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Abstract. We derive the equilibrium in non-cooperative two-players zero-sum game
intended to model of final-offer arbitration procedure in which the arbitrator’s settle-
ment is concentrated in odd number of points {−n,−(n − 1), ...,−1, 0, 1, ..., n − 1, n}.

1. Introduction

We consider a non-cooperative zero-sum game related with a model of final-offer arbitra-
tion procedure where two players L and M , interpreted here as Labour and Management,
respectively, have a dispute on an improvement in the wage rate. Player L makes an offer
x, and player M - an offer y. We shall assume that x and y are arbitrary real numbers from
the interval [A,B].

To solve the conflict we use the so-called final-offer arbitration scheme [1-3] developed
by Farber (1980). If x ≤ y, there is no conflict, and the players agree on a payoff equal
to (x + y)/2. If otherwise, x > y, the parties call in the arbitrator (A). Assume that the
arbitrator has a settlement he would like to impose, denoted by α. Then, after observing
the offers, x and y, the arbitrator simply chooses the offer that is closer to α. We suppose
that α is a random variable. Assume, that the Manager wants to minimize the expected
wage settlement imposed by the Arbitrator and the Labour wants to maximize it.

If α = a almost sure it is evident that the equilibrium is the pair of strategies (a, a). If
α is a random variable with continuous distribution the equilibrium often consists of pure
strategies [2-3]. If the distribution support of α is concentrated in two points or three points
the solutions were derived in [4-6]. In this paper we analyse a case where the arbitrator’s
settlement is concentrated in odd number of points {−n,−(n− 1), ...,−1, 0, 1, ..., n− 1, n}.

Another approach to solve the conflict between Labour and Management like a multi-
stage arbitration game with ”random” arbitrator was developed in [7-8].

2. Problem statement

Suppose that α is a random variable that assumes the values {−n,−(n−1), ...,−1, 0, 1, ...
(n − 1), n} with equal probabilities p = 1/(2n + 1). A non-cooperative game where the
strategies of players L and M are arbitrary numbers x, y ∈ [−a, a] is considered. The payoff
in the game has form H(x, y) = EHα(x, y), where

Hα(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

x+y
2 , if x ≤ y

x, if x > y, |x − α| < |y − α|
y, if x > y, |x − α| > |y − α|
α, if x > y, |x − α| = |y − α|

(1)
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We find that the equilibrium in the game lies among the mixed strategies. Denote f(x)
and g(y) as player L′s and M ′s mixed strategies respectively. Suppose that the distribution
g(y)(f(x)) support lies on the negative (positive) semiaxis. That is,

f(x) ≥ 0, x ∈ [0, a],
∫ a

0

f(x)dx = 1, g(y) ≥ 0, y ∈ [−a, 0],
∫ 0

−a

g(y)dy = 1.

By symmetry, it follows that the value of the game is equal to zero, and the optimum
strategies must be symmetric in respect to the axis of ordinate, i.e. g(y) = f(−y). It
therefore suffices to build an optimum strategy for one of the players, e.g. L.

3. Optimal strategies

Theorem. For a ∈
(

0, 2(n+1)2

2n+1

]
the optimal strategy is

f(x) =

{
0, 0 ≤ x < ( n

n+1 )2a,
n
√

a

2
√

x3 , ( n
n+1 )2a ≤ x ≤ a

(2)

and for a ∈
(

2(n+1)2

2n+1 , +∞
)

f(x) =

⎧⎪⎪⎨
⎪⎪⎩

0, 0 ≤ x < 2n2

2n+1 ,
n(n+1)√
2(2n+1)

1√
x3

2n2

2n+1 ≤ x ≤ 2(n+1)2

2n+1 ,

0, 2(n+1)2

2n+1 < x ≤ a.

(3)

Proof. First, consider the case a ∈ (0, 2].

3.1. Case 0 < a ≤ 2.

According to (1) the payoff of M for y ∈ [−a, 0] is equal to

H(f, y) =
1

2n + 1

[
n

∫ a

0

yf(x)dx +

⎛
⎝ −y∫

0

xf(x)dx +

a∫
−y

yf(x)dx

⎞
⎠+ n

∫ a

0

xf(x)dx

]
.

We shall be looking the strategy f in the following form

f(x) =

⎧⎨
⎩

0, 0 ≤ x < α,
ϕ(x), α ≤ x ≤ β,
0, β < x ≤ a,

(4)

where ϕ(x) > 0, x ∈ [α, β] and ϕ has a continuous derivative in (α, β).
The strategy (4) will be optimal if H(f, y) = 0 for y ∈ [−β,−α] and H(f, y) ≥ 0 for

y ∈ [−a,−β) ∪ (−α, 0]. Notice that H(f, 0) = n
2n+1

∫ a

0 xf(x)dx > 0.
By H(f,−α) = H(f,−β) = 0 it yields

H(f,−α) =
1

2n + 1

[
−(n + 1)α + n

∫ β

α

xϕ(x)dx

]
= 0,

H(f,−β) =
1

2n + 1

[
−nβ + (n + 1)

∫ β

α

xϕ(x)dx

]
= 0.
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¿From the system it follows ∫ β

α

xϕ(x)dx =
n + 1

n
α =

n

n + 1
β

and β = (n+1
n )2α or α = ( n

n+1 )2β.
For y = −a, H(f,−a) = 1

2n+1 [−na + nβ] = n
2n+1 (β − a). Consequently, if β < a then

H(f,−a) < 0. Hence, β = a and α =
(

n
n+1

)2

a, and

∫ a

0

xf(x)dx =
∫ β

α

xϕ(x)dx =
n

n + 1
a. (5)

Let us find the function ϕ(x). The condition H(f, y) = 0, y ∈ [β,−α] yields H ′(f, y) =
H ′′(f, y) = 0. So,

H ′(f, y) = 1 + 2yf (−y) +
∫ a

−y

f(x)dx = 0, H ′′(y) = 3f (−y)− 2yf ′(−y) = 0.

Letting y = −x we obtain the differential equation

3f (x) + 2xf ′(x) = 0. (6)

The solution is
f(x) =

c√
x3

. (7)

Because,

1 =
∫ a

0

f(x)dx =

a∫
( n

n+1)
2
a

c√
x3

=
2c

n
√

a
,

we find c:

c =
n
√

a

2
.

Finally,

f(x) =

⎧⎪⎨
⎪⎩

0, 0 ≤ x <
(

n
n+1

)2

a,

n
√

a

2
√

x3 ,
(

n
n+1

)2

a ≤ x ≤ a.

Let us check the optimality conditions. For y ∈ [−a,−
(

n
n+1

)2

a] we have

(2n + 1)H(f, y) = ny +

−y∫
( n

n+1)
2
a

n

√
a

2
√

x
dx + y

∫ a

−y

n

√
a

2
√

x3
dx +

n2

n + 1
a

= ny + n
√

a

(√−y − n

n + 1
√

a

)
− n

√
ay

(
1√
a
− 1√−y

)
+

n2

n + 1
a = 0.

For y ∈ (−
(

n
n+1

)2

a, 0]

(2n + 1)H(f, y) = ny + y +
n2

n + 1
a = (n + 1)

[
y +

(
n

n + 1

)2

a

]
> 0.
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It proves the optimality of (2).

3.2. Case 2 < a ≤ 2(n+1)2

2n+1 .

Let a ∈
(
2, 2(n+1)2

2n+1

]
. Consider H(f, y) for y ∈

[
−a,−

(
n

n+1

)2

a

]
with f satisfying (2).

Because the support of f is
[(

n
n+1

)2

a, a

]
and a ≤ 2(n+1)2

2n+1 we have a −
(

n
n+1

)2

a ≤ 2.

Hence, for y ∈ [−a,−
(

n
n+1

)2

a]

(2n+1)H(f, y) = n

a∫
( n

n+1 )
2
a

yf(x)dx+

⎛
⎜⎜⎝

−y∫
( n

n+1 )
2
a

xf(x)dx +

a∫
−y

yf(x)dx

⎞
⎟⎟⎠+n

a∫
( n

n+1 )
2
a

xf(x)dx.

Differentiating it we obtain again the differential equation (5). It’s solution is f(x) of the

form (2). It yields H(f, y) ≡ 0 for y ∈
[
−a,−

(
n

n+1

)2

a

]
.

Let us show that H(f, y) > 0 for y ∈
(
−
(

n
n+1

)2

a, 0
]
. First, we determine the sign of

H(f, y) at the interval

[
−
(

n

n + 1

)2

a,−
(

n

n + 1

)2

a + 2

]
.

If y ∈
[
−
(

n

n + 1

)2

a,−a + 2

]
, then

H(f, y) =
n + 1
2n + 1

y +
n

2n + 1

a∫
�

n
n+1

�2
a

xf(x) dx =

=
n + 1
2n + 1

[
y +

(
n

n + 1

)2

a

]
> 0.

For y ∈
[
−a + 2,−

(
n

n + 1

)2

a + 2

]

H(f, y) =
n + 1
2n + 1

y +
1

2n + 1

⎛
⎜⎜⎜⎝

2−y∫
�

n
n+1

�2
a

xf(x) dx +

a∫
2−y

yf(x) dx

⎞
⎟⎟⎟⎠+

+
n − 1
2n + 1

a∫
�

n
n+1

�2
a

xf(x) dx.

Then

H ′(f, y) =
1

2n + 1

⎡
⎣n + 1 + (2y − 2)f(2 − y) +

a∫
2−y

f(x) dx

⎤
⎦ =
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=
1

2n + 1

[
n + 1 +

(y − 1)n
√

a√
(2 − y)3

− n +
n
√

a√
2 − y

]
=

=
1

2n + 1

(
1 +

n
√

a√
(2 − y)3

)
> 0.

Hence, H(f, y) > 0 for y ∈
(
−
(

n
n+1

)2

a,−
(

n
n+1

)2

a + 2
]
.

If −
(

n
n+1

)2

a + 2 ≥ 0 it finishes the proof. Otherwise, we shift the interval to the right

and show that H(f, y) > 0 for y ∈
(
−
(

n
n+1

)2

a + 2,−
(

n
n+1

)2

a + 4
]
, etc. So, we prove

that (2) is optimal also for a ∈ (2, 2(n+1)2

2n+1 ].

3.3. Case 2(n+1)2

2n+1 < a ≤ ∞.

Suppose now that a ∈ (2(n+1)2

2n+1 ,∞). In this case the form of H(f, y) is more complicated.
As an example we consider the case with infinite horyzon a = ∞.

Suppose that the player L uses the strategy (3) and find the payoff function H(f, y).
For simplicity denote α = 2n2

2n+1 and β = α + 2 = 2(n+1)2

2n+1 . Then, for y ∈ (−∞,−2n − β]

H(f, y) =
∫ β

α

xf(x)dx =
2n(n + 1)

2n + 1
> 0.

Let k = 3
[

n
2

]
+2 if n is odd and k = 3n

2 if n is even. For y ∈ [−2n+2r−β,−2n+2r−α]
where r = 0, 1, . . . , n, . . . , k − 1, and for y ∈ [−2n + 2r − β, 0], where r = k, we find

H(f, y) =
r

2n + 1
y+

1
2n + 1

[∫ −2n+2r−y

α

xf(x)dx +
∫ β

−2n+2r−y

yf(x)dx

]
+

2n − r

2n + 1

∫ β

α

xf(x)dx

=
∫ β

α

xf(x)dx − r

2n + 1

∫ β

α

(x − y)f(x)dx − 1
2n + 1

∫ β

−2n+2r−y

(x − y)f(x)dx. (8)

Differentiating (8) with f of the form (2) we obtain

H ′(f, y) =
r

2n + 1
+

1
2n + 1

β∫
−2n+2r−y

f(x)dx +
1

2n + 1
(2y + 2n − 2r)f(−2n + 2r − y)

=
r − n

2n + 1

(
1 +

2n(n + 1)√
2(2n + 1)(−2n + 2r − y)3

)
. (9)

It follows from (9) that in the interval y ∈ [−β,−α] where r = n the expected payoff
H(f, y) is constant and because

H(f, β) =
∫ β

α

xf(x)dx − n

2n + 1

∫ β

α

(x + β)f(x)dx

=
n + 1
2n + 1

∫ β

α

xf(x)dx − n

2n + 1
β =

n + 1
2n + 1

2n(n + 1)
2n + 1

− n

2n + 1
2(n + 1)2

2n + 1
= 0
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it yields H(f, y) ≡ 0 for y ∈ [−β,−α].
For r < n (9) gives H ′(f, y) < 0 and for r > n H ′(f, y) > 0 in the intervals y ∈

[−2n + 2r − β,−2n + 2r − α].
Consequently, H(f, y) ≥ 0 for all y. That proves the optimality of the strategy (3).
The full proof of the theorem for a ∈ (2(n+1)2

2n+1 ,∞) is derived by the same analysis like
in the case a = ∞.

4. Conclusion

We see that the optimal strategies in this discrete arbitration game with uniform dis-
tribution are randomized. It is different from the solution in the continuous version of the
final-offer arbitration procedure with uniform distribution considered in [2-3] where the op-
timal strategies of the players are concentrated at the extreme points of the interval [−a, a].
But if a = n it follows from Theorem that optimal strategy (2) has non-zero measure only at

the interval
[(

n
n+1

)2

a, a

]
which size tends to zero for large n. So, for large n the solutions

of discrete and continuous versions of the arbitration game are similar.
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