y) ∗ (0 ∗ y). (0.16)

Moreover, if y is in the branch V (b) of X , by (0.16) and (0.9), we obtain
x ∗ y = ((x ∗ y) ∗ y) ∗ (0 ∗ b). (0.17)

Proposition 0.1. Let V (a) be a branch of a positive implicative BCI-algebra X. Then the
following is true: for any x ∈ V (a),

x = (x ∗ a) ∗ (0 ∗ a), (0.18)
or equivalently, x = (x ∗ (0 ∗ a)) ∗ a. (0.19)

Proof. For any x ∈ V (a), we have (x ∗ a) ∗ (0 ∗ a) � x by (0.4). Denote

u = (x ∗ a) ∗ (0 ∗ a).
Then u � x. So, by (0.11) and (0.9), we obtain u ∈ V (a) and 0 ∗ u = 0 ∗ a. Also, by (0.4)
and (0.5), the following holds:

(x ∗ (0 ∗ a)) ∗ ((x ∗ a) ∗ (0 ∗ a)) � x ∗ (x ∗ a) � a.

Since u = (x ∗ a) ∗ (0 ∗ a) and 0 ∗ u = 0 ∗ a, it follows (x ∗ (0 ∗ u)) ∗ u � a. Then the face
that a is a minimal element of X gives (x ∗ (0 ∗ u)) ∗ u = a. So, by u ∈ V (a) (i.e., a � u),
we derive

((x ∗ (0 ∗ u)) ∗ u) ∗ u = a ∗ u = 0.
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Hence ((x ∗ u) ∗ u) ∗ (0 ∗ u) = 0 by (0.1). Thus (0.16) implies x ∗ u = 0, i.e., x � u. In
addition, u � x. Therefore x = u. We have shown that x = (x ∗ a) ∗ (0 ∗ a), in other words,
x = (x ∗ (0 ∗ a)) ∗ a by (0.1).

1 Relations between lattices and branches Let’s begin our discussion with vari-
ous relations between lattices and the branches of a positive implicative BCI-algebra with
condition (S).

Theorem 1.1. Let X be a positive implicative BCI-algebra with condition (S). Then every
branch V (a) of X with respect to the BCI-ordering � on X forms an upper semilattice
(V (a); �) with x ∨ y = (x ◦ y) ∗ a for any x, y ∈ V (a).

Proof. For any x, y ∈ V (a), by (0.12) and (0.9), we have
x ∗ (x ◦ y) = (x ∗ x) ∗ y = 0 ∗ y = 0 ∗ a.

Then (0.14) and the commutativity of ◦ give
x � (x ◦ y) ◦ (0 ∗ a) = (0 ∗ a) ◦ (x ◦ y).

So, (0.7) and (0.13) imply
x ∗ (0 ∗ a) � ((0 ∗ a) ◦ (x ◦ y)) ∗ (0 ∗ a) � x ◦ y.

Using (0.7) once more, it follows (x∗ (0∗a))∗a � (x◦ y)∗a. Hence x � (x◦ y)∗a by (0.19).
Similarly, y � (x ◦ y) ∗ a. It is easy to see from (0.11) that (x ◦ y) ∗ a ∈ V (a). Therefore
(x ◦ y) ∗ a is an upper bound of x and y. Next, let u ∈ V (a) be any upper bound of x and
y. Then x � u and y � u. By x � u and (0.6), we obtain (x ◦ y) ∗ u � (x ◦ y) ∗ x. By (0.13)
and y � u, the following holds: (x ◦ y) ∗ x � y � u. Comparison gives (x ◦ y) ∗ u � u, i.e.,
((x ◦ y) ∗ u) ∗ u = 0. So,

((x ◦ y) ∗ a) ∗ u = ((((x ◦ y) ∗ a) ∗ u) ∗ u) ∗ (0 ∗ a) [by (0.17)]
= ((((x ◦ y) ∗ u) ∗ u) ∗ a) ∗ (0 ∗ a) [by (0.1)]
= (0 ∗ a) ∗ (0 ∗ a) = 0.

Hence (x ◦ y) ∗ a � u. We have shown that (x ◦ y) ∗ a is the least upper bound of x and y.
Therefore (V (a); �) is an upper semilattice with x ∨ y = (x ◦ y) ∗ a.

It is known that the zero element is the only minimal element of a BCK-algebra.

Corollary 1.2 ([5], Theorem 1). If X is a positive implicative BCK-algebra with condi-
tion (S), then (X ; �) forms an upper semilattice with x ∨ y = x ◦ y for any x, y ∈ X.

It is interesting that if the branch V (a) in Theorem 1.1 is a finite set, we have a nice
result as follows.

Proposition 1.3. Let V (a) be a branch of a positive implicative BCI-algebra X with con-
dition (S). If V (a) is a finite set, then (V (a); �) forms a lattice.

Proof. From Theorem 1.1, (V (a); �) is an upper semilattice, and we only need to prove
that (V (a); �) is a lower semilattice. For any x, y ∈ V (a), let Ω denote the set consisting
of the whole lower bounds of x and y. Then Ω is nonempty by a ∈ Ω. It is easily seen from
(0.11) that Ω ⊆ V (a). Now, since V (a) is a finite set, so is Ω. There is no harm in assuming
Ω = {b1, b2, · · ·, bn}. Put b = b1 ∨ b2 ∨ · · ·∨ bn. It is not difficult to verify that b is just the
greatest lower bound of x and y. Therefore (V (a); �) is a lower semilattice.

However, if V (a) is an infinite set, Proposition 1.3 is false. In fact, a counter example
has been given in Example 3 of [3]. That is because every BCK-algebra X is a BCI-algebra
with the condition V (0) = X .
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In the following let’s turn to consider the distributivity of (V (a); �) if (V (a); �) is a
lattice.

Theorem 1.4. Let V (a) be a branch of a positive implicative BCI-algebra X with condition
(S). If (V (a); �) is a lattice, it must be distributive.

Proof. From lattice theory, a lattice is distributive if and only if it contains neither a rhom-
bus sublattice nor a pentagon sublattice (see, e.g., [2]). Now, if our assertion is not true,
the lattice (V (a); �) contains either a rhombus sublattice or a pentagon sublattice whose
Hasse diagrams are respectively assumed as follows.
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As to the first diagram, it is easy to see from Theorem 1.1 that
u = x ∨ y = (x ◦ y) ∗ a.

Then (0.4) and (0.13) together give
u ∗ (x ∗ a) = ((x ◦ y) ∗ a) ∗ (x ∗ a) � (x ◦ y) ∗ x � y.

In a similar fashion we can prove u ∗ (x ∗ a) � z. So, u ∗ (x ∗ a) � y ∧ z. Observing our
diagram, we have y ∧ z = e. Hence u ∗ (x ∗ a) � e. Thus u ∗ e � x ∗ a by (0.8). Thereby
(0.7) implies that (u ∗ e) ∗ x � (x ∗ a) ∗ x, namely, (u ∗ x) ∗ e � 0 ∗ a. It follows from (0.12)
that u ∗ (x ◦ e) � 0 ∗ a. Therefore u ∗ (0 ∗ a) � x ◦ e by (0.8). Now, using (0.7) once more,
we obtain

(u ∗ (0 ∗ a)) ∗ a � (x ◦ e) ∗ a,

which means from (0.19) and Theorem 1.1 that u � x ∨ e. Note that e � x, we have
x ∨ e = x. Hence u � x, a contradiction with u > x.

As to the second diagram, we have (y ◦ z) ∗ a = y ∨ z = u by Theorem 1.1. Then

((x ∗ a) ∗ a) ∗ ((y ◦ z) ∗ a) = ((x ∗ a) ∗ a) ∗ u = ((x ∗ u) ∗ a) ∗ a. (1.1)

By (0.15), the left side of (1.1) is equal to (x ∗ (y ◦ z)) ∗ a; by x � u, the right side to
(0 ∗ a) ∗ a. So, (x ∗ (y ◦ z)) ∗ a = (0 ∗ a) ∗ a. Hence

((x ∗ (y ◦ z)) ∗ a) ∗ (0 ∗ a) = ((0 ∗ a) ∗ a) ∗ (0 ∗ a) = 0 ∗ a.

Also, by (0.1) and (0.18), the following holds:
((x ∗ (y ◦ z)) ∗ a) ∗ (0 ∗ a) = ((x ∗ a) ∗ (0 ∗ a)) ∗ (y ◦ z) = x ∗ (y ◦ z).

Comparison gives x∗ (y ◦ z) = 0 ∗a. Thus (x∗ y)∗ z = 0 ∗a by (0.12). Thereby (0.8) implies
(x ∗ y) ∗ (0 ∗ a) � z. On the other hand, by (0.9) and (0.4), we have

(x ∗ y) ∗ (0 ∗ a) = (x ∗ y) ∗ (0 ∗ y) � x.

Then (x ∗ y) ∗ (0 ∗ a) � z ∧ x. Because of z ∧ x = e, it follows (x ∗ y) ∗ (0 ∗ a) � e, that is,
(x ∗ (0 ∗ a)) ∗ y � e. Thus x ∗ (0 ∗ a) � y ◦ e by (0.14). Hence (0.7) implies

(x ∗ (0 ∗ a)) ∗ a � (y ◦ e) ∗ a,

which means from (0.19) and Theorem 1.1 that x � y ∨ e. Note that e � y, we have
y ∨ e = y. Therefore x � y, a contradiction with x > y.

Summarizing the above arguments, the lattice (V (a); �) is distributive.

Corollary 1.5. Let V (a) be a branch of a positive implicative BCI-algebra X with condition
(S). If V (a) is a finite set, then (V (a); �) is a distributive lattice.
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Corollary 1.6 ([3], Theorem 3). Let X be a positive implicative BCK-algebra with con-
dition (S). If (X ; �) is a lattice, it must be distributive.

2 Several identities on a branch We now consider several identities on a branch of a
positive implicative BCI-algebra with condition (S), which are similar to those on a positive
implicative BCK-algebra with condition (S).

Proposition 2.1. Let V (a) be a branch of a positive implicative BCI-algebra X with con-
dition (S). Then the following are valid:

(1) x = (x ◦ x) ∗ a for any x ∈ V (a);
(2) x � y implies y = (x ◦ y) ∗ a for any x, y ∈ V (a);
(3) (x ◦ y) ∗ (x ◦ z) = (y ∗ (x ◦ z)) ∗ (0 ∗ a) for any x ∈ V (a) and y, z ∈ X.

Proof. (1) and (2) are two immediate results of Theorem 1.1, and we only need to show (3).
Assume that x is any element in V (a), and y, z in X . By (0.13), we have (x ◦ y) ∗ x � y.
Using (0.7) two times, we obtain ((x ◦ y) ∗ x) ∗ x � y ∗ x and

(((x ◦ y) ∗ x) ∗ x) ∗ (0 ∗ a) � (y ∗ x) ∗ (0 ∗ a).

Then (0.17) implies (x ◦ y) ∗ x � (y ∗ x) ∗ (0 ∗ a). (2.1)

Using (0.7) once more and applying (0.1), it follows
((x ◦ y) ∗ x) ∗ z � ((y ∗ x) ∗ z) ∗ (0 ∗ a),

which means from (0.12) that
(x ◦ y) ∗ (x ◦ z) � (y ∗ (x ◦ z)) ∗ (0 ∗ a). (2.2)

Next, by (0.12) and (0.9), one has
y ∗ (x ◦ y) = (y ∗ x) ∗ y = 0 ∗ x = 0 ∗ a.

Then (0.4) gives
(y ∗ (x ◦ z)) ∗ ((x ◦ y) ∗ (x ◦ z)) � y ∗ (x ◦ y) = 0 ∗ a.

So, (0.8) implies
(y ∗ (x ◦ z)) ∗ (0 ∗ a) � (x ◦ y) ∗ (x ◦ z). (2.3)

Combining (2.2) with (2.3), it yields (x ◦ y) ∗ (x ◦ z) = (y ∗ (x ◦ z)) ∗ (0 ∗ a).

Theorem 2.2. Let V (a) be a branch of a positive implicative BCI-algebra X with condition
(S). Then for any x, y ∈ V (a) and any z ∈ X, the least upper bound (x∗ z)∨ (y ∗ z) of x∗ z
and y ∗ z exists, and (x ∗ z) ∨ (y ∗ z) = (x ∨ y) ∗ z.

Proof. For any x, y ∈ V (a) and any z ∈ X , there is no harm in assuming z ∈ V (b), then
x ∗ z ∈ V (a ∗ b) and y ∗ z ∈ V (a ∗ b) by (0.10). So, by Theorem 1.1, the least upper bound
(x ∗ z) ∨ (y ∗ z) of x ∗ z and y ∗ z exists. It is easy to see from (0.7) that (x ∨ y) ∗ z is an
upper bound of x ∗ z and y ∗ z. Then

(x ∗ z) ∨ (y ∗ z) � (x ∨ y) ∗ z. (2.4)
It remains to show that the opposite inequality of (2.4) holds. Denote

t = (x ∨ y) ∗ z and u = (x ∗ z) ∨ (y ∗ z).
Then we have u � t by (2.4), and we only need to show t � u. We first assert that the
following are valid:

t = (t ∗ z) ∗ (0 ∗ b), (2.5)
t = (t ∗ (0 ∗ (a ∗ b))) ∗ (a ∗ b), (2.6)
t = ((x ◦ y) ∗ a) ∗ z, (2.7)
u = ((x ∗ z) ◦ (y ∗ z)) ∗ (a ∗ b). (2.8)
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In fact, by (0.17), we have
t = (x ∨ y) ∗ z = (((x ∨ y) ∗ z) ∗ z) ∗ (0 ∗ b) = (t ∗ z) ∗ (0 ∗ b),

(2.5) holding. Because t ∈ V (a ∗ b), (2.6) is a direct result of (0.19). Finally, (2.7) and (2.8)
can be seen from Theorem 1.1, as asserted. Now, combining (2.6) with (2.8) and noticing
(0.4), we obtain

t ∗ u � (t ∗ (0 ∗ (a ∗ b))) ∗ ((x ∗ z) ◦ (y ∗ z)). (2.9)
By (0.1) and (0.12), (2.9) is equivalent to

t ∗ u � ((t ∗ (x ∗ z)) ∗ (y ∗ z)) ∗ (0 ∗ (a ∗ b)). (2.10)
Also, by (0.13), one has (x ◦ y) ∗ x � y, then ((x ◦ y) ∗ x) ∗ z � y ∗ z by (0.7). So,

(((x ◦ y) ∗ x) ∗ z) ∗ (y ∗ z) = 0. (2.11)
Right ∗ multiplying both sides of (2.11) by a and applying (0.1), one obtains

((((x ◦ y) ∗ a) ∗ z) ∗ x) ∗ (y ∗ z) = 0 ∗ a.

Hence (2.7) gives (t ∗ x) ∗ (y ∗ z) = 0 ∗ a. (2.12)

Moreover, by (0.4), we have (t ∗ z) ∗ (x ∗ z) � t ∗ x. Then (0.7) implies
((t ∗ z) ∗ (x ∗ z)) ∗ (0 ∗ b) � (t ∗ x) ∗ (0 ∗ b).

That is, ((t ∗ z) ∗ (0 ∗ b)) ∗ (x ∗ z) � (t ∗ x) ∗ (0 ∗ b).

So, by (2.5), we obtain t ∗ (x ∗ z) � (t ∗ x) ∗ (0 ∗ b). Hence

(t ∗ (x ∗ z)) ∗ (y ∗ z) � ((t ∗ x) ∗ (0 ∗ b)) ∗ (y ∗ z) [by (0.7)]
= ((t ∗ x) ∗ (y ∗ z)) ∗ (0 ∗ b) [by (0.1)]
= (0 ∗ a) ∗ (0 ∗ b) [by (2.12)]
= 0 ∗ (a ∗ b). [by (0.2)]

From this, we derive
((t ∗ (x ∗ z)) ∗ (y ∗ z)) ∗ (0 ∗ (a ∗ b)) = 0. (2.13)

Comparing (2.10) with (2.13), it yields t ∗ u � 0, in other words, t ∗ u = 0 by 0 being a
minimal element of X . Consequently, t � u. The proof is complete.

Theorem 2.3. Let V (a) be a branch of a positive implicative BCI-algebra X with condition
(S). Then the following hold: for any x, y, z ∈ V (a),

(1) x = (x ∗ (x ∗ y)) ∨ ((x ∗ y) ∗ (0 ∗ a));
(2) x ∨ y = x ∨ ((y ∗ x) ∗ (0 ∗ a));
(3) (x ∨ y) ∗ x = y ∗ x and (x ∨ y) ∗ y = x ∗ y;
(4) z ∗ (x ∨ y) = (z ∗ x) ∗ (z ∗ y).

Proof. (1) For any x, y ∈ V (a), we have x ∗ y ∈ V (a ∗ a) = V (0) by (0.10). Then 0 � x ∗ y.
So, by (0.6) and (0.11), we obtain

x ∗ (x ∗ y) � x and x ∗ (x ∗ y) ∈ V (a).
Also, by (0.4), one has (x ∗ y) ∗ (0 ∗ y) � x. So, by (0.9) and (0.11), one obtains

(x ∗ y) ∗ (0 ∗ a) � x and (x ∗ y) ∗ (0 ∗ a) ∈ V (a). (2.14)
Since (V (a); �) is an upper semilattice, it follows

(x ∗ (x ∗ y)) ∨ ((x ∗ y) ∗ (0 ∗ a)) � x. (2.15)
Next, by (0.3), we have

(x ∗ (0 ∗ a)) ∗ (x ∗ (x ∗ y)) � (x ∗ y) ∗ (0 ∗ a).
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Then (0.14) gives
x ∗ (0 ∗ a) � (x ∗ (x ∗ y)) ◦ ((x ∗ y) ∗ (0 ∗ a)).

So, by (0.7), we obtain
(x ∗ (0 ∗ a)) ∗ a � ((x ∗ (x ∗ y)) ◦ ((x ∗ y) ∗ (0 ∗ a))) ∗ a.

Hence (0.19) and Theorem 1.1 imply
x � (x ∗ (x ∗ y)) ∨ ((x ∗ y) ∗ (0 ∗ a)). (2.16)

Comparing (2.15) with (2.16), it yields x = (x ∗ (x ∗ y)) ∨ ((x ∗ y) ∗ (0 ∗ a)).
(2) Following the proof of (2.14), one has

(y ∗ x) ∗ (0 ∗ a) � y and (y ∗ x) ∗ (0 ∗ a) ∈ V (a).
Since (V (a); �) is an upper semilattice and x, y ∈ V (a), it follows

x ∨ ((y ∗ x) ∗ (0 ∗ a)) � x ∨ y. (2.17)
Next, following the proof of (2.1), we have (x ◦ y) ∗ x � (y ∗ x) ∗ (0 ∗ a). Then (0.14) implies
x ◦ y � x ◦ ((y ∗ x) ∗ (0 ∗ a)). So, by (0.7), we derive

(x ◦ y) ∗ a � (x ◦ ((y ∗ x) ∗ (0 ∗ a))) ∗ a.

Therefore x ∨ y � x ∨ ((y ∗ x) ∗ (0 ∗ a)) by Theorem 1.1. Comparison with (2.17) gives
x ∨ y = x ∨ ((y ∗ x) ∗ (0 ∗ a)).

(3) It is a direct result of Theorem 2.2.
(4) By (0.19), we have z = (z ∗ (0 ∗ a)) ∗ a; by (2) and Theorem 1.1, we obtain

x ∨ y = x ∨ ((y ∗ x) ∗ (0 ∗ a)) = (x ◦ ((y ∗ x) ∗ (0 ∗ a))) ∗ a.
Then

z ∗ (x ∨ y) = ((z ∗ (0 ∗ a)) ∗ a) ∗ ((x ◦ ((y ∗ x) ∗ (0 ∗ a))) ∗ a)
� (z ∗ (0 ∗ a)) ∗ (x ◦ ((y ∗ x) ∗ (0 ∗ a))) [by (0.4)]
= ((z ∗ (0 ∗ a)) ∗ x) ∗ ((y ∗ x) ∗ (0 ∗ a)) [by (0.12)]
= ((z ∗ x) ∗ (0 ∗ a)) ∗ ((y ∗ x) ∗ (0 ∗ a)) [by (0.1)]
� (z ∗ x) ∗ (y ∗ x). [by (0.4)]

That is, z ∗ (x ∨ y) � (z ∗ x) ∗ (y ∗ x). (2.18)

Next, by (0.3) and (3), one has
(z ∗ x) ∗ (z ∗ (x ∨ y)) � (x ∨ y) ∗ x = y ∗ x.

So, (0.8) implies (z ∗ x) ∗ (y ∗ x) � z ∗ (x ∨ y). (2.19)

Combining (2.18) with (2.19), it follows z ∗ (x ∨ y) = (z ∗ x) ∗ (y ∗ x).
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[7] K. Iséki and S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japonica 23,

1(1978), 1-26.
[8] J. Meng and Y. L. Liu, An introduction to BCI-algebras, Shaanxi Scientific and Technological

Press, 2001.



336 YISHENG HUANG

[9] J. Meng and X. L. Xin, Positive implicative BCI-algebras, Pure and Applied Math. 9, 1(1993),
19–22.

[10] S. M. Wei and Y. B. Jun, Weakly positive implicative BCI-algebras, Comm. Korean Math.
Soc. 10 (1995), No. 4, pp. 815–821.

Department of Mathematics, Sanming College, Sanming, Fujian 365004, P. R. China
E-mail: smcaihy@126.com


