ON A DISCRETE ARBITRATION PROCEDURE

Vladimir V.Mazalov, Alexander E.Mentcher and Julia S.Tokareva

Received October 31, 2005

Abstract

We derive the equilibrium in non-cooperative two-players zero-sum game intended to model of final-offer arbitration procedure in which the arbitrator's settlement is concentrated in odd number of points $\{-n,-(n-1), \ldots,-1,0,1, \ldots, n-1, n\}$.

1. Introduction

We consider a non-cooperative zero-sum game related with a model of final-offer arbitration procedure where two players L and M, interpreted here as Labour and Management, respectively, have a dispute on an improvement in the wage rate. Player L makes an offer x, and player M - an offer y. We shall assume that x and y are arbitrary real numbers from the interval $[A, B]$.

To solve the conflict we use the so-called final-offer arbitration scheme [1-3] developed by Farber (1980). If $x \leq y$, there is no conflict, and the players agree on a payoff equal to $(x+y) / 2$. If otherwise, $x>y$, the parties call in the arbitrator (A). Assume that the arbitrator has a settlement he would like to impose, denoted by α. Then, after observing the offers, x and y, the arbitrator simply chooses the offer that is closer to α. We suppose that α is a random variable. Assume, that the Manager wants to minimize the expected wage settlement imposed by the Arbitrator and the Labour wants to maximize it.

If $\alpha=a$ almost sure it is evident that the equilibrium is the pair of strategies (a, a). If α is a random variable with continuous distribution the equilibrium often consists of pure strategies [2-3]. If the distribution support of α is concentrated in two points or three points the solutions were derived in [4-6]. In this paper we analyse a case where the arbitrator's settlement is concentrated in odd number of points $\{-n,-(n-1), \ldots,-1,0,1, \ldots, n-1, n\}$.

Another approach to solve the conflict between Labour and Management like a multistage arbitration game with "random" arbitrator was developed in [7-8].

2. Problem statement

Suppose that α is a random variable that assumes the values $\{-n,-(n-1), \ldots,-1,0,1, \ldots$ $(n-1), n\}$ with equal probabilities $p=1 /(2 n+1)$. A non-cooperative game where the strategies of players L and M are arbitrary numbers $x, y \in[-a, a]$ is considered. The payoff in the game has form $H(x, y)=E H_{\alpha}(x, y)$, where

$$
H_{\alpha}(x, y)=\left\{\begin{array}{lll}
\frac{x+y}{2}, & \text { if } & x \leq y \tag{1}\\
x, & \text { if } & x>y,|x-\alpha|<|y-\alpha| \\
y, & \text { if } & x>y,|x-\alpha|>|y-\alpha| \\
\alpha, & \text { if } & x>y,|x-\alpha|=|y-\alpha|
\end{array}\right.
$$

We find that the equilibrium in the game lies among the mixed strategies. Denote $f(x)$ and $g(y)$ as player $L^{\prime} \mathrm{s}$ and M^{\prime} s mixed strategies respectively. Suppose that the distribution $g(y)(f(x))$ support lies on the negative (positive) semiaxis. That is,

$$
f(x) \geq 0, x \in[0, a], \int_{0}^{a} f(x) d x=1, \quad g(y) \geq 0, y \in[-a, 0], \int_{-a}^{0} g(y) d y=1 .
$$

By symmetry, it follows that the value of the game is equal to zero, and the optimum strategies must be symmetric in respect to the axis of ordinate, i.e. $g(y)=f(-y)$. It therefore suffices to build an optimum strategy for one of the players, e.g. L.

3. Optimal strategies

Theorem. For $a \in\left(0, \frac{2(n+1)^{2}}{2 n+1}\right]$ the optimal strategy is

$$
f(x)= \begin{cases}0, & 0 \leq x<\left(\frac{n}{n+1}\right)^{2} a \tag{2}\\ \frac{n \sqrt{a}}{2 \sqrt{x^{3}}}, & \left(\frac{n}{n+1}\right)^{2} a \leq x \leq a\end{cases}
$$

and for $a \in\left(\frac{2(n+1)^{2}}{2 n+1},+\infty\right)$

$$
f(x)= \begin{cases}0, & 0 \leq x<\frac{2 n^{2}}{2 n+1} \tag{3}\\ \frac{n(n+1)}{\sqrt{2(2 n+1)}} \frac{1}{\sqrt{x^{3}}} & \frac{2 n^{2}}{2 n+1} \leq x \leq \frac{2(n+1)^{2}}{2 n+1} \\ 0, & \frac{2(n+1)^{2}}{2 n+1}<x \leq a\end{cases}
$$

Proof. First, consider the case $a \in(0,2]$.
3.1. Case $0<a \leq 2$.

According to (1) the payoff of M for $y \in[-a, 0]$ is equal to

$$
H(f, y)=\frac{1}{2 n+1}\left[n \int_{0}^{a} y f(x) d x+\left(\int_{0}^{-y} x f(x) d x+\int_{-y}^{a} y f(x) d x\right)+n \int_{0}^{a} x f(x) d x\right]
$$

We shall be looking the strategy f in the following form

$$
f(x)= \begin{cases}0, & 0 \leq x<\alpha \tag{4}\\ \varphi(x), & \alpha \leq x \leq \beta \\ 0, & \beta<x \leq a\end{cases}
$$

where $\varphi(x)>0, \quad x \in[\alpha, \beta]$ and φ has a continuous derivative in (α, β).
The strategy (4) will be optimal if $H(f, y)=0$ for $y \in[-\beta,-\alpha]$ and $H(f, y) \geq 0$ for $y \in[-a,-\beta) \cup(-\alpha, 0]$. Notice that $H(f, 0)=\frac{n}{2 n+1} \int_{0}^{a} x f(x) d x>0$.

By $H(f,-\alpha)=H(f,-\beta)=0$ it yields

$$
\begin{aligned}
& H(f,-\alpha)=\frac{1}{2 n+1}\left[-(n+1) \alpha+n \int_{\alpha}^{\beta} x \varphi(x) d x\right]=0 \\
& H(f,-\beta)=\frac{1}{2 n+1}\left[-n \beta+(n+1) \int_{\alpha}^{\beta} x \varphi(x) d x\right]=0
\end{aligned}
$$

¿From the system it follows

$$
\int_{\alpha}^{\beta} x \varphi(x) d x=\frac{n+1}{n} \alpha=\frac{n}{n+1} \beta
$$

and $\beta=\left(\frac{n+1}{n}\right)^{2} \alpha$ or $\alpha=\left(\frac{n}{n+1}\right)^{2} \beta$.
For $y=-a, H(f,-a)=\frac{1}{2 n+1}[-n a+n \beta]=\frac{n}{2 n+1}(\beta-a)$. Consequently, if $\beta<a$ then $H(f,-a)<0$. Hence, $\beta=a$ and $\alpha=\left(\frac{n}{n+1}\right)^{2} a$, and

$$
\begin{equation*}
\int_{0}^{a} x f(x) d x=\int_{\alpha}^{\beta} x \varphi(x) d x=\frac{n}{n+1} a . \tag{5}
\end{equation*}
$$

Let us find the function $\varphi(x)$. The condition $H(f, y)=0, \quad y \in[\beta,-\alpha]$ yields $H^{\prime}(f, y)=$ $H^{\prime \prime}(f, y)=0$. So,

$$
H^{\prime}(f, y)=1+2 y f(-y)+\int_{-y}^{a} f(x) d x=0, H^{\prime \prime}(y)=3 f(-y)-2 y f^{\prime}(-y)=0
$$

Letting $y=-x$ we obtain the differential equation

$$
\begin{equation*}
3 f(x)+2 x f^{\prime}(x)=0 \tag{6}
\end{equation*}
$$

The solution is

$$
\begin{equation*}
f(x)=\frac{c}{\sqrt{x^{3}}} \tag{7}
\end{equation*}
$$

Because,

$$
1=\int_{0}^{a} f(x) d x=\int_{\left(\frac{n}{n+1}\right)^{2} a}^{a} \frac{c}{\sqrt{x^{3}}}=\frac{2 c}{n \sqrt{a}},
$$

we find c :

$$
c=\frac{n \sqrt{a}}{2} .
$$

Finally,

$$
f(x)= \begin{cases}0, & 0 \leq x<\left(\frac{n}{n+1}\right)^{2} a \\ n \frac{\sqrt{a}}{2 \sqrt{x^{3}}}, & \left(\frac{n}{n+1}\right)^{2} a \leq x \leq a\end{cases}
$$

Let us check the optimality conditions. For $y \in\left[-a,-\left(\frac{n}{n+1}\right)^{2} a\right]$ we have

$$
\begin{aligned}
& (2 n+1) H(f, y)=n y+\int_{\left(\frac{n}{n+1}\right)^{2} a}^{-y} n \frac{\sqrt{a}}{2 \sqrt{x}} d x+y \int_{-y}^{a} n \frac{\sqrt{a}}{2 \sqrt{x^{3}}} d x+\frac{n^{2}}{n+1} a \\
= & n y+n \sqrt{a}\left(\sqrt{-y}-\frac{n}{n+1} \sqrt{a}\right)-n \sqrt{a} y\left(\frac{1}{\sqrt{a}}-\frac{1}{\sqrt{-y}}\right)+\frac{n^{2}}{n+1} a=0 .
\end{aligned}
$$

For $y \in\left(-\left(\frac{n}{n+1}\right)^{2} a, 0\right]$

$$
(2 n+1) H(f, y)=n y+y+\frac{n^{2}}{n+1} a=(n+1)\left[y+\left(\frac{n}{n+1}\right)^{2} a\right]>0
$$

It proves the optimality of (2).
3.2. Case $2<a \leq \frac{2(n+1)^{2}}{2 n+1}$.

Let $a \in\left(2, \frac{2(n+1)^{2}}{2 n+1}\right]$. Consider $H(f, y)$ for $y \in\left[-a,-\left(\frac{n}{n+1}\right)^{2} a\right]$ with f satisfying (2). Because the support of f is $\left[\left(\frac{n}{n+1}\right)^{2} a, a\right]$ and $a \leq \frac{2(n+1)^{2}}{2 n+1}$ we have $a-\left(\frac{n}{n+1}\right)^{2} a \leq 2$.

Hence, for $y \in\left[-a,-\left(\frac{n}{n+1}\right)^{2} a\right]$
$(2 n+1) H(f, y)=n \int_{\left(\frac{n}{n+1}\right)^{2} a}^{a} y f(x) d x+\left(\int_{\left(\frac{n}{n+1}\right)^{2} a}^{-y} x f(x) d x+\int_{-y}^{a} y f(x) d x\right)+n \int_{\left(\frac{n}{n+1}\right)^{2} a}^{a} x f(x) d x$.
Differentiating it we obtain again the differential equation (5). It's solution is $f(x)$ of the form (2). It yields $H(f, y) \equiv 0$ for $y \in\left[-a,-\left(\frac{n}{n+1}\right)^{2} a\right]$.

Let us show that $H(f, y)>0$ for $y \in\left(-\left(\frac{n}{n+1}\right)^{2} a, 0\right]$. First, we determine the sign of $H(f, y)$ at the interval $\left[-\left(\frac{n}{n+1}\right)^{2} a,-\left(\frac{n}{n+1}\right)^{2} a+2\right]$.

If $y \in\left[-\left(\frac{n}{n+1}\right)^{2} a,-a+2\right]$, then

$$
\begin{aligned}
H(f, y) & =\frac{n+1}{2 n+1} y+\frac{n}{2 n+1} \int_{\left(\frac{n}{n+1}\right)^{2} a}^{a} x f(x) d x= \\
& =\frac{n+1}{2 n+1}\left[y+\left(\frac{n}{n+1}\right)^{2} a\right]>0 .
\end{aligned}
$$

For $y \in\left[-a+2,-\left(\frac{n}{n+1}\right)^{2} a+2\right]$

$$
\begin{aligned}
H(f, y)=\frac{n+1}{2 n+1} y & +\frac{1}{2 n+1}\left(\int_{\left(\frac{n}{n+1}\right)^{2} a}^{2-y} x f(x) d x+\int_{2-y}^{a} y f(x) d x\right)+ \\
& +\frac{n-1}{2 n+1} \int_{\left(\frac{n}{n+1}\right)^{2}{ }_{a}}^{a} x f(x) d x .
\end{aligned}
$$

Then

$$
H^{\prime}(f, y)=\frac{1}{2 n+1}\left[n+1+(2 y-2) f(2-y)+\int_{2-y}^{a} f(x) d x\right]=
$$

$$
\begin{gathered}
=\frac{1}{2 n+1}\left[n+1+\frac{(y-1) n \sqrt{a}}{\sqrt{(2-y)^{3}}}-n+\frac{n \sqrt{a}}{\sqrt{2-y}}\right]= \\
=\frac{1}{2 n+1}\left(1+\frac{n \sqrt{a}}{\sqrt{(2-y)^{3}}}\right)>0 .
\end{gathered}
$$

Hence, $H(f, y)>0$ for $y \in\left(-\left(\frac{n}{n+1}\right)^{2} a,-\left(\frac{n}{n+1}\right)^{2} a+2\right]$.
If $-\left(\frac{n}{n+1}\right)^{2} a+2 \geq 0$ it finishes the proof. Otherwise, we shift the interval to the right and show that $H(f, y)>0$ for $y \in\left(-\left(\frac{n}{n+1}\right)^{2} a+2,-\left(\frac{n}{n+1}\right)^{2} a+4\right]$, etc. So, we prove that (2) is optimal also for $a \in\left(2, \frac{2(n+1)^{2}}{2 n+1}\right]$.
3.3. \quad Case $\frac{2(n+1)^{2}}{2 n+1}<a \leq \infty$.

Suppose now that $a \in\left(\frac{2(n+1)^{2}}{2 n+1}, \infty\right)$. In this case the form of $H(f, y)$ is more complicated. As an example we consider the case with infinite horyzon $a=\infty$.

Suppose that the player L uses the strategy (3) and find the payoff function $H(f, y)$. For simplicity denote $\alpha=\frac{2 n^{2}}{2 n+1}$ and $\beta=\alpha+2=\frac{2(n+1)^{2}}{2 n+1}$. Then, for $y \in(-\infty,-2 n-\beta]$

$$
H(f, y)=\int_{\alpha}^{\beta} x f(x) d x=\frac{2 n(n+1)}{2 n+1}>0
$$

Let $k=3\left[\frac{n}{2}\right]+2$ if n is odd and $k=3 \frac{n}{2}$ if n is even. For $y \in[-2 n+2 r-\beta,-2 n+2 r-\alpha]$ where $r=0,1, \ldots, n, \ldots, k-1$, and for $y \in[-2 n+2 r-\beta, 0]$, where $r=k$, we find

$$
\begin{align*}
H(f, y) & =\frac{r}{2 n+1} y+\frac{1}{2 n+1}\left[\int_{\alpha}^{-2 n+2 r-y} x f(x) d x+\int_{-2 n+2 r-y}^{\beta} y f(x) d x\right]+\frac{2 n-r}{2 n+1} \int_{\alpha}^{\beta} x f(x) d x \\
& =\int_{\alpha}^{\beta} x f(x) d x-\frac{r}{2 n+1} \int_{\alpha}^{\beta}(x-y) f(x) d x-\frac{1}{2 n+1} \int_{-2 n+2 r-y}^{\beta}(x-y) f(x) d x \tag{8}
\end{align*}
$$

Differentiating (8) with f of the form (2) we obtain

$$
\begin{align*}
H^{\prime}(f, y)=\frac{r}{2 n+1} & +\frac{1}{2 n+1} \int_{-2 n+2 r-y}^{\beta} f(x) d x+\frac{1}{2 n+1}(2 y+2 n-2 r) f(-2 n+2 r-y) \\
& =\frac{r-n}{2 n+1}\left(1+\frac{2 n(n+1)}{\sqrt{2(2 n+1)(-2 n+2 r-y)^{3}}}\right) \tag{9}
\end{align*}
$$

It follows from (9) that in the interval $y \in[-\beta,-\alpha]$ where $r=n$ the expected payoff $H(f, y)$ is constant and because

$$
\begin{gathered}
H(f, \beta)=\int_{\alpha}^{\beta} x f(x) d x-\frac{n}{2 n+1} \int_{\alpha}^{\beta}(x+\beta) f(x) d x \\
=\frac{n+1}{2 n+1} \int_{\alpha}^{\beta} x f(x) d x-\frac{n}{2 n+1} \beta=\frac{n+1}{2 n+1} \frac{2 n(n+1)}{2 n+1}-\frac{n}{2 n+1} \frac{2(n+1)^{2}}{2 n+1}=0
\end{gathered}
$$

it yields $H(f, y) \equiv 0$ for $y \in[-\beta,-\alpha]$.
For $r<n(9)$ gives $H^{\prime}(f, y)<0$ and for $r>n H^{\prime}(f, y)>0$ in the intervals $y \in$ $[-2 n+2 r-\beta,-2 n+2 r-\alpha]$.

Consequently, $H(f, y) \geq 0$ for all y. That proves the optimality of the strategy (3).
The full proof of the theorem for $a \in\left(\frac{2(n+1)^{2}}{2 n+1}, \infty\right)$ is derived by the same analysis like in the case $a=\infty$.

4. Conclusion

We see that the optimal strategies in this discrete arbitration game with uniform distribution are randomized. It is different from the solution in the continuous version of the final-offer arbitration procedure with uniform distribution considered in [2-3] where the optimal strategies of the players are concentrated at the extreme points of the interval $[-a, a]$. But if $a=n$ it follows from Theorem that optimal strategy (2) has non-zero measure only at the interval $\left[\left(\frac{n}{n+1}\right)^{2} a, a\right]$ which size tends to zero for large n. So, for large n the solutions of discrete and continuous versions of the arbitration game are similar.

REFERENCES

1. H. Farber, An analysis of final-offer arbitration, Journal of conflict resolution 35 (1980), 683-705.
2. K. Chatterjee, Comparison of arbitration procedures: Models with complete and incomplete information, IEEE Transactions on Systems, Man, and Cybernetics smc-11, no. 2 (1981), 101-109.
3. R. Gibbons, A Primer in Game Theory, Prentice Hall, 1992.
4. D.M. Kilgour, Game-theoretic properties of final-offer arbitration, Group Decision and Negot. 3 (1994), 285-301.
5. V.V. Mazalov, A.A. Zabelin, Equilibrium in an arbitration procedure, Advances in Dynamic Games 7 (2004), Birkhauser, 151-162.
6. V.V.Mazalov, A.E.Mentcher, J.S.Tokareva, On a discrete arbitration procedure in three points, Game Theory and Applications 11 (2005), Nova Science Publishers, N.Y., 87-91.
7. M.Sakaguchi, A time-sequential game related to an arbitration procedure, Math. Japonica 29, no. 3 (1984), 491-502.
8. V.V.Mazalov, M.Sakaguchi, A.A.Zabelin, Multistage arbitration game with random offers, Game Theory and Applications 8 (2002), Nova Science Publishers, N.Y., 95106.

Vladimir V.Mazalov:
Institute of Applied Mathematical Research, Karelian Research Centre, Petrozavodsk, Russia. E-mail: vmazalov@krc.karelia.ru

Alexander E.Mentcher and Julia S.Tokareva: Zabaikalye State Pedagogical University, Chita, Russia. E-mail: jtokareva@zabspu.ru

