
Scientiae Mathematicae Japonicae Online, e-2006, 319–327 319

ON IMPLICATIVE BCI-ALGEBRAS

Yisheng Huang∗

Received November 3, 2005

Abstract. In this paper, we give an axiom system of implicative BCI-algebras, in-
vestigate some properties of the branches of an implicative BCI-algebra, which are
similar to those of implicative BCK-algebras, and show that for every initial section
of an implicative BCI-algebra, it with respect to the BCI-ordering forms a Boolean
algebra.

As is well known, commutative BCK-algebras, positive implicative BCK-algebras and
implicative BCK-algebras are three classes of the most important BCK-algebras. In order
to get the similar classes in BCI-algebras, J. Meng and X. L. Xin in [9], [11] and [10]
introduced commutative BCI-algebras, positive implicative BCI-algebras and implicative
BCI-algebras respectively, and investigated their fundamental properties similar to those of
the corresponding algebras in BCK-algebras. And the author in [1], [2] and [3] gave some
further properties of theirs.

The ideas of this paper are originated from [1]. Like [1], we will mainly use lattices and
branches as well as initial sections to explore implicative BCI-algebras in this paper. And
we will obtain a number of interesting results similar to those of implicative BCK-algebras.

0 Preliminaries For the notations and elementary properties of BCK and BCI-algebras,
we refer the reader to [5], [4] and [8]. And we will use some familiar notions and properties
of lattices without explanation.

Recall that according to the H. S. Li’s axiom system (see [7]), a BCI-algebra (X ; ∗, 0)
means that it is an algebra of type (2, 0), satisfying the following conditions: for any x, y, z ∈
X ,

BCI-1 ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0,
BCI-2 x ∗ 0 = x,
BCI-3 x ∗ y = 0 and y ∗ x = 0 imply x = y.

It is known that given a BCI-algebra X , the following identities are valid:

(x ∗ y) ∗ z = (x ∗ z) ∗ y,(0.1)
x ∗ y = x ∗ (x ∗ (x ∗ y)),(0.2)
0 ∗ (x ∗ y) = (0 ∗ x) ∗ (0 ∗ y),(0.3)
(x ∗ y) ∗ x = 0 ∗ x.(0.4)
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And X with respect to its BCI-ordering � forms a partially ordered set (X ; �) satisfying
the following quasi-identities:

(x ∗ y) ∗ (x ∗ z) � z ∗ y,(0.5)
(x ∗ z) ∗ (y ∗ z) � x ∗ y,(0.6)

(x ∗ (x ∗ y)) ∗ (x ∗ (x ∗ z)) � y ∗ z,(0.7)

where the binary relation � on X is defined as follows: x � y if and only if x ∗ y = 0.
Moreover, the following assertions hold: for any x, y, z ∈ X ,

x � y implies z ∗ y � z ∗ x,(0.8)
x � y implies x ∗ z � y ∗ z.(0.9)

A minimal element a of X means that a is an element in X such that x � a (i.e., x∗a = 0)
implies x = a for any x ∈ X . Given a minimal element a of X , the set {x ∈ X | x � a} is
called a branch of X , denoted by V (a).

Given an element c in X , the set {x ∈ X | x � c} is called an initial section of X ,
denoted by A(c).

Theorem 0.1 ([8], §1.3). Assume that P is the set of all minimal elements of a BCI-
algebra X. Then the collection {V (a) | a ∈ P} of branches of X forms a partition of X,
that is, X =

⋃
a∈P V (a) and V (a) ∩ V (b) = ∅ if a �= b for any a, b ∈ P . Moreover, the

following fold: for any x, y ∈ V (a),

0 ∗ (0 ∗ x) = a,(0.10)
0 ∗ (x ∗ y) = 0.(0.11)

Definition ([9], [11] and [10]). A BCI-algebra X is called commutative if

x � y implies x = y ∗ (y ∗ x) for all x, y ∈ X ;

it is called positive implicative if

(x ∗ (x ∗ y)) ∗ (y ∗ x) = x ∗ (x ∗ (y ∗ (y ∗ x))) for all x, y ∈ X ;

it is called implicative if

x ∗ (x ∗ y) = (y ∗ (y ∗ x)) ∗ (x ∗ y) for all x, y ∈ X.(0.12)

Theorem 0.2 ([8], §2.4). A BCI-algebra X is commutative if and only if for any branch
V (a) of X, x ∈ V (a) and y ∈ V (a) imply

x ∗ (x ∗ y) = y ∗ (y ∗ x).(0.13)

Moreover, (V (a);�) forms a lower semilattice such that for any x, y ∈ V (a),

x ∧ y = y ∗ (y ∗ x),(0.14)
x ∗ y = x ∗ (x ∧ y).(0.15)

Theorem 0.3 ([1], Theorem 3.2). If A(c) is an initial section of a commutative BCI-
algebra X, then (A(c); �) is a distributive lattice with

x ∧ y = y ∗ (y ∗ x) and x ∨ y = c ∗ ((c ∗ x) ∧ (c ∗ y)).
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Theorem 0.4 ([3], Corollary 3). A BCI-algebra X is positive implicative if and only if

x ∗ y = ((x ∗ y) ∗ y) ∗ (0 ∗ y) for any x, y ∈ X.(0.16)

Thus

x ∗ y = (x ∗ y) ∗ y if y � 0.(0.17)

Theorem 0.5 ([11], Theorem 6). A BCI-algebra X is implicative if and only if it is
commutative and positive implicative.

1 An axiom system of implicative BCI-algebras Let’s begin our discussion with
giving an axiom system of implicative BCI-algebras.

Theorem 1.1. An algebra (X ; ∗, 0) of type (2, 0) is an implicative BCI-algebra if and only
if it satisfies the following identities:

(1) x ∗ 0 = x;
(2) x ∗ x = 0;
(3) (x ∗ y) ∗ z = (x ∗ z) ∗ y;
(4) (x ∗ z) ∗ (x ∗ y) = ((y ∗ z) ∗ (y ∗ x)) ∗ (x ∗ y).

Proof. Necessity. (1) is just BCI-2. Repeatedly applying BCI-2, we have

x ∗ x = ((x ∗ 0) ∗ (x ∗ 0)) ∗ (0 ∗ 0).

Then BCI-1 implies x ∗ x = 0, (2) holding. By (0.1), (3) is true. By the definition of the
implicativity of X , we have

x ∗ (x ∗ y) = (y ∗ (y ∗ x)) ∗ (x ∗ y).

Right ∗ multiplying both sides of the last identity by z, we derive

(x ∗ (x ∗ y)) ∗ z = ((y ∗ (y ∗ x)) ∗ (x ∗ y)) ∗ z.

Then (0.1) gives (x ∗ z) ∗ (x ∗ y) = ((y ∗ z) ∗ (y ∗ x)) ∗ (x ∗ y), showing (4).
Sufficiency. BCI-2 is just (1). Putting z = 0 in (4) and using (1), we have

x ∗ (x ∗ y) = (y ∗ (y ∗ x)) ∗ (x ∗ y),(1.1)

which is the implicativity of X . It is easily seen from (1.1) and (1) that BCI-3 is true. It
remains to show BCI-1. In fact, by (4), we have

(x ∗ y) ∗ (x ∗ z) = ((z ∗ y) ∗ (z ∗ x)) ∗ (x ∗ z).

Right ∗ multiplying both sides of the last identity by z ∗ y, we obtain

((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = (((z ∗ y) ∗ (z ∗ x)) ∗ (x ∗ z)) ∗ (z ∗ y).(1.2)

By (3), the right side of (1.2) coincides with

(((z ∗ y) ∗ (z ∗ y)) ∗ (z ∗ x)) ∗ (x ∗ z).(1.3)

By (2), (z ∗ y) ∗ (z ∗ y) = 0 = z ∗ z, then (1.3) is identical with

((z ∗ z) ∗ (z ∗ x)) ∗ (x ∗ z).(1.4)
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Using (3) once again, (1.4) is the same as

((z ∗ (z ∗ x)) ∗ (x ∗ z)) ∗ z.(1.5)

By (1.1), (1.5) is identical with (x ∗ (x ∗ z)) ∗ z, that is, (x ∗ z) ∗ (x ∗ z) by (3). Now, since
(x ∗ z) ∗ (x ∗ z) = 0 by (2), we see that (1.2) is equivalent to

((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0,

showing BCI-1. The proof is complete.

2 On branches of implicative BCI-algebras We now consider the branches of an
implicative BCI-algebra. It is known very well that the identity x ∗ (y ∗ x) = x is just the
implicativity of BCK-algebras. It is interesting that the same identity holds in a branch of
an implicative BCI-algebra.

Proposition 2.1. Let X be a BCI-algebra. If X is implicative, then for any branch V (a)
of X, x ∈ V (a) and y ∈ V (a) imply x ∗ (y ∗ x) = x.

Proof. Since x, y ∈ V (a), we have 0 ∗ (x ∗ y) = 0 by (0.11). Then (0.4) gives

(x ∗ (y ∗ x)) ∗ x = 0 ∗ (y ∗ x) = 0.(2.1)

On the other hand, replacing y by y ∗ x in (0.12), we have

x ∗ (x ∗ (y ∗ x)) = ((y ∗ x) ∗ ((y ∗ x) ∗ x)) ∗ (x ∗ (y ∗ x)).(2.2)

Also, since every implicative BCI-algebra is positive implicative, by (0.16), we derive

y ∗ x = ((y ∗ x) ∗ x) ∗ (0 ∗ x).(2.3)

Right ∗ multiplying both sides of (2.3) by (y ∗ x) ∗ x, it follows

(y ∗ x) ∗ ((y ∗ x) ∗ x) = (((y ∗ x) ∗ x) ∗ (0 ∗ x)) ∗ ((y ∗ x) ∗ x).(2.4)

By (0.4), the right side of (2.4) is equal to 0 ∗ (0 ∗ x). Then

(y ∗ x) ∗ ((y ∗ x) ∗ x) = 0 ∗ (0 ∗ x).(2.5)

Right ∗ multiplying both sides of (2.5) by x ∗ (y ∗ x), it yields

((y ∗ x) ∗ ((y ∗ x) ∗ x)) ∗ (x ∗ (y ∗ x)) = (0 ∗ (0 ∗ x)) ∗ (x ∗ (y ∗ x)).

Comparison with (2.2) gives

x ∗ (x ∗ (y ∗ x)) = (0 ∗ (0 ∗ x)) ∗ (x ∗ (y ∗ x)),

which means from (0.1) that

x ∗ (x ∗ (y ∗ x)) = (0 ∗ (x ∗ (y ∗ x))) ∗ (0 ∗ x).(2.6)

Moreover, since x, y ∈ V (a), by (0.3) and (0.11) as well as BCI-2, we obtain

0 ∗ (x ∗ (y ∗ x)) = (0 ∗ x) ∗ (0 ∗ (y ∗ x)) = (0 ∗ x) ∗ 0 = 0 ∗ x.

Now, substituting 0 ∗ x for 0 ∗ (x ∗ (y ∗ x)) in (2.6), and noticing (0 ∗ x) ∗ (0 ∗ x) = 0, the
following holds:

x ∗ (x ∗ (y ∗ x)) = (0 ∗ x) ∗ (0 ∗ x) = 0.(2.7)

Combining (2.1) with (2.7) and using BCI-3, it follows x ∗ (y ∗ x) = x.
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It is a pity that unlike Theorem 0.2, the converse of Proposition 2.1 is not true as shown
in the following counter example.

Example 2.1. The set X = {0, 1, 2, 3} together with the operation ∗ on X given by the
Cayley table

∗ 0 1 2 3

0
1
2
3

0 0 2 2
1 0 2 2
2 2 0 0
3 2 1 0

forms a BCI-algebra (see [6], the author H. Jiang denotes it by I4−2−1). It is not difficult
to see that the whole minimal elements of X are 0 and 2, and the branches V (0) = {0, 1}
and V (2) = {2, 3}. Now, it is easy to verify that for any branch V (a) of X , x ∈ V (a) and
y ∈ V (a) imply x ∗ (y ∗ x) = x. However, X is not implicative. That is because

3 ∗ (3 ∗ 1) = 1 �= 0 = (1 ∗ (1 ∗ 3)) ∗ (3 ∗ 1).

Nevertheless, we have still the next interesting fact.

Proposition 2.2. Let X be a BCI-algebra. If for any branch V (a) of X, x ∈ V (a) and
y ∈ V (a) imply x ∗ (y ∗ x) = x, then X is commutative.

Proof. Let x and y be any elements in X such that x � y (i.e., x ∗ y = 0). By Theorem
0.1, there exists a minimal element a of X such that x ∈ V (a). Since a � x and x � y, we
obtain a � y, that is, y � a. Then y ∈ V (a). So our hypothesis gives x ∗ (y ∗ x) = x. Hence
(0.6) implies

x ∗ (y ∗ (y ∗ x)) = (x ∗ (y ∗ x)) ∗ (y ∗ (y ∗ x)) � x ∗ y = 0.

In other words, x � y ∗ (y ∗ x). The opposite inequality is naturally true. Therefore
x = y ∗ (y ∗ x), and X is commutative.

As an implicative BCI-algebra X must be commutative, according to Theorem 0.2, every
branch V (a) of X forms a lower semilattice (V (a); �), thus the greatest lower bound of any
two elements in V (a) exists. And we have the following analogy.

Proposition 2.3. Let X be an implicative BCI-algebra and V (a) be a branch of X. Then
for any x, y, z ∈ V (a),

(1) (x ∗ y) ∧ (y ∗ x) = 0;
(2) (x ∧ y) ∗ z = (x ∗ z) ∧ (y ∗ z);
(3) the least upper bound (z ∗ x) ∨ (z ∗ y) of z ∗ x and z ∗ y exists and

z ∗ (x ∧ y) = (z ∗ x) ∨ (z ∗ y).

Proof. (1) Since x, y ∈ V (a), by (0.1) and Proposition 2.1, we have

(y ∗ x) ∗ (x ∗ y) = (y ∗ (x ∗ y)) ∗ x = y ∗ x.

Then (0.14) gives

(x ∗ y) ∧ (y ∗ x) = (y ∗ x) ∗ ((y ∗ x) ∗ (x ∗ y)) = (y ∗ x) ∗ (y ∗ x) = 0.
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(2) Since x∧ y � x and x∧ y � y, it is easy to see from (0.9) that (x∧ y) ∗ z is a lower
bound of x ∗ z and y ∗ z. Let t be any lower bound of x ∗ z and y ∗ z. Then t � x ∗ z and
t � y ∗ z. By t � x ∗ z and (0.9), we have

t ∗ ((x ∧ y) ∗ z) � (x ∗ z) ∗ ((x ∧ y) ∗ z).

Also, by (0.6) and (0.15), we obtain

(x ∗ z) ∗ ((x ∧ y) ∗ z) � x ∗ (x ∧ y) = x ∗ y.

So, t ∗ ((x ∧ y) ∗ z) � x ∗ y. Similarly, t ∗ ((x ∧ y) ∗ z) � y ∗ x. Therefore (1) implies

t ∗ ((x ∧ y) ∗ z) � (x ∗ y) ∧ (y ∗ x) = 0.

That is, t � (x∧ y) ∗ z. We have shown that (x∧ y) ∗ z is the greatest lower bound of x ∗ z
and y ∗ z. Consequently, (x ∧ y) ∗ z = (x ∗ z) ∧ (y ∗ z).

(3) It is easy to verify from (0.8) that z ∗ (x ∧ y) is an upper bound of z ∗ x and z ∗ y.
Let t be any upper bound of z ∗ x and z ∗ y. Then z ∗ x � t and z ∗ y � t. By z ∗ y � t and
(0.8), we have z ∗ t � z ∗ (z ∗ y), that is, x ∗ t � y ∗ (y ∗ z) by (0.13). Then (0.9) gives

(z ∗ t) ∗ (y ∗ (y ∗ x)) � (y ∗ (y ∗ z)) ∗ (y ∗ (y ∗ x)).(2.8)

By (0.1) and (0.14), the left side of (2.8) is equal to (z ∗ (x ∧ y)) ∗ t; by (0.7), the right side
is less than or equal to z ∗ x. So, (z ∗ (x ∧ y)) ∗ t � z ∗ x. Thus (0.9) implies

((z ∗ (x ∧ y)) ∗ t) ∗ t � (z ∗ x) ∗ t.

Since z ∗ x � t and 0 is a minimal element of X , we derive

((z ∗ (x ∧ y)) ∗ t) ∗ t = 0.(2.9)

Also, since z, x ∈ V (a), by (0.11), we have 0 ∗ (z ∗ x) = 0, namely, 0 � z ∗ x. Note that
z ∗ x � t, it follows 0 � t, that is, t � 0. Hence (0.17) implies

(z ∗ (x ∧ y)) ∗ t = ((z ∗ (x ∧ y)) ∗ t) ∗ t.(2.10)

Now, comparing (2.10) with (2.9), we derive (z ∗ (x ∧ y)) ∗ t = 0, i.e., z ∗ (x ∧ y) � t. We
have shown that z ∗ (x ∧ y) is just the least upper bound of z ∗ x and z ∗ y. Therefore
(z ∗ x) ∨ (z ∗ y) exists and z ∗ (x ∧ y) = (z ∗ x) ∨ (z ∗ y).

It is not difficult to see that two elements in a branch of an implicative BCI-algebra
have generally not their least upper bound. If the least upper bound exists, we also have
the following analogy.

Proposition 2.4. Let x and y be any elements in a branch V (a) of a BCI-algebra X. If
the least upper bound x ∨ y of x and y exists, then the following hold:

(1) (x ∨ y) ∗ x = y ∗ x and (x ∨ y) ∗ y = x ∗ y;
(2) the least upper bound (x ∗ z) ∨ (y ∗ z) of x ∗ z and y ∗ z exists and

(x ∨ y) ∗ z = (x ∗ z) ∨ (y ∗ z) for any z ∈ V (a);

(3) z ∗ (x ∨ y) = (z ∗ x) ∧ (z ∗ y) for any z ∈ V (a).
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Proof. (1) If x∨ y exists, then there is c ∈ X such that c is an upper bound of x and y. So
x and y are in the initial section A(c). Now, by Theorem 0.3, we have

x ∨ y = c ∗ ((c ∗ x) ∧ (c ∗ y)).(2.11)

Right ∗ multiplying both sides of (2.11) by x and using (0.1), we obtain

(x ∨ y) ∗ x = (c ∗ ((c ∗ x) ∧ (c ∗ y))) ∗ x = (c ∗ x) ∗ ((c ∗ x) ∧ (c ∗ y)).

By (0.15) and Theorem 1.1(4), it follows

(c ∗ x) ∗ ((c ∗ x) ∧ (c ∗ y)) = (c ∗ x) ∗ (c ∗ y) = ((y ∗ x) ∗ (y ∗ c)) ∗ (c ∗ y).

Since y � c, the right side of the last expression is the same as ((y ∗ x) ∗ 0) ∗ (c ∗ y), namely,
(y ∗ (c ∗ y)) ∗ x by BCI-2 and (0.1). Hence

(x ∨ y) ∗ x = (y ∗ (c ∗ y)) ∗ x.

Therefore (x ∨ y) ∗ x = y ∗ x by Proposition 2.1.
In a similar fashion, we can prove that (x ∨ y) ∗ y = x ∗ y.
(2) It is obvious that (x∨y)∗ z is an upper bound of x∗ z and y ∗ z. Let t be any upper

bound of x ∗ z and y ∗ z. Then x ∗ z � t and y ∗ z � t. Now, putting (0.8), (0.6) and (1)
together, it follows

((x ∨ y) ∗ z) ∗ t � ((x ∨ y) ∗ z) ∗ (x ∗ z) � (x ∨ y) ∗ x = y ∗ x,

((x ∨ y) ∗ z) ∗ t � ((x ∨ y) ∗ z) ∗ (y ∗ z) � (x ∨ y) ∗ y = x ∗ y.

So Proposition 2.3(1) implies

((x ∨ y) ∗ z) ∗ t � (y ∗ x) ∧ (x ∗ y) = 0.

Thus (x∨ y) ∗ z � t. Hence (x∨ y) ∗ z is the least upper bound of x ∗ z and y ∗ z. Therefore
(x ∗ z) ∨ (y ∗ z) exists and (x ∨ y) ∗ z = (x ∗ z) ∨ (y ∗ z).

(3) From (0.5) and (1), we have

(z ∗ x) ∗ (z ∗ (x ∨ y)) � (x ∨ y) ∗ x = y ∗ x,

(z ∗ y) ∗ (z ∗ (x ∨ y)) � (x ∨ y) ∗ y = x ∗ y.

Then

((z ∗ x) ∗ (z ∗ (x ∨ y))) ∧ ((z ∗ y) ∗ (z ∗ (x ∨ y))) � (y ∗ x) ∧ (x ∗ y).(2.12)

Applying Proposition 2.3(2) to the left side of (2.12) and Proposition 2.3(1) to the right
side, and noticing that 0 is a minimal element of X , it follows

((z ∗ x) ∧ (z ∗ y)) ∗ (z ∗ (x ∨ y)) = 0.

So, (z ∗ x)∧ (z ∗ y) � z ∗ (x∨ y). The opposite inequality can be seen from (0.8). Therefore
z ∗ (x ∨ y) = (z ∗ x) ∧ (z ∗ y).

The next corollary is an immediate result of Proposition 2.4(2) and (0.15).

Corollary 2.5. Let x and y be any elements in a branch V (a) of an implicative BCI-algebra
X. If x ∨ y exists, then (x ∗ y) ∨ (y ∗ x) exists and

(x ∨ y) ∗ (x ∧ y) = (x ∗ y) ∨ (y ∗ x).
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3 On initial sections of implicative BCI-algebras Finally let’s consider the initial
sections of an implicative BCI-algebra. It is known that if X is a BCK-algebra and A(c) is
an initial section of X , then (A(c); �) forms a Boolean algebra (refer to [5], Theorem 12).
It is interesting that the same conclusion is true if X is an implicative BCI-algebra.

Theorem 3.1. Let A(c) be an initial section of an implicative BCI-algebra X. Then
(A(c); �) is a Boolean algebra with x ∧ y = y ∗ (y ∗ x), x ∨ y = c ∗ ((c ∗ x) ∧ (c ∗ y))
and x′ = (c ∗ x) ∗ (0 ∗ x) for any x, y ∈ A(c).

Proof. As any implicative BCI-algebra is commutative, by Theorem 0.3, (A(c); �) is a
distributive lattice with x ∧ y = y ∗ (y ∗ x) and x ∨ y = c ∗ ((c ∗ x) ∧ (c ∗ y)) for any
x, y ∈ A(c). Also, c is clearly the unit element of the lattice A(c). Moreover, it is easy to
verify from Theorem 0.1 that there exists some branch V (a) of X such that A(c) ⊆ V (a).
Because a is the least element of the branch V (a), it is the zero element of the lattice
(A(c); �). It remains to show that A(c) is a complemented lattice with (c ∗ x) ∗ (0 ∗ x) as
the complement x′ of x for any x ∈ A(c). Let u denote (c ∗ x) ∗ (0 ∗ x). Then what we need
to show is just the following facts:

(i) u ∈ A(c); (ii) x ∧ u = a; (iii) x ∨ u = c.

In fact, by (0.6) and BCI-2, we have (c ∗ x) ∗ (0 ∗ x) � c ∗ 0 = c, that is, u � c. Then
u ∈ A(c), (i) holding. To show (ii) and (iii), let’s first assert that u ∗x = c∗x. In fact, since
X is positive implicative, by (0.1) and (0.16), the following holds:

((c ∗ x) ∗ (0 ∗ x)) ∗ x = ((c ∗ x) ∗ x) ∗ (0 ∗ x) = c ∗ x.

That is, u ∗ x = c ∗ x, as asserted. Now, we have

x ∧ u = u ∗ (u ∗ x) = u ∗ (c ∗ x).

Because of x ∈ V (a), by (0.4) and (0.10), we obtain

u ∗ (c ∗ x) = ((c ∗ x) ∗ (0 ∗ x)) ∗ (c ∗ x) = 0 ∗ (0 ∗ x) = a.

Therefore x ∧ u = a, showing (ii). Because X is commutative and u � c, we derive
c ∗ (c ∗ u) = u. Then (c ∗ (c ∗ u)) ∗ x = u ∗ x, that is, (c ∗ x) ∗ (c ∗ u) = u ∗ x by (0.1). So,
the fact that u ∗ x = c ∗ x gives (c ∗ x) ∗ (c ∗ u) = c ∗ x. Left ∗ multiplying both sides of the
last equality by c ∗ x, it follows

(c ∗ x) ∗ ((c ∗ x) ∗ (c ∗ u)) = (c ∗ x) ∗ (c ∗ x).

That is, (c ∗ u) ∧ (c ∗ x) = 0, in other words, (c ∗ x) ∧ (c ∗ u) = 0. Therefore

c ∗ ((c ∗ x) ∧ (c ∗ u)) = c ∗ 0 = c.

Note that x ∨ u = c ∗ ((c ∗ x) ∧ (c ∗ u)), it yields x ∨ u = c, proving (iii).

A BCI-algebra X is called locally bounded if every branch V (a) of X is bounded, i.e.,
there is ma ∈ V (a) such that x � ma for all x ∈ V (a).

Corollary 3.2 ([10], Theorem 5). Assume that X is a locally bounded implicative BCI-
algebra. Then for every branch V (a) of X, it with respect to the BCI-ordering � forms a
Boolean algebra (V (a); �).
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