# ON IMPLICATIVE BCI-ALGEBRAS 

Yisheng Huang*

Received November 3, 2005


#### Abstract

In this paper, we give an axiom system of implicative BCI-algebras, investigate some properties of the branches of an implicative BCI-algebra, which are similar to those of implicative BCK-algebras, and show that for every initial section of an implicative BCI-algebra, it with respect to the BCI-ordering forms a Boolean algebra.


As is well known, commutative BCK-algebras, positive implicative BCK-algebras and implicative BCK-algebras are three classes of the most important BCK-algebras. In order to get the similar classes in BCI-algebras, J. Meng and X. L. Xin in [9], [11] and [10] introduced commutative BCI-algebras, positive implicative BCI-algebras and implicative BCI-algebras respectively, and investigated their fundamental properties similar to those of the corresponding algebras in BCK-algebras. And the author in [1], [2] and [3] gave some further properties of theirs.

The ideas of this paper are originated from [1]. Like [1], we will mainly use lattices and branches as well as initial sections to explore implicative BCI-algebras in this paper. And we will obtain a number of interesting results similar to those of implicative BCK-algebras.

0 Preliminaries For the notations and elementary properties of BCK and BCI-algebras, we refer the reader to [5], [4] and [8]. And we will use some familiar notions and properties of lattices without explanation.

Recall that according to the H. S. Li's axiom system (see [7]), a BCI-algebra ( $X ; *, 0$ ) means that it is an algebra of type $(2,0)$, satisfying the following conditions: for any $x, y, z \in$ $X$,

BCI-1 $((x * y) *(x * z)) *(z * y)=0$,
BCI-2 $x * 0=x$,
BCI-3 $x * y=0$ and $y * x=0$ imply $x=y$.
It is known that given a BCI-algebra $X$, the following identities are valid:

$$
\begin{align*}
& (x * y) * z=(x * z) * y  \tag{0.1}\\
& x * y=x *(x *(x * y))  \tag{0.2}\\
& 0 *(x * y)=(0 * x) *(0 * y)  \tag{0.3}\\
& (x * y) * x=0 * x \tag{0.4}
\end{align*}
$$

[^0]And $X$ with respect to its $B C I$-ordering $\leqslant$ forms a partially ordered set $(X ; \leqslant)$ satisfying the following quasi-identities:

$$
\begin{align*}
(x * y) *(x * z) & \leqslant z * y  \tag{0.5}\\
(x * z) *(y * z) & \leqslant x * y  \tag{0.6}\\
(x *(x * y)) *(x *(x * z)) & \leqslant y * z \tag{0.7}
\end{align*}
$$

where the binary relation $\leqslant$ on $X$ is defined as follows: $x \leqslant y$ if and only if $x * y=0$. Moreover, the following assertions hold: for any $x, y, z \in X$,

$$
\begin{array}{lll}
x \leqslant y & \text { implies } & z * y \leqslant z * x \\
x \leqslant y & \text { implies } & x * z \leqslant y * z \tag{0.9}
\end{array}
$$

A minimal element $a$ of $X$ means that $a$ is an element in $X$ such that $x \leqslant a$ (i.e., $x * a=0$ ) implies $x=a$ for any $x \in X$. Given a minimal element $a$ of $X$, the set $\{x \in X \mid x \geqslant a\}$ is called a branch of $X$, denoted by $V(a)$.

Given an element $c$ in $X$, the set $\{x \in X \mid x \leqslant c\}$ is called an initial section of $X$, denoted by $A(c)$.
Theorem 0.1 ([8], §1.3). Assume that $P$ is the set of all minimal elements of a BCIalgebra $X$. Then the collection $\{V(a) \mid a \in P\}$ of branches of $X$ forms a partition of $X$, that is, $X=\bigcup_{a \in P} V(a)$ and $V(a) \cap V(b)=\varnothing$ if $a \neq b$ for any $a, b \in P$. Moreover, the following fold: for any $x, y \in V(a)$,

$$
\begin{align*}
& 0 *(0 * x)=a  \tag{0.10}\\
& 0 *(x * y)=0 \tag{0.11}
\end{align*}
$$

Definition ([9], [11] and [10]). A BCI-algebra $X$ is called commutative if

$$
x \leqslant y \text { implies } x=y *(y * x) \text { for all } x, y \in X
$$

it is called positive implicative if

$$
(x *(x * y)) *(y * x)=x *(x *(y *(y * x))) \text { for all } x, y \in X
$$

it is called implicative if

$$
\begin{equation*}
x *(x * y)=(y *(y * x)) *(x * y) \text { for all } x, y \in X \tag{0.12}
\end{equation*}
$$

Theorem $0.2([8], \S 2.4)$. A BCI-algebra $X$ is commutative if and only if for any branch $V(a)$ of $X, x \in V(a)$ and $y \in V(a)$ imply

$$
\begin{equation*}
x *(x * y)=y *(y * x) \tag{0.13}
\end{equation*}
$$

Moreover, $(V(a) ; \leqslant)$ forms a lower semilattice such that for any $x, y \in V(a)$,

$$
\begin{align*}
x \wedge y & =y *(y * x)  \tag{0.14}\\
x * y & =x *(x \wedge y) \tag{0.15}
\end{align*}
$$

Theorem 0.3 ([1], Theorem 3.2). If $A(c)$ is an initial section of a commutative BCIalgebra $X$, then $(A(c) ; \leqslant)$ is a distributive lattice with

$$
x \wedge y=y *(y * x) \quad \text { and } \quad x \vee y=c *((c * x) \wedge(c * y))
$$

Theorem 0.4 ([3], Corollary 3). A BCI-algebra $X$ is positive implicative if and only if

$$
\begin{equation*}
x * y=((x * y) * y) *(0 * y) \text { for any } x, y \in X \tag{0.16}
\end{equation*}
$$

Thus

$$
\begin{equation*}
x * y=(x * y) * y \quad \text { if } y \geqslant 0 \tag{0.17}
\end{equation*}
$$

Theorem 0.5 ([11], Theorem 6). A BCI-algebra $X$ is implicative if and only if it is commutative and positive implicative.

1 An axiom system of implicative BCI-algebras Let's begin our discussion with giving an axiom system of implicative BCI-algebras.

Theorem 1.1. An algebra $(X ; *, 0)$ of type $(2,0)$ is an implicative BCI-algebra if and only if it satisfies the following identities:
(1) $x * 0=x$;
(2) $x * x=0$;
(3) $(x * y) * z=(x * z) * y$;
(4) $(x * z) *(x * y)=((y * z) *(y * x)) *(x * y)$.

Proof. Necessity. (1) is just BCI-2. Repeatedly applying BCI-2, we have

$$
x * x=((x * 0) *(x * 0)) *(0 * 0)
$$

Then BCI-1 implies $x * x=0$, (2) holding. By (0.1), (3) is true. By the definition of the implicativity of $X$, we have

$$
x *(x * y)=(y *(y * x)) *(x * y)
$$

Right $*$ multiplying both sides of the last identity by $z$, we derive

$$
(x *(x * y)) * z=((y *(y * x)) *(x * y)) * z
$$

Then (0.1) gives $(x * z) *(x * y)=((y * z) *(y * x)) *(x * y)$, showing (4).
Sufficiency. BCI-2 is just (1). Putting $z=0$ in (4) and using (1), we have

$$
\begin{equation*}
x *(x * y)=(y *(y * x)) *(x * y) \tag{1.1}
\end{equation*}
$$

which is the implicativity of $X$. It is easily seen from (1.1) and (1) that BCI-3 is true. It remains to show BCI-1. In fact, by (4), we have

$$
(x * y) *(x * z)=((z * y) *(z * x)) *(x * z)
$$

Right $*$ multiplying both sides of the last identity by $z * y$, we obtain

$$
\begin{equation*}
((x * y) *(x * z)) *(z * y)=(((z * y) *(z * x)) *(x * z)) *(z * y) \tag{1.2}
\end{equation*}
$$

By (3), the right side of (1.2) coincides with

$$
\begin{equation*}
(((z * y) *(z * y)) *(z * x)) *(x * z) \tag{1.3}
\end{equation*}
$$

By $(2),(z * y) *(z * y)=0=z * z$, then (1.3) is identical with

$$
\begin{equation*}
((z * z) *(z * x)) *(x * z) \tag{1.4}
\end{equation*}
$$

Using (3) once again, (1.4) is the same as

$$
\begin{equation*}
((z *(z * x)) *(x * z)) * z \tag{1.5}
\end{equation*}
$$

By (1.1), (1.5) is identical with $(x *(x * z)) * z$, that is, $(x * z) *(x * z)$ by (3). Now, since $(x * z) *(x * z)=0$ by (2), we see that (1.2) is equivalent to

$$
((x * y) *(x * z)) *(z * y)=0
$$

showing BCI-1. The proof is complete.
2 On branches of implicative BCI-algebras We now consider the branches of an implicative BCI-algebra. It is known very well that the identity $x *(y * x)=x$ is just the implicativity of BCK-algebras. It is interesting that the same identity holds in a branch of an implicative BCI-algebra.
Proposition 2.1. Let $X$ be a BCI-algebra. If $X$ is implicative, then for any branch $V(a)$ of $X, x \in V(a)$ and $y \in V(a)$ imply $x *(y * x)=x$.

Proof. Since $x, y \in V(a)$, we have $0 *(x * y)=0$ by (0.11). Then (0.4) gives

$$
\begin{equation*}
(x *(y * x)) * x=0 *(y * x)=0 \tag{2.1}
\end{equation*}
$$

On the other hand, replacing $y$ by $y * x$ in (0.12), we have

$$
\begin{equation*}
x *(x *(y * x))=((y * x) *((y * x) * x)) *(x *(y * x)) \tag{2.2}
\end{equation*}
$$

Also, since every implicative BCI-algebra is positive implicative, by (0.16), we derive

$$
\begin{equation*}
y * x=((y * x) * x) *(0 * x) \tag{2.3}
\end{equation*}
$$

Right $*$ multiplying both sides of $(2.3)$ by $(y * x) * x$, it follows

$$
\begin{equation*}
(y * x) *((y * x) * x)=(((y * x) * x) *(0 * x)) *((y * x) * x) \tag{2.4}
\end{equation*}
$$

By (0.4), the right side of $(2.4)$ is equal to $0 *(0 * x)$. Then

$$
\begin{equation*}
(y * x) *((y * x) * x)=0 *(0 * x) \tag{2.5}
\end{equation*}
$$

Right $*$ multiplying both sides of $(2.5)$ by $x *(y * x)$, it yields

$$
((y * x) *((y * x) * x)) *(x *(y * x))=(0 *(0 * x)) *(x *(y * x))
$$

Comparison with (2.2) gives

$$
x *(x *(y * x))=(0 *(0 * x)) *(x *(y * x))
$$

which means from (0.1) that

$$
\begin{equation*}
x *(x *(y * x))=(0 *(x *(y * x))) *(0 * x) \tag{2.6}
\end{equation*}
$$

Moreover, since $x, y \in V(a)$, by (0.3) and (0.11) as well as BCI-2, we obtain

$$
0 *(x *(y * x))=(0 * x) *(0 *(y * x))=(0 * x) * 0=0 * x
$$

Now, substituting $0 * x$ for $0 *(x *(y * x))$ in (2.6), and noticing $(0 * x) *(0 * x)=0$, the following holds:

$$
\begin{equation*}
x *(x *(y * x))=(0 * x) *(0 * x)=0 \tag{2.7}
\end{equation*}
$$

Combining (2.1) with (2.7) and using BCI-3, it follows $x *(y * x)=x$.

It is a pity that unlike Theorem 0.2 , the converse of Proposition 2.1 is not true as shown in the following counter example.

Example 2.1. The set $X=\{0,1,2,3\}$ together with the operation $*$ on $X$ given by the Cayley table

| $*$ | 0 | 1 | 2 | 3 |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 2 | 2 |
| 1 | 1 | 0 | 2 | 2 |
| 2 | 2 | 2 | 0 | 0 |
| 3 | 3 | 2 | 1 | 0 |

forms a BCI-algebra (see [6], the author H. Jiang denotes it by $I_{4-2-1}$ ). It is not difficult to see that the whole minimal elements of $X$ are 0 and 2 , and the branches $V(0)=\{0,1\}$ and $V(2)=\{2,3\}$. Now, it is easy to verify that for any branch $V(a)$ of $X, x \in V(a)$ and $y \in V(a)$ imply $x *(y * x)=x$. However, $X$ is not implicative. That is because

$$
3 *(3 * 1)=1 \neq 0=(1 *(1 * 3)) *(3 * 1)
$$

Nevertheless, we have still the next interesting fact.
Proposition 2.2. Let $X$ be a BCI-algebra. If for any branch $V(a)$ of $X, x \in V(a)$ and $y \in V(a)$ imply $x *(y * x)=x$, then $X$ is commutative.

Proof. Let $x$ and $y$ be any elements in $X$ such that $x \leqslant y$ (i.e., $x * y=0$ ). By Theorem 0.1 , there exists a minimal element $a$ of $X$ such that $x \in V(a)$. Since $a \leqslant x$ and $x \leqslant y$, we obtain $a \leqslant y$, that is, $y \geqslant a$. Then $y \in V(a)$. So our hypothesis gives $x *(y * x)=x$. Hence (0.6) implies

$$
x *(y *(y * x))=(x *(y * x)) *(y *(y * x)) \leqslant x * y=0
$$

In other words, $x \leqslant y *(y * x)$. The opposite inequality is naturally true. Therefore $x=y *(y * x)$, and $X$ is commutative.

As an implicative BCI-algebra $X$ must be commutative, according to Theorem 0.2 , every branch $V(a)$ of $X$ forms a lower semilattice $(V(a) ; \leqslant)$, thus the greatest lower bound of any two elements in $V(a)$ exists. And we have the following analogy.

Proposition 2.3. Let $X$ be an implicative BCI-algebra and $V(a)$ be a branch of $X$. Then for any $x, y, z \in V(a)$,
(1) $(x * y) \wedge(y * x)=0$;
(2) $(x \wedge y) * z=(x * z) \wedge(y * z)$;
(3) the least upper bound $(z * x) \vee(z * y)$ of $z * x$ and $z * y$ exists and

$$
z *(x \wedge y)=(z * x) \vee(z * y)
$$

Proof. (1) Since $x, y \in V(a)$, by (0.1) and Proposition 2.1, we have

$$
(y * x) *(x * y)=(y *(x * y)) * x=y * x
$$

Then (0.14) gives

$$
(x * y) \wedge(y * x)=(y * x) *((y * x) *(x * y))=(y * x) *(y * x)=0
$$

(2) Since $x \wedge y \leqslant x$ and $x \wedge y \leqslant y$, it is easy to see from (0.9) that $(x \wedge y) * z$ is a lower bound of $x * z$ and $y * z$. Let $t$ be any lower bound of $x * z$ and $y * z$. Then $t \leqslant x * z$ and $t \leqslant y * z$. By $t \leqslant x * z$ and (0.9), we have

$$
t *((x \wedge y) * z) \leqslant(x * z) *((x \wedge y) * z)
$$

Also, by (0.6) and (0.15), we obtain

$$
(x * z) *((x \wedge y) * z) \leqslant x *(x \wedge y)=x * y
$$

So, $t *((x \wedge y) * z) \leqslant x * y$. Similarly, $t *((x \wedge y) * z) \leqslant y * x$. Therefore (1) implies

$$
t *((x \wedge y) * z) \leqslant(x * y) \wedge(y * x)=0
$$

That is, $t \leqslant(x \wedge y) * z$. We have shown that $(x \wedge y) * z$ is the greatest lower bound of $x * z$ and $y * z$. Consequently, $(x \wedge y) * z=(x * z) \wedge(y * z)$.
(3) It is easy to verify from (0.8) that $z *(x \wedge y)$ is an upper bound of $z * x$ and $z * y$. Let $t$ be any upper bound of $z * x$ and $z * y$. Then $z * x \leqslant t$ and $z * y \leqslant t$. By $z * y \leqslant t$ and (0.8), we have $z * t \leqslant z *(z * y)$, that is, $x * t \leqslant y *(y * z)$ by (0.13). Then (0.9) gives

$$
\begin{equation*}
(z * t) *(y *(y * x)) \leqslant(y *(y * z)) *(y *(y * x)) \tag{2.8}
\end{equation*}
$$

By (0.1) and (0.14), the left side of (2.8) is equal to $(z *(x \wedge y)) * t$; by (0.7), the right side is less than or equal to $z * x$. So, $(z *(x \wedge y)) * t \leqslant z * x$. Thus (0.9) implies

$$
((z *(x \wedge y)) * t) * t \leqslant(z * x) * t
$$

Since $z * x \leqslant t$ and 0 is a minimal element of $X$, we derive

$$
\begin{equation*}
((z *(x \wedge y)) * t) * t=0 \tag{2.9}
\end{equation*}
$$

Also, since $z, x \in V(a)$, by ( 0.11 ), we have $0 *(z * x)=0$, namely, $0 \leqslant z * x$. Note that $z * x \leqslant t$, it follows $0 \leqslant t$, that is, $t \geqslant 0$. Hence (0.17) implies

$$
\begin{equation*}
(z *(x \wedge y)) * t=((z *(x \wedge y)) * t) * t \tag{2.10}
\end{equation*}
$$

Now, comparing (2.10) with (2.9), we derive $(z *(x \wedge y)) * t=0$, i.e., $z *(x \wedge y) \leqslant t$. We have shown that $z *(x \wedge y)$ is just the least upper bound of $z * x$ and $z * y$. Therefore $(z * x) \vee(z * y)$ exists and $z *(x \wedge y)=(z * x) \vee(z * y)$.

It is not difficult to see that two elements in a branch of an implicative BCI-algebra have generally not their least upper bound. If the least upper bound exists, we also have the following analogy.

Proposition 2.4. Let $x$ and $y$ be any elements in a branch $V(a)$ of a BCI-algebra $X$. If the least upper bound $x \vee y$ of $x$ and $y$ exists, then the following hold:
(1) $(x \vee y) * x=y * x$ and $(x \vee y) * y=x * y$;
(2) the least upper bound $(x * z) \vee(y * z)$ of $x * z$ and $y * z$ exists and

$$
(x \vee y) * z=(x * z) \vee(y * z) \quad \text { for any } z \in V(a)
$$

(3) $z *(x \vee y)=(z * x) \wedge(z * y)$ for any $z \in V(a)$.

Proof. (1) If $x \vee y$ exists, then there is $c \in X$ such that $c$ is an upper bound of $x$ and $y$. So $x$ and $y$ are in the initial section $A(c)$. Now, by Theorem 0.3 , we have

$$
\begin{equation*}
x \vee y=c *((c * x) \wedge(c * y)) \tag{2.11}
\end{equation*}
$$

Right $*$ multiplying both sides of (2.11) by $x$ and using (0.1), we obtain

$$
(x \vee y) * x=(c *((c * x) \wedge(c * y))) * x=(c * x) *((c * x) \wedge(c * y))
$$

By (0.15) and Theorem 1.1(4), it follows

$$
(c * x) *((c * x) \wedge(c * y))=(c * x) *(c * y)=((y * x) *(y * c)) *(c * y)
$$

Since $y \leqslant c$, the right side of the last expression is the same as $((y * x) * 0) *(c * y)$, namely, $(y *(c * y)) * x$ by BCI-2 and (0.1). Hence

$$
(x \vee y) * x=(y *(c * y)) * x
$$

Therefore $(x \vee y) * x=y * x$ by Proposition 2.1.
In a similar fashion, we can prove that $(x \vee y) * y=x * y$.
(2) It is obvious that $(x \vee y) * z$ is an upper bound of $x * z$ and $y * z$. Let $t$ be any upper bound of $x * z$ and $y * z$. Then $x * z \leqslant t$ and $y * z \leqslant t$. Now, putting (0.8), (0.6) and (1) together, it follows

$$
\begin{aligned}
& ((x \vee y) * z) * t \leqslant((x \vee y) * z) *(x * z) \leqslant(x \vee y) * x=y * x \\
& ((x \vee y) * z) * t \leqslant((x \vee y) * z) *(y * z) \leqslant(x \vee y) * y=x * y
\end{aligned}
$$

So Proposition 2.3(1) implies

$$
((x \vee y) * z) * t \leqslant(y * x) \wedge(x * y)=0
$$

Thus $(x \vee y) * z \leqslant t$. Hence $(x \vee y) * z$ is the least upper bound of $x * z$ and $y * z$. Therefore $(x * z) \vee(y * z)$ exists and $(x \vee y) * z=(x * z) \vee(y * z)$.
(3) From (0.5) and (1), we have

$$
\begin{aligned}
& (z * x) *(z *(x \vee y)) \leqslant(x \vee y) * x=y * x \\
& (z * y) *(z *(x \vee y)) \leqslant(x \vee y) * y=x * y
\end{aligned}
$$

Then

$$
\begin{equation*}
((z * x) *(z *(x \vee y))) \wedge((z * y) *(z *(x \vee y))) \leqslant(y * x) \wedge(x * y) \tag{2.12}
\end{equation*}
$$

Applying Proposition $2.3(2)$ to the left side of (2.12) and Proposition 2.3(1) to the right side, and noticing that 0 is a minimal element of $X$, it follows

$$
((z * x) \wedge(z * y)) *(z *(x \vee y))=0
$$

So, $(z * x) \wedge(z * y) \leqslant z *(x \vee y)$. The opposite inequality can be seen from (0.8). Therefore $z *(x \vee y)=(z * x) \wedge(z * y)$.

The next corollary is an immediate result of Proposition 2.4(2) and (0.15).
Corollary 2.5. Let $x$ and $y$ be any elements in a branch $V(a)$ of an implicative BCI-algebra $X$. If $x \vee y$ exists, then $(x * y) \vee(y * x)$ exists and

$$
(x \vee y) *(x \wedge y)=(x * y) \vee(y * x)
$$

3 On initial sections of implicative BCI-algebras Finally let's consider the initial sections of an implicative BCI-algebra. It is known that if $X$ is a BCK-algebra and $A(c)$ is an initial section of $X$, then $(A(c) ; \leqslant)$ forms a Boolean algebra (refer to [5], Theorem 12). It is interesting that the same conclusion is true if $X$ is an implicative BCI-algebra.

Theorem 3.1. Let $A(c)$ be an initial section of an implicative BCI-algebra $X$. Then $(A(c) ; \leqslant)$ is a Boolean algebra with $x \wedge y=y *(y * x), x \vee y=c *((c * x) \wedge(c * y))$ and $x^{\prime}=(c * x) *(0 * x)$ for any $x, y \in A(c)$.

Proof. As any implicative BCI-algebra is commutative, by Theorem $0.3,(A(c) ; \leqslant)$ is a distributive lattice with $x \wedge y=y *(y * x)$ and $x \vee y=c *((c * x) \wedge(c * y))$ for any $x, y \in A(c)$. Also, $c$ is clearly the unit element of the lattice $A(c)$. Moreover, it is easy to verify from Theorem 0.1 that there exists some branch $V(a)$ of $X$ such that $A(c) \subseteq V(a)$. Because $a$ is the least element of the branch $V(a)$, it is the zero element of the lattice $(A(c) ; \leqslant)$. It remains to show that $A(c)$ is a complemented lattice with $(c * x) *(0 * x)$ as the complement $x^{\prime}$ of $x$ for any $x \in A(c)$. Let $u$ denote $(c * x) *(0 * x)$. Then what we need to show is just the following facts:

$$
\text { (i) } u \in A(c) ; \quad \text { (ii) } x \wedge u=a ; \quad \text { (iii) } x \vee u=c
$$

In fact, by (0.6) and BCI-2, we have $(c * x) *(0 * x) \leqslant c * 0=c$, that is, $u \leqslant c$. Then $u \in A(c)$, (i) holding. To show (ii) and (iii), let's first assert that $u * x=c * x$. In fact, since $X$ is positive implicative, by (0.1) and (0.16), the following holds:

$$
((c * x) *(0 * x)) * x=((c * x) * x) *(0 * x)=c * x .
$$

That is, $u * x=c * x$, as asserted. Now, we have

$$
x \wedge u=u *(u * x)=u *(c * x)
$$

Because of $x \in V(a)$, by (0.4) and (0.10), we obtain

$$
u *(c * x)=((c * x) *(0 * x)) *(c * x)=0 *(0 * x)=a
$$

Therefore $x \wedge u=a$, showing (ii). Because $X$ is commutative and $u \leqslant c$, we derive $c *(c * u)=u$. Then $(c *(c * u)) * x=u * x$, that is, $(c * x) *(c * u)=u * x$ by (0.1). So, the fact that $u * x=c * x$ gives $(c * x) *(c * u)=c * x$. Left $*$ multiplying both sides of the last equality by $c * x$, it follows

$$
(c * x) *((c * x) *(c * u))=(c * x) *(c * x)
$$

That is, $(c * u) \wedge(c * x)=0$, in other words, $(c * x) \wedge(c * u)=0$. Therefore

$$
c *((c * x) \wedge(c * u))=c * 0=c
$$

Note that $x \vee u=c *((c * x) \wedge(c * u))$, it yields $x \vee u=c$, proving (iii).
A BCI-algebra $X$ is called locally bounded if every branch $V(a)$ of $X$ is bounded, i.e., there is $m_{a} \in V(a)$ such that $x \leqslant m_{a}$ for all $x \in V(a)$.

Corollary 3.2 ([10], Theorem 5). Assume that $X$ is a locally bounded implicative BCIalgebra. Then for every branch $V(a)$ of $X$, it with respect to the BCI-ordering $\leqslant$ forms a Boolean algebra ( $V(a) ; \leqslant)$.

## References

[1] Y. S. Huang, Notes on commutative BCI-algebras, Pure and Applied Math. 15, 3(1999), 27-32.
[2] Y. S. Huang, Characterizations of implicative BCI-algebras, Soochow J. of Math. 25, 4(1999), 375-386.
[3] Y. S. Huang, On positive and weakly positive implicative BCI-algebras, Southeast Asian Bulletin of Math. 26, 4(2002), 575-582.
[4] K. Iséki, On BCI-algebras, Math. Seminar Notes 8, 1980, 125-130.
[5] K. Iséki and S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japonica 23, 1(1978), 1-26.
[6] H. Jiang, Atlas of proper BCI-algebras of order $n \leqslant 5$, Math. Japonica 38, 3(1993), 589-591.
[7] H. S. Li, An axiom system of BCI-algebras, Math. Japonica 30, 1985, 351-352.
[8] J. Meng and Y. L. Liu, An introduction to BCI-algebras, Shaanxi Scientific and Technological Press, 2001.
[9] J. Meng and X. L. Xin, Commutative BCI-algebras, Math. Japonica 37, 3(1992), 569-572.
[10] J. Meng and X. L. Xin, Implicative BCI-algebras, Pure and Applied Math. 8, 2(1992), 99-103.
[11] J. Meng and X. L. Xin, Positive implicative BCI-algebras, Pure and Applied Math. 9, 1(1993), 19-22.

Department of Mathematics, Sanming College, Sanming, Fujian 365004, P. R. China
E-mail: smcaihy@126.com


[^0]:    2000 Mathematics Subject Classification. 06F35.
    Key words and phrases. implicative BCI-algebra, branch, initial section, lattice, Boolean algebra. *Supported by Fujian Province Natural Science Foundation Z0511050.

