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L2-BOUNDEDNESS OF MARCINKIEWICZ INTEGRALS ALONG
SURFACES WITH VARIABLE KERNELS
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Abstract. In this paper, we give the L2 estimates for the Marcinkiewicz integral
with rough variable kernels associated to surfaces. As corollaries of this result, we
show that similar properties still hold for parametric Littlewood-Paley area integral
and parametric g∗

λ functions with rough variable kernels. We also show some sharp
difference betweeen properties of singular integrals and the Marcinkiewicz integral with
rough variable kernels. Some of the results are extensions of some known results.

1 Introduction In order to study the elliptic partial differential equations of order two
with variable coefficients, A. P. Calderón and A. Zygmund [2] defined and studied the L2

boundedness of singular integrals T with variable kernels. In 1980, N. E. Aguilera and
E. O. Harboure [1] studied the problem of pointwise convergence of singular integral and
the L2 bounds of Hardy-Littlewood maximal function with variable kernels. In 2002, L.
Tang and D. C. Yang [16] gave the L2 boundedness of the singular integrals with rough
variable kernels associated to surfaces. In order to state more precisely, first we give some
definitions.
Definition 1. Let k(x, y) : R

n × R
n\{0} → R. Then k(x, y) is said to be a variable C-Z

kernel if

(a) k(x, y) is positively homogeneous in y of degree −n, namely k(x, λy) = λ−nk(x, y) for
any λ > 0;

(b)
∫

Sn−1 k(x, y′)dσ(y′) = 0 for a.e. x ∈ R
n.

Define the variable Calderón-Zygmund singular integral operator TΦ associated to sur-
faces of the form {x = Φ(|y|)y′} by

TΦ(f)(x) = p.v.

∫
Rn

k(x, y)f(x− Φ(|y|)y′)dy(1.1)

for f ∈ C∞
0 (Rn). The truncated maximal operator T ∗

Φ is defined by

T ∗
Φ(f)(x) = sup

ε>0
|
∫
|y|>ε

k(x, y)f(x− Φ(|y|)y′)dy|

Obviously, if we take Φ(|y|) = |y| for y ∈ R
n\{0}, then TΦ = T is just the singular

integral operator studied by A. P. Calderón and A. Zygmund in [2].
L. Tang and D. C. Yang gave the following result:
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Theorem A ([16]). Suppose k(x, y) be a variable kernel as in Definition 1 and satisfies for
some p > 2(n− 1)/n

∫
Sn−1

|k(x, y′)|pdσ(y′) ≤ C1 for a.e. x ∈ R
n.

Let Φ(t) be a nonnegative (or non-positive) C1 function on (0,∞) satisfying:

(c) Φ is strictly increasing (or decreasing);

(d) Φ(t)
t = C2Φ′(t)ϕ(t) for all t ∈ (0,∞), ϕ is defined on (0,∞) which is a monotonic

and uniformly bounded function;

Then T ∗
Φ is bounded on L2(Rn) and TΦ can be uniquely extended to be a bounded operator

on L2(Rn). Moreover, for all f ∈ L2(Rn),

‖TΦ(f)‖2 ≤ C‖f‖2 and ‖T ∗
Φ‖2 ≤ C‖f‖2,

where the constant C is independent of f .

In order to state other related results, let’s first give some definitions.
Definition 2. Let Sn−1 be the unit sphere of R

n(n ≥ 2) equipped with Lebesgue measure
dσ = dσ(x′). A function Ω(x, y) defined on R

n ×R
n is said in L∞(Rn)×Lq(Sn−1) (q ≥ 1)

if

(e) Ω(x, λy) = Ω(x, y), for any x, y ∈ R
n and λ > 0;

(f) ‖Ω‖L∞×Lq(Sn−1) = supx∈Rn

( ∫
Sn−1 |Ω(x, y′)|qdσ(y′)

)1/q

< ∞, where y′ = y/|y| for

any y ∈ R
n\{0}.

Now, we define the Marcinkiewicz integral with rough variable kernels associated with
surfaces of the form {x = Φ(|y|)y′} by

µΦ
Ω(f)(x) =

( ∫ ∞

0

|FΩ,t(x)|2 dt
t3

)1/2

,

where

FΩ,t(x) =
∫
|y|≤t

Ω(x, y)
|y|n−1

f(x− Φ(|y|)y′)dy.

If Φ(|y|) = |y|, we denote µΦ
Ω = µΩ. Then µΩ is just the Marcinkiewicz integral of higher

dimension which was first defined and studied by E. M. Stein [11] in 1958. Since then, many
works have been done about this integral (See for example, [4], [5], [8]). In 2005, Y. Ding,
C. Lin and S. Shao [6] studied the L2 boundedness of the operator µΩ when Ω satisfies (e),
(f) and

∫
Sn−1

Ω(x, y′)dσ(y′) = 0.(1.2)

Theorem B ([6]). Suppose that Ω ∈ L∞(Rn) × Lq(Sn−1) (q > 2(n − 1)/n) and satisfies
(1.2). Then there is a constant C such that ‖µΩ(f)‖2 ≤ C‖f‖2, where the constant C is
independent of f .
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Therefore, it is natural to ask if the results in Theorem A still hold or not for the
Marcinkiewicz integral with rough variable kernels.

The main purpose of this paper is to give a positive answer to the above question. We
get the following L2 estimates for Marcinkiewicz integrals with rough variable kernels along
surfaces :

Theorem 1. Suppose that Ω ∈ L∞(Rn) × Lq(Sn−1) (q > 2(n − 1)/n) and satisfies (1.2).
Let Φ be a positive and strictly increasing (or negative and decreasing) function and satisfy
Φ(t)

t = C2Φ′(t)ϕ(t) for all t ∈ (0,∞), where ϕ is a function defined on (0,∞) and there
exists two constants δ, M such that 0 < δ ≤ ϕ(t) ≤ M . Suppose moreover ϕ satisfies one
of the following conditions:

(i) tϕ′(t) is bounded;

(ii) ϕ is a monotonic function.

Then there is a constant C such that ‖µΦ
Ω(f)‖2 ≤ C‖f‖2, where constant C is independent

of f .

Remark 1. There is no including relationship between condition (i) and condition (ii), this
can be seen from the examples given in section 2. We also must point out that C2 is positive
under the condition of Φ and ϕ in Theorem 1.

Remark 2. In 1997, D. Fan and Y. Pan [7] studied the Lp (p > 1) boundedness of the
singular integral along surface without the variable kernels. We note that in their paper,
the conditions assumed on the function ϕ, are much stronger than the condition (i) in
Theorem 1 (with ϕ ∈ L∞).

By Remark 1, it is natural to ask whether Theorem A still hold or not under the condition
(i) in Theorem 1. The following theorem gives a positive answer to this question.

Theorem 2. Let Φ, ϕ, k(x, y) be the same as in Theorem A, except the monotonicity of ϕ.
If the function ϕ satisfies the condition that tϕ′(t) is bounded, then Theorem A still holds.

As another main purpose of this paper, we will show below some different properties be-
tween singular integrals and the Marcinkiewicz integral. Let {Yk,j} (k ≥ 1, j = 1, 2, ...,Dk)
be the complete system of normalized surface spherical harmonics of degree k. Define

µΦ
Yk,j

(f)(x) =
( ∫ ∞

0

∣∣∣∣
∫
|y|≤t

Yk,j(y′)
|y|n−1

f(x− Φ(|y|)y′)dy
∣∣∣∣
2
dt

t3

)1/2

.

Then we have

Theorem 3. Let Φ(t) = t−α for α > 0. Then L2 boundedness of µΦ
Yk,j

doesn’t hold.

Remark 3. Note that Φ(t) = tα, α < 0 satisfies the condition in Theorem A, however The-
orem 3 shows certain different properties between singular integrals and the Marcinkiewicz
integral with variable kernels.

Our results can be extended to the parametric Marcinkiewicz integrals, parametric area
integral and parametric µ∗

λ function, which are defined by

µΦ,σ
Ω (f)(x) =

( ∫ ∞

0

∣∣∣∣
∫
|y|≤t

Ω(x, y)
|y|n−σ

f(x− Φ(|y|)y′)dy
∣∣∣∣
2
dt

t1+2σ

)1/2

,
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µΦ,σ
S (f)(x) =

( ∫∫
Γ(x)

∣∣∣∣ 1
tσ

∫
|z|<t

Ω(y, z)
|z|n−σ

f(y − Φ(|z|)z′)dz
∣∣∣∣
2
dydt

tn+1

)1/2

,

µ∗,σ
λ,Φ(f)(x)

=
( ∫∫

R
n+1
+

(
t

t+ |x− y|
)λn∣∣∣∣ 1

tσ

∫
|z|<t

Ω(y, z)
|z|n−σ

f(y − Φ(|z|)z′)dz
∣∣∣∣
2
dydt

tn+1

)1/2

,

µΦ,σ
Yk,j

(f)(x) =
( ∫ ∞

0

∣∣∣∣
∫
|y|≤t

Yk,j(y′)
|y|n−σ

f(x− Φ(|y|)y′)dy
∣∣∣∣
2
dt

t1+2σ

)1/2

,

µΦ,σ
S,Yk,j

(f)(x) =
( ∫∫

Γ(x)

∣∣∣∣ 1
tσ

∫
|z|<t

Yk,j(z′)
|z|n−σ

f(y − Φ(|z|)z′)dz
∣∣∣∣
2
dydt

tn+1

)1/2

,

µ∗,σ
λ,Yk,j

(f)(x)

=
(∫∫

R
n+1
+

(
t

t+ |x− y|
)λn∣∣∣∣ 1

tσ

∫
|z|<t

Yk,j(z′)
|z|n−σ

f(y − Φ(|z|)z′)dz
∣∣∣∣
2
dydt

tn+1

)1/2

,

where Γ(x) = {(y, t) ∈ R
n+1
+ : |x− y| < t} and λ > 1.

We get the following results:

Theorem 4. Let σ > 0. Then Theorem 1 still holds for the parametric operator µΦ,σ
Ω , µΦ,σ

S

and µ∗,σ
λ,Φ.

Theorem 5. Suppose σ ≥ 0 and Φ(t) = t−α for α > 0, or σ < 0 and Φ(t) = tα for α > 0.
Then L2 boundedness of µΦ,σ

Y (f), µΦ,σ
S,Y (f) and µ∗,σ

λ,Y (f) doesn’t hold.

2 Proof of Theorem 1 We begin with recalling a known lemma. This lemma can be
obtained by (2.19) in [15, p. 152] and Theorem 3.10 in [15, p. 158] (see also [16]).

Lemma 2.1 ([15]). Let n ≥ 2, k ≥ 0 and P (y) be a spherical harmonics of degree k. Then

∫
Sn−1

P (y′)e−ix·y′
dσ(y′) = (−i)k(2π)

n
2
Jn

2 +k−1(|x|)
|x|n

2 −1
P (

x

|x| ).

Lemma 2.2. Let g(t) be a nonnegative (positive) and non-decreasing (strictly increasing)
function on (0,∞) such that there exist C0 > 0 and a bounded function ϕ(t) satisfying

g(t)
t

= C0g
′(t)ϕ(t).

If there exists δ > 0 such that 0 < δ ≤ ϕ(t) on (0,∞), then [g−1(t)]σ

tε is non-decreasing

(strictly increasing) on (0,∞) for 0 < ε ≤ C0σδ (0 < ε < C0σδ). Conversely, if [g−1(t)]σ

tε is
non-decreasing (strictly increasing) for some ε > 0, then ϕ(t) ≥ ε

C0σ (ϕ(t) > ε
C0
σ).

Proof. It is easily seen that we only give the proof for σ = 1. Set f(t) = g−1(t)
tε . Then

f ′(t) = −εg
−1(t)
t1+ε

+
1
tε

1
g′(g−1(t))

= −εg
−1(t)
t1+ε

+
1
tε
C0g

−1(t)ϕ(g−1(t))
t

=
g−1(t)
t1+ε

(
C0ϕ(g−1(t)) − ε

)
.



L2-BOUNDEDNESS OF MARCINKIEWICZ INTEGRALS 273

Thus we have g−1(t)
tε is non-decreasing (strictly increasing) if and only if C0ϕ(t) ≥ ε

(C0ϕ(t) > ε). This implies the desired conclusion.

Below we give four examples.

Example 1. Let g(t) = tα logβ(1 + t), α > 0, β ≥ 0. It is easy to see that

g′(t) =
(
α+

βt

(1 + t) log(1 + t)

)
g(t)
t
.

So
g(t)
t

= g′(t)
(1 + t) log(1 + t)

α(1 + t) log(1 + t) + βt
= g′(t)ϕ(t).

Hence, we have

ϕ′(t) =
β[t− log(1 + t)]

[α(1 + t) log(1 + t) + βt]2
.

Thus, for t > 0, ϕ(t) is bounded and increasing, tϕ′(t) is bounded, and ϕ(t) ≥ 1/α.
Example 2. Let g(t) = 2t3 − 2t2 + t. Then g′(t) = g(t)

t
6t3−4t2+t
2t3−2t2+t and ϕ(t) = 2t2−2t+1

6t2−4t+1 .
It is easy to check that g(t) is positive and increasing, and if t < 1 − 1√

2
or t > 1 + 1√

2
,

then ϕ is increasing, and if 1− 1√
2
< t < 1 + 1√

2
then ϕ is decreasing. Hence (2−√

2)/2 ≤
ϕ(t) ≤ (2 +

√
2)/2. Moreover, tϕ′(t) = 2(2t2−4t+1)

[6(t−1/3)2+1/3]2 ∈ L∞(0,∞). This g(t) satisfies the
condition in Theorem 1 in the case (i), but does not satisfy the condition (ii).

Example 3. Take a nondecreasing function ψ(t) ∈ C∞(R) satisfying 0 ≤ ψ(t) ≤ 1,
ψ(t) = 0 on (−∞, 0), ψ(t) = 1 on [1,∞). Set ϕ(t) = 2−∑∞

j=1 2−jψ
(
22j(t− 2j)

)
. Then, we

have 1 ≤ ϕ(t) ≤ 2 on (0,∞), ϕ(t) is decreasing, and

lim sup
t→+∞

|tϕ′(t)| = +∞.

Put g(t) = exp(
∫ t

1
ds

sϕ(s) ). Then g(t) is positive and increasing on (0,∞), and g′(t) =
g(t)/(tϕ(t)) i.e. g(t)/t = g′(t)ϕ(t). This g(t) satisfies the condition in Theorem 1 in the
case (ii), but does not satisfy the condition (i).

Example 4. Let g(t) =
∑k

j=1 ajt
j (aj ≥ 0, and ak > 0). Then g′(t) = g(t)

t

�k
j=1 jaj tj

g(t) .

So ϕ(t) =
�k

j=1 ajtj

�k
j=1 jaj tj and it is easy to see that ϕ′(t) < 0, hence ϕ(t) is strictly decreasing,

and 1/k < ϕ(t) ≤ limt→0 ϕ(t). In this case, tϕ′(t) is also bounded.

Next, we prepare two more lemmas. Denote by Jν be the Bessel function of order ν of
the first kind. The following Lemma is given by L. Lorch and P. Szego, the old version of
this type inequality is due to A. P. Calderón and A. Zygmund.

Lemma 2.3 ([9]). Suppose ν and λ satisfy |ν| > 1/2, λ ≥ −1/2 or ν > −1, λ ≥ 0. Then
∣∣∣∣
∫ r

o

Jν(t)
tλ

dt

∣∣∣∣ ≤ C

|ν|λ , for 0 < r <∞. (2.1)

Lemma 2.4 ([1]). Suppose m ≥ 1 and λ > 0. Then
∣∣∣∣1r

∫ r

0

Jm+λ

tλ
dt

∣∣∣∣ ≤ C

mλ+1
, for 0 < r <∞.
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Now we turn to the proof of Theorem 1.
Let Hk be the space of surface spherical harmonics of degree k on Sn−1 with dimension

Dk . By the same argument as in [2], one can reduce the proof of Theorem 1 to the case as
follows:

f ∈ C∞
0 and Ω(x, y′) =

∑
k≥1

Dk∑
j=1

ak,j(x)Yk,j(y′) is a finite sum,

where {Yk,j} (k ≥ 1, j = 1, 2, ...,Dk) denotes the complete system of normalized surface
spherical harmonics. Set

ak(x) =
( Dk∑

j=1

|ak,j(x)|2
)1/2

and bk,j(x) =
ak,j(x)
ak(x)

.

Then we get

Dk∑
j=1

b2k,j(x) = 1 and Ω(x, y′) =
∑
k≥1

ak(x)
Dk∑
j=1

bk,j(x)Yk,j(y′).

Note that if we take 0 < ε < 1 sufficiently close to 1, then by [2, p. 230, (4.4)] we have
( ∑

k≥1

k−εa2
k(x)

)1/2

≤ C‖Ω‖L∞(Rn)×Lq(Sn−1) = C‖Ω‖.

By Hölder’s inequality, the above estimates and Fourier transform, we get

‖µΦ
Ω(f)‖2

2 =
∫

Rn

∫ ∞

0

∣∣∣∣
∫
|y|≤t

∑
k≥1

ak(x)
Dk∑
j=1

bk,j(x)
Yk,j(y′)
|y|n−1

f(x− Φ(|y|)y′)dy
∣∣∣∣
2
dt

t3
dx

≤
∫

Rn

( ∑
k≥1

k−εa2
k(x)

) ∑
k≥1

kε

∫ ∞

0

(
Dk∑
j=1

b2k,j(x))
Dk∑
j=1

∣∣∣∣
∫
|y|≤t

Yk,j(y′)
|y|n−1

× f(x− Φ(|y|)y′)dy
∣∣∣∣
2
dt

t3
dx

≤ C‖Ω‖2
∑
k≥1

kε
Dk∑
j=1

∫ ∞

0

∫
Rn

∣∣∣∣
∫
|y|≤t

Yk,j(y′)
|y|n−1

f(x− Φ(|y|)y′)dy
∣∣∣∣
2

dx
dt

t3

≤ C‖Ω‖2
∑
k≥1

kε
Dk∑
j=1

∫ ∞

0

∫
Rn

∣∣∣∣
( ∫

|y|≤t

Yk,j(y′)
|y|n−1

f(· − Φ(|y|)y′)dy
)∧

(ξ)
∣∣∣∣
2

dξ
dt

t3

= C‖Ω‖2
∑
k≥1

kε

∫
Rn

Dk∑
j=1

[µΦ
Ω(Yk,j)(ξ)]2|f̂(ξ)|2dξ,

(2.2)

where

µΦ
Ω(Yk,j)(ξ) =

( ∫ ∞

0

∣∣∣∣1t
∫ t

0

∫
Sn−1

e−iΦ(r)ξ·y′
Yk,j(y′)dσ(y′)dr

∣∣∣∣
2
dt

t

)1/2

.

So by Lemma 2.1, we only need to show

Dk∑
j=1

∫ ∞

0

∣∣∣∣1t
∫ t

0

Jn
2 +k−1(Φ(r)|ξ|)
(Φ(r)|ξ|)n

2 −1
drYk,j(ξ′)

∣∣∣∣
2
dt

t
≤ Ck−2. (2.3)
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Denote Nt(ξ) = 1
t

∫ t

0

J n
2 +k−1(Φ(r)|ξ|)
(Φ(r)|ξ|) n

2 −1 dr. Note that Φ(t)
t = C2Φ′(t)ϕ(t). Then

d(Φ−1( ρ
|ξ| ))

dρ
=

1
Φ′(Φ−1( ρ

|ξ| ))
=
C2

|ξ|
Φ−1( ρ

|ξ|)
ρ
|ξ|

ϕ(Φ−1(
ρ

|ξ| )) =
C2Φ−1( ρ

|ξ|)

ρ
ϕ(Φ−1(

ρ

|ξ| )).

Hence,

Nt(ξ) =
1
t

∫ Φ(t)|ξ|

0

Jn
2 +k−1(ρ)
ρ

n
2 −1

(Φ−1)′(
ρ

|ξ| )
dρ

|ξ|

=
C2

t

∫ Φ(t)|ξ|

0

Jn
2 +k−1(ρ)
ρ

n
2

Φ−1(
ρ

|ξ| )ϕ(Φ−1(
ρ

|ξ| ))dρ.

Let s = Φ(t)|ξ|. Then ds = Φ′(t)|ξ|dt = Φ(t)
C2tϕ(t) |ξ|dt = s

C2tϕ(t)dt. Hence, dt
t = C2ϕ(t)ds

s =
C2ϕ(Φ−1( s

|ξ| ))ds

s .
So

∫ ∞

0

|Nt(ξ)|2 dt
t

= C3
2

∫ ∞

0

ϕ(Φ−1( s
|ξ|))

Φ−1( s
|ξ|)

2

∣∣∣∣
∫ s

0

Jn
2 +k−1(ρ)
ρ

n
2

Φ−1(
ρ

|ξ| )ϕ(Φ−1(
ρ

|ξ| ))dρ
∣∣∣∣
2
ds

s
. (2.4)

We only need to treat two cases (i) and (ii) in Theorem 1, where Φ(t) is positive and
increasing on (0,∞).

First we consider Case (i): Since Jn
2 +k−1(ρ) > 0 for 0 < ρ < n/2 + k − 1 and Φ(t) is

positive and increasing on (0,∞), together with Lemma 2.4, we have for 0 < s < k/2
∣∣∣∣
∫ s

0

Jn
2 +k−1(ρ)
ρ

n
2

Φ−1(
ρ

|ξ| )ϕ(Φ−1(
ρ

|ξ| ))dρ
∣∣∣∣ ≤

(
1
s

∫ s

0

Jn
2 +k−1(ρ)
ρ

n
2

dρ

)
sΦ−1(

s

|ξ| )‖ϕ‖∞

≤
CsΦ−1( s

|ξ| )

(k − 1)n/2+1
.

(2.5)

For s ≥ k/2, take 0 < ε < ε+ η < C2δ and then integrating by parts, we obtain

I =
∫ s

0

Jn
2 +k−1(ρ)
ρ

n
2 −ε

Φ−1( ρ
|ξ| )

ρε
ϕ(Φ−1(

ρ

|ξ| ))dρ

=
( ∫ s

0

Jn
2 +k−1(ρ)
ρ

n
2 −ε

dρ

)Φ−1( s
|ξ|)

sε
ϕ(Φ−1(

s

|ξ| )) −
∫ s

0

( ∫ ρ

0

Jn
2 +k−1(u)
u

n
2 −ε

du

)

×
{Φ−1( ρ

|ξ| )

ρε
ϕ2(Φ−1(

ρ

|ξ| ))
1
ρ

+
1
ρε

Φ−1(
ρ

|ξ| )ϕ
′(Φ−1(

ρ

|ξ| ))
Φ−1( ρ

|ξ|)

ρ
ϕ(Φ−1(

ρ

|ξ| ))

− ε
1

ρ1+ε
Φ−1(

ρ

|ξ| )ϕ(Φ−1(
ρ

|ξ| ))
}
dρ.

Hence, by Lemma 2.3, we get the following estimate for I,

|I| ≤ C

( ∫ s

0

Jn
2 +k−1(ρ)
ρ

n
2 −ε

dρ

)Φ−1( s
|ξ| )

sε
‖ϕ‖∞ +

∫ s

0

∣∣∣∣
∫ ρ

0

Jn
2 +k−1(u)
u

n
2 −ε

du

∣∣∣∣ dρ

ρ1−η

Φ−1( s
|ξ|)

sη+ε

×
{
‖ϕ‖2

∞ + ‖tϕ′(t)‖∞‖ϕ‖∞ + ε‖ϕ‖∞
}

≤ C
1

(n
2 + k − 1)

n
2 −ε

Φ−1(
s

|ξ| )
1
sε
.

(2.6)



276 QINGYING XUE AND KÔZÔ YABUTA

Then by (2.5) and (2.6), we get
∫ ∞

0

|Nt(ξ)|2 dt
t

≤ C‖ϕ‖3
∞

∫ k/2

0

s2

(k − 1)n+2

ds

s
+ C

∫ ∞

k/2

1
s2ε

ds

s

1
(n

2 + k − 1)n−2ε
≤ C

kn
.

(2.7)
Case (ii). We may assume ϕ is increasing since the proof is similar for the case ϕ is

decreasing. Letting ν = n
2 + k − 1, we will consider the following four cases :

(1) For 0 ≤ s ≤ ν, since Jν(ρ) > 0 for 0 ≤ ρ ≤ ν, and since by Lemma 2.2,
Φ−1( ρ

|ξ| )
ρε is

increasing for 0 < ε < min{1/4, C2δ}, we have
∣∣∣∣
∫ s

0

Jn
2 +k−1(ρ)
ρ

n
2

Φ−1(
ρ

|ξ| )ϕ(Φ−1(
ρ

|ξ| ))dρ
∣∣∣∣ =

∣∣∣∣
∫ s

0

Jn
2 +k−1(ρ)
ρ

n
2 −ε

Φ−1( ρ
|ξ| )

ρε
ϕ(Φ−1(

ρ

|ξ| ))dρ
∣∣∣∣

≤
Φ−1( s

|ξ|)

sε
‖ϕ‖∞

∫ s

0

Jn
2 +k−1(ρ)
ρ

n
2 −ε

dρ

≤ C
Φ−1( s

|ξ| )

sε
‖ϕ‖∞ 1

(n
2 + k − 1)

n
2 −ε

.

(2) For ν < s ≤ 2ν,
∣∣∣∣
∫ s

0

Jn
2 +k−1(ρ)
ρ

n
2

Φ−1(
ρ

|ξ| )ϕ(Φ−1(
ρ

|ξ| ))dρ
∣∣∣∣ ≤

∣∣∣∣
∫ ν

0

Jn
2 +k−1(ρ)
ρ

n
2

Φ−1(
ρ

|ξ| )ϕ(Φ−1(
ρ

|ξ| ))dρ
∣∣∣∣

+
∣∣∣∣
∫ s

ν

Jn
2 +k−1(ρ)
ρ

n
2

Φ−1(
ρ

|ξ| )ϕ(Φ−1(
ρ

|ξ| ))dρ
∣∣∣∣

= I1 + I2.

By (1), we know that

I1 ≤ C
Φ−1( ν

|ξ| )

νε
‖ϕ‖∞ 1

(n
2 + k − 1)

n
2 −ε

≤ C
Φ−1( s

|ξ| )

sε
‖ϕ‖∞ 1

(n
2 + k − 1)

n
2 −ε

.

As for I2, by using the second mean value theorem, and Lemma 2.3, we get

I2 =
∣∣∣∣
Φ−1( s

|ξ| )

sε
ϕ(Φ−1(

s

|ξ| ))
∫ s

s′

Jn
2 +k−1(ρ)
ρ

n
2 −ε

dρ

∣∣∣∣
=

Φ−1( s
|ξ| )

sε
ϕ(Φ−1(

s

|ξ| ))
∣∣∣∣
∫ s

s′

Jn
2 +k−1(ρ)
ρ

n
2 −ε

dρ

∣∣∣∣ ≤ C
Φ−1( s

|ξ|)

sε
‖ϕ‖∞ 1

(n
2 + k − 1)

n
2 −ε

.

(3) For 2ν < s < ν3,
∣∣∣∣
∫ s

0

Jn
2 +k−1(ρ)
ρ

n
2

Φ−1(
ρ

|ξ| )ϕ(Φ−1(
ρ

|ξ| ))dρ
∣∣∣∣ ≤

∣∣∣∣
∫ 2ν

0

Jn
2 +k−1(ρ)
ρ

n
2

Φ−1(
ρ

|ξ| )ϕ(Φ−1(
ρ

|ξ| ))dρ
∣∣∣∣

+
∣∣∣∣
∫ s

2ν

Jn
2 +k−1(ρ)
ρ

n
2

Φ−1(
ρ

|ξ| )ϕ(Φ−1(
ρ

|ξ| ))dρ
∣∣∣∣

= I3 + I4.

By (2), we know that

I3 ≤ C
Φ−1( 2ν

|ξ| )

(2ν)ε
‖ϕ‖∞ 1

(n
2 + k − 1)

n
2 −ε

≤ C
Φ−1( s

|ξ| )

sε
‖ϕ‖∞ 1

(n
2 + k − 1)

n
2 −ε

.
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As for I4, since |Jν(x)| ≤ 1 (see [17, p. 406]), it is easy to see |J ′
ν(ρ)| ≤ |Jν−1(ρ) −

Jν+1(ρ)|/2 ≤ 1 (see also [17, p. 45 and p. 406]). Hence,
∣∣∣∣
∫ s

2ν

J ′
n
2 +k−1(ρ)

ρ
n−1

2 −ε(ρ2 − ν2)

Φ−1( ρ
|ξ|)

ρε
ϕ(Φ−1(

ρ

|ξ| ))dρ
∣∣∣∣ ≤

Φ−1( s
|ξ| )‖ϕ‖∞
sε

∫ s

2ν

1

ρ
n−1

2 −ε(ρ2 − ν2)
dρ

≤ C
Φ−1( s

|ξ| )

sε
‖ϕ‖∞ 1

k
n+1
2 −ε

.

(2.8)
On the other hand, since r

r
n−1

2 −ε(r2−ν2)
is decreasing on [2ν,∞), by using the second

mean value theorem twice, we have
∣∣∣∣
∫ s

2ν

J ′′
n
2 +k−1(ρ)

ρ
n−1

2 −ε(ρ2 − ν2)

ρΦ−1( ρ
|ξ| )

ρε
ϕ(Φ−1(

ρ

|ξ| ))dρ
∣∣∣∣

≤ 2ν

(2ν)
n−1

2 −ε((2ν)2 − ν2)

Φ−1( s
|ξ|)

sε
‖ϕ‖∞|

∫ s′

η′
J ′′

n
2 +k−1(ρ)dρ|

≤ C
Φ−1( s

|ξ| )

sε
‖ϕ‖∞ 1

k
n+1
2 −ε

.

(2.9)

Thus by (2.8), (2.9) and the fact that

Jν(ρ)
ρ

n
2 −ε

= − J ′
ν(ρ)

ρ
n−1

2 −ε(ρ2 − ν2)
− ρJ ′′

ν (ρ)

ρ
n−1

2 −ε(ρ2 − ν2)
,

we get

I4 ≤ C
Φ−1( s

|ξ| )

sε
‖ϕ‖∞ 1

k
n+1
2 −ε

.

(4) For ν3 < s,
∣∣∣∣
∫ s

0

Jn
2 +k−1(ρ)
ρ

n
2

Φ−1(
ρ

|ξ| )ϕ(Φ−1(
ρ

|ξ| ))dρ
∣∣∣∣ ≤

∣∣∣∣
∫ ν3

0

Jn
2 +k−1(ρ)
ρ

n
2

Φ−1(
ρ

|ξ| )ϕ(Φ−1(
ρ

|ξ| ))dρ
∣∣∣∣

+
∣∣∣∣
∫ s

ν3

Jn
2 +k−1(ρ)
ρ

n
2

Φ−1(
ρ

|ξ| )ϕ(Φ−1(
ρ

|ξ| ))dρ
∣∣∣∣

= I5 + I6.

By (3), we know that

I5 ≤ C
Φ−1( ν3

|ξ|)

(ν3)ε
‖ϕ‖∞ 1

k
n
2 −ε

≤ C
Φ−1( s

|ξ| )

sε
‖ϕ‖∞ 1

k
n
2 −ε

.

Using the following inequality (see [17, p. 447]),

|Jν(x)| ≤
√

2/π
(x2 − ν2)1/4

for x ≥ ν ≥ 1/2,

we see that |Jν(ρ)| ≤ C√
ρ for ρ > 2ν. Hence

I6 =
∣∣∣∣
∫ s

ν3

Jn
2 +k−1(ρ)
ρ

n
2 −ε

Φ−1( ρ
|ξ|)

ρε
ϕ(Φ−1(

ρ

|ξ| ))dρ
∣∣∣∣ ≤ C

Φ−1( s
|ξ| )

sε
‖ϕ‖∞

∫ s

ν3

1
ρ

n
2 −ε+ 1

2
dρ

≤ C
Φ−1( s

|ξ| )

sε
‖ϕ‖∞ 1

k
n
2 −ε

.
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By (2.5) and (1)-(4) above, we have

∫ ∞

0

|Nt(ξ)|2 dt
t

≤ C‖ϕ‖3
∞

∫ k/2

0

s2

(k − 1)n+2

ds

s
+ C

∫ ∞

k/2

(
1

s2εkn−2ε
+

1
s2εkn+1−2ε

)
ds

s

≤ C(
1
kn

+
1

kn+1
).

Thus, in both cases (i) and (ii), we have∫ ∞

0

|Nt(ξ)|2 dt
t

≤ C

kn
.

Therefore, by the fact
∑Dk

j=1 |Yk,j(ξ′)|2 = w−1Dm ∼ kn−2 (see [3, p. 255, (2.6)]), where w
denotes the area of Sn−1, we get

Dk∑
j=1

∫ ∞

0

|Nt(ξ)(Yk,j)(ξ′)|2 dt
t

≤ Ck−2.

Thus, inequality (2.3) holds and the proof of Theorem 1 is finished.

3 Proofs of Theorems 2 and 4 To prove Theorem 2, we only need to treat two cases:
(1) Φ is positive and increasing, and (2) Φ is positive and decreasing.
(1) The case where Φ is positive and increasing. Let h1 and h2 be any numbers satisfying
Φ(0)|ξ| ≤ h1 < h2 ≤ Φ(∞)|ξ|. As in the proof of Lemma 2.2 in [16], we treat

L =
∫ h2

h1

Jn
2 +k−1(ρ)
ρ

n
2

ϕ(Φ−1(
ρ

|ξ| ))dρ.

First we consider the case h1 ≤ k/2 ≤ h2. We have

L =
∫ k/2

h1

Jn
2 +k−1(ρ)
ρ

n
2

ϕ(Φ−1(
ρ

|ξ| ))dρ+
∫ h2

k/2

Jn
2 +k−1(ρ)
ρ

n
2

ϕ(Φ−1(
ρ

|ξ| ))dρ = L1 + L2.

For L1, since Jn
2 +k−1(ρ) > 0, by Lemma 2.3, we get

|L1| ≤ ‖ϕ‖∞
∫ k

2

h1

Jn
2 +k−1(ρ)
ρ

n
2

dρ ≤ C‖ϕ‖∞ 1
k

n
2
.

For L2, we take 0 < ε < n/2. Then, integration by parts, together with the facts ϕ ∈ L∞

and tϕ′(t) is bounded, yields

|L2| =
∣∣∣∣
∫ h2

k/2

Jn
2 +k−1(ρ)
ρ

n
2 −ε

ϕ(Φ−1( ρ
|ξ| ))

ρε
dρ

∣∣∣∣
=

∣∣∣∣
(∫ h2

k/2

Jn
2 +k−1(u)
u

n
2 −ε

du

)ϕ(Φ−1(h2
|ξ| ))

h2
ε dρ−

∫ h2

k/2

( ∫ ρ

k/2

Jn
2 +k−1(u)
u

n
2 −ε

du

)

×
(
ϕ′(Φ−1(

ρ

|ξ| ))Φ
−1(

ρ

|ξ| )ϕ(Φ−1(
ρ

|ξ| )) − εϕ(Φ−1(
ρ

|ξ| ))
)

dρ

ρ1+ε

∣∣∣∣
≤ C‖ϕ‖∞

(h2)ε

1
k

n
2 −ε

+
C‖ϕ‖∞(1 + ‖tϕ′(t)‖∞)

(k/2)ε

1
k

n
2 −ε

≤ C‖ϕ‖∞(1 + ‖tϕ′(t)‖∞)
k

n
2

.
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As for the cases k/2 < h1, replace k/2 by h1 and repeat the step as we have dealt with L2,
we can obtain

|L| ≤ C
C‖ϕ‖∞(1 + ‖tϕ′(t)‖∞)

k
n
2

.

Finally, for the case k/2 > h2, similarly as we have dealt with L1, we get

|L| ≤ ‖ϕ‖∞
∫ k

2

h1

Jn
2 +k−1(ρ)
ρ

n
2

dρ ≤ C‖ϕ‖∞ 1
k

n
2
.

(2) The case Φ is positive and decreasing. In this case we need to treat h1, h2 satisfying
Φ(∞)|ξ| ≤ h1 < h2 ≤ Φ(0)|ξ|. So, we have the same estimate as in the case (1).

In any case we have
∣∣∣∣
∫ h2

h1

Jn
2 +k−1(ρ)
ρ

n
2

ϕ(Φ−1(
ρ

|ξ| ))dρ
∣∣∣∣ ≤ C‖ϕ‖∞(1 + ‖tϕ′(t)‖∞)

k
n
2

.

The rest of the proof of Theorem 2 is the same as in [16], so we omit the detail.

Next, we shall give the proof of Theorem 4.
First, we know that µΦ,σ

S (f)(x) ≤ 2λnµ∗,σ
λ,Φ(f)(x). On the other hand,

‖µ∗,σ
λ,Φ(f)‖2

2

=
∫

Rn

∫∫
R

n+1
+

(
t

t+ |x− y|
)λn∣∣∣∣ 1

tσ

∫
|z|<t

Ω(y, z)
|z|n−σ

f(y − Φ(|z|)z′)dz
∣∣∣∣
2
dydt

tn+1
dx

=
∫ ∞

0

∫
Rn

(
1
tn

∫
Rn

(
t

t+ |x− y|
)λn

dx

)∣∣∣∣ 1
tσ

∫
|z|<t

Ω(y, z)
|z|n−σ

f(y − Φ(|z|)z′)dz
∣∣∣∣
2
dydt

t

≤ C‖µΦ,σ
Ω (f)‖2

2.

(3.1)

Hence we only need to give the estimates for µΦ,σ
Ω (f). Similarly as (2.2), we get

‖µΦ,σ
Ω (f)‖2

2

=
∫

Rn

∫ ∞

0

∣∣∣∣
∫
|y|≤t

∑
k≥1

ak(x)
Dk∑
j=1

bk,j(x)
Yk,j(y′)
|y|n−σ

f(x− Φ(|y|)y′)dy
∣∣∣∣
2
dt

t1+2σ
dx

≤
∫

Rn

( ∑
k≥1

k−εa2
k(x)

) ∑
k≥1

kε

∫ ∞

0

(
Dk∑
j=1

b2k,j(x))

×
Dk∑
j=1

∣∣∣∣
∫
|y|≤t

Yk,j(y′)
|y|n−σ

f(x− Φ(|y|)y′)dy
∣∣∣∣
2
dt

t1+2σ
dx

≤ C‖Ω‖2
∑
k≥1

kε
Dk∑
j=1

∫ ∞

0

∫
Rn

∣∣∣∣
∫
|y|≤t

Yk,j(y′)
|y|n−σ

f(x− Φ(|y|)y′)dy
∣∣∣∣
2

dx
dt

t1+2σ

≤ C‖Ω‖2
∑
k≥1

kε
Dk∑
j=1

∫ ∞

0

∫
Rn

∣∣∣∣
( ∫

|y|≤t

Yk,j(y′)
|y|n−σ

f(· − Φ(|y|)y′)dy
)∧

(ξ)
∣∣∣∣
2

dξ
dt

t1+2σ

= C‖Ω‖2
∑
k≥1

kε
Dk∑
j=1

∫
Rn

Dk∑
j=1

[µΦ,σ
Ω (Yk,j)(ξ)]2|f̂(ξ)|2dξ,
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where

µΦ,σ
Ω (Yk,j)(ξ) =

(∫ ∞

0

∣∣∣∣ 1
tσ

∫ t

0

∫
Sn−1

rσ−1e−iΦ(r)ξ·y′
Yk,j(y′)dσ(y′)dr

∣∣∣∣
2
dt

t

)1/2

.

By Lemma 2.1, we have

1
tσ

∫ t

0

∫
Sn−1

rσ−1e−iΦ(r)ξ·y′
Yk,j(y′)dσ(y′)dr

=
1
tσ

∫ t

0

rσ−1e−iΦ(r)ξ·y′ Jn
2 +k−1(Φ(r)|ξ|)
(Φ(r)|ξ|)n

2 −1
drYk,j(ξ′)

=
C

tσ

∫ Φ(t)|ξ|

0

[Φ−1(
ρ

|ξ| )]
σ−1

Jn
2 +k−1(ρ)
ρ

n
2

Φ−1(
ρ

|ξ| )ϕ(Φ−1(
ρ

|ξ| ))drYk,j(ξ′)

=
C

tσ

∫ Φ(t)|ξ|

0

Jn
2 +k−1(ρ)
ρ

n
2

[Φ−1(
ρ

|ξ| )]
σϕ(Φ−1(

ρ

|ξ| ))drYk,j(ξ′).

(3.2)

For any σ > 0, if we take 0 < ε < min{1/4, C2σδ}, then we see by Lemma 2.2 that [g−1(t)]σ

tε

is strictly increasing on (0,∞). Thus, Theorem 4 follows from repeating the steps in the
proof of Theorem 1.

4 Proofs of Theorem 3 and Theorem 5 It is easy to see that if Φ(t) = t−α for α > 0,
then Φ′(t) = −αΦ(t)

t with ϕ(t) = − 1
α .

Nt(ξ) =
1

Φ−1( s
|ξ| )

∫ s

0

Jn
2 +k−1(ρ)
ρ

n
2

Φ−1(
ρ

|ξ| )ϕ(Φ−1(
ρ

|ξ| ))dρ

= − 1
α( s

|ξ| )
− 1

α

∫ s

0

Jn
2 +k−1(ρ)
ρ

n
2

(
ρ

|ξ| )
− 1

α dρ

= −s
1
α

α

∫ s

0

Jn
2 +k−1(ρ)

ρ
n
2 + 1

α

dρ.

If 0 < α ≤ 1/k, then from the fact Jn
2 +k−1(ρ) ∼ ρ

n
2 +k−1(ρ→ 0), it follows that |Nt(ξ)| = ∞.

If α > 1/k, by the Weber and Schafheitilin formula in [17, p. 391], we know that the integral∫ ∞
0

J n
2 +k−1(ρ)

ρ
n
2 + 1

α
dρ converges. Thus, we write

∫ s

0

Jn
2 +k−1(ρ)

ρ
n
2 + 1

α

dρ =
∫ ∞

0

Jn
2 +k−1(ρ)

ρ
n
2 + 1

α

dρ−
∫ ∞

s

Jn
2 +k−1(ρ)

ρ
n
2 + 1

α

dρ.

On the other hand,
∫ ∞

s

Jn
2 +k−1(ρ)

ρ
n
2 + 1

α

dρ =
∫ ∞

s

( ∫ ρ

0

Jn
2 +k−1(u)

u
n
2 + 1

α−ε
du

)′
dρ

ρε

=
∫ s

0

Jn
2 +k−1(u)

u
n
2 + 1

α−ε
du · 1

sε
− ε

∫ ∞

s

( ∫ ρ

0

Jn
2 +k−1(u)

u
n
2 + 1

α−ε
du

)
dρ

ρ1+ε
.

Therefore, by Lemma 2.3,
∣∣∣∣
∫ ∞

s

Jn
2 +k−1(ρ)

ρ
n
2 + 1

α

dρ

∣∣∣∣ ≤ C

k
n
2 + 1

α−ε
(

1
sε

+
∫ ∞

s

dρ

ρ1+ε
) ≤ C

s−ε

k
n
2 + 1

α−ε
.



L2-BOUNDEDNESS OF MARCINKIEWICZ INTEGRALS 281

Taking ε > 1
α , we have |Nt(ξ)| ≈ Cs

1
α if s → +∞, which means

∫ ∞
0

|Nt(ξ)|2 dt
t = +∞.

Hence for f ∈ L2(Rn) with ‖f‖2 > 0,

‖µΦ
Yk,j

(f)‖2
2 =

∫
Rn

∫ ∞

0

∣∣∣∣
∫
|y|≤t

Yk,j(y′)
|y|n−1

f(x− Φ(|y|)y′)dy
∣∣∣∣
2
dt

t3
dx

=
∫

Rn

[µΦ
Ω(Yk,j)(ξ)]2|f̂(ξ)|2dξ = C

∫
Rn

(∫ ∞

0

Nt(ξ)2
dt

t
|Yk,j(ξ′)|2

)
|f̂(ξ)|2 dξ

= +∞,

which proves Theorem 3. Similarly, by (3.1), (3.2) and the proof procedure of Theorem 3,
we can prove Theorem 5, and so we omit the proof.
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