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Abstract. In this paper we examine a two-person zero-sum timing game with the
following structure: Each of players I and II has a gun with two bullets and they fight
a duel. Both guns are silent so that neither player can determine whether his opponent
has fired the bullets or not. Player I is at the place 0 when the duel begins and he
can move as he likes and player II is always at the place 1. Accuracy functions, which
denote the probability of hitting the opponent when each player fires his bullet, are
identical for both players. If player I hits player II without being hit himself first, then
the payoff is +1; if player I is hit by player II without hitting player II first, the payoff
is -1; if they hit each other at the same moment or both survive, the payoff is 0.

The objective of this paper is to obtain the game value and the optimal strategies
for the timing game.

1 Introduction A duel under arbitrary motion is a two-person zero-sum timing game
with the following structure: Each of two competitors, denoted by player I and player II,
has a gun and he can fire his bullets aiming at his opponent. At the moment when the
duel begins these two players are one distance apart on a line and each player can move on
the line as he likes. The maximum speed of player I is v1, the maximum speed of player II
is v2 and we assume v1 > v2 � 0. Without loss of generality, we can suppose v1 = 1 and
v2 = 0, and hence, player II is motionless. Thus we assume that player II is at the place
1 all the time and player I is at the place 0 at the moment when the duel begins and he
can move toward player II, he can move away from player II, and he can stay in one place.
If player I or player II fires his bullet when player I is at a place x, he hits his opponent
with probability p(x) or q(x), respectively. The functions p(x) and q(x) are called accuracy
functions for players I and II, respectively, and they are continuous and strictly increasing
on [0, 1] with p(0) = q(0) = 0 and p(1) = q(1) = 1. The duel ends when at least one player
is hit or both players fire all of their bullets; otherwise it continues indefinitely. The gun is
said to be silent if the shot of the owner is not heard by his opponent and the gun is said
to be noisy if the shot of the owner is heard by his opponent as soon as the owner of the
gun fires the bullet. Thus if a player has a silent gun, then his opponent can not determine
whether the owner of the gun has fired or not. On the other hand, if a player has a noisy
gun, then his opponent can determine whether the owner has fired or not. If each player
has a silent gun, the duel is said to be silent and if each player has a noisy gun, the duel is
said to be noisy. If player I hits player II without being hit himself first, then the payoff of
the duel is +1; if player I is hit by player II without hitting player II first, the payoff is -1;
if they hit each other at the same moment or both survive, the payoff is 0. The objective of
player I is to maximize the expected payoff and the objective of player II is to minimize it.
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Trybula [9, 10] solved a silent duel with arbitrary accuracy functions under arbitrary
motion. In his model, each player has a silent gun with one bullet and accuracy functions
p(x) and q(x) increase with a continuous second derivative each. Trybula [6-8] also solved
noisy duels under arbitrary motion. Furthermore Trybula [11] solved an m-versus-n silent
duel with arbitrary accuracy functions under arbitrary motion. In the model, player I has
a silent gun with m bullets and he has to fire all his bullets simultaneously, whereas player
II has a silent gun with n bullets and he can fire each of his bullets at different moments.

The author [2, 3] dealt with a noisy-versus-silent duel under arbitrary motion in which
player I has a noisy gun with one bullet and player II has a silent gun with one bullet and the
accuracy functions are arbitrary. He [4] also solved a one-noisy-versus-two-silent duel with
arbitrary accuracy functions under arbitrary motion. He [5] further solved a two-versus-one
silent duel with equal accuracy functions under arbitrary motion.

Further researches on duels under arbitrary motion have been done by Trybula [12, 13]
and general researches on games of timing are summarized by Karlin [1].

In this paper, we examine a two-versus-two silent duel with equal accuracy functions
under arbitrary motion. In the duel, each player has a silent gun with two bullets and he
can fire his bullets at different moments, whereas in the duel by Trybula [11], player I has
to fire his bullets simultaneously.

2 Problem In this paper, we examine a two-versus-two silent duel with equal accuracy
functions under arbitrary motion. Player I has a silent gun with two bullets and he is at the
place 0 at the moment when the duel begins and he can move as he likes. On the other hand,
player II has a silent gun with two bullets and he is always at the place 1. The accuracy
functions p(x) and q(x) are identical for both players so that, without loss of generality, we
suppose p(x) = q(x) = x for all x over [0, 1]. If player I hits player II without being hit
himself first, then the payoff of the duel is +1; if player I is hit by player II without hitting
player II first, the payoff is -1; if they hit each other at the same time or both survive, the
payoff is 0. The objective of player I is to maximize the expected payoff and the objective
of player II is to minimize it. We denote the game mentioned above by G∗. Note that, in
the paper by Trybula [10], player I has to fire all his bullets simultanuously, whereas in our
model player I can fire his bullets at different moments.

Before examining the game G∗, we deal with the following auxiliary game G. In G, each
of the players I and II has a silent gun with two bullets and both players’ accuracy functions
are identical and thus we assume p(x) = q(x) = x for all x in [0, 1]. Player I is at the place
0 when the duel begins and player II is at the place 1 all the time. We suppose, in game
G, payer I can move toward player II but he can not move away from player II, whereas in
game G∗ player can move as he likes. Further we assume that the payoff of G is as follows:

(i) If player I hits player II before player II hits player I, then the payoff is +1.

(ii) If player II hits player I before player I has fired both his bullets, then the payoff is -1.

(iii) If player I misses his two bullets before player II has fired both his bullets, then the
payoff is 0.

(iv) If both players hit each other at the same time or they miss all their bullets, then the
payoff is 0.

Suppose that player I has fired both his bullets and missed them and that player II has
missed his first bullet and he still has his second bullet or player II still has his two bullets.
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In this case, the payoff in game G is 0 nevertheless player II misses or hits his opponent,
whereas the payoff in game G∗ is 0 or -1 depending on whether player II misses (or he does
not fire) his bullets or he hits his opponent.

We assume that player I fires his first and second bullets when he is at the places x and
y, respectively (0 � x � y � 1), and that player II fires his first and second bullets at the
moments when player I is at the places u and v (0 � u � v � 1). In this case, we denote
by M(x, y, u, v) the expected payoff of the game G. The function M(x, y, u, v), called the
payoff kernel of the game G, is of the form

M(x, y, u, v) =

��������������������������������
�������������������������������

x + (1 − x)y, 0 � x � y < u � v � 1

x, 0 � x < y = u < v � 1

x(1 − x), 0 � x = y = u < v � 1

0, 0 � x = y = u = v � 1

x − (1 − x)(1 − u)u, 0 � x < y = u = v � 1

x − (1 − x)u + (1 − x)(1 − u)y, 0 � x < u < y < v � 1

x − (1 − x)u, 0 � x < u < y = v � 1

(1 − x)2y, 0 � x = u < y < v � 1

0, 0 � x = u < y = v � 1

x − (1 − x)u − (1 − x)(1 − u)v + (1 − x)(1 − u)(1 − v)y, 0 � x < u � v < y � 1

−u + (1 − u)x + (1 − u)(1 − x)y, 0 � u < x � y < v � 1

−u + (1 − u)x − (1 − u)(1 − x)v + (1 − u)(1 − x)(1 − v)y, 0 � u < x < v < y � 1

−u + (1 − u)(1 − x)x, 0 � u < x = y = v � 1

−u + (1 − u)(1 − x)2y, 0 � u < x = v < y � 1

−u − (1 − u)v + (1 − u)(1 − v)x + (1 − u)(1 − v)(1 − x)y, 0 � u � v < x � y � 1.

For the game G, we shall search for an optimal strategy for player I with the following
structure:
(i) Player I fires both his bullets simultaneously with probability 1 − α and he fires his
bullets at different moments with probability α.
(ii) If player I fires his two bullets simultaneously, he fires his bullets at a place in [a, b]
according to the conditional distribution with a density function f(x) under the condition
that he fires both his bullets simultaneously.
(iii) If player I fires his bullets at different moments, then he fires his first bullet when he is
at a place x in [b, c] according to the conditional distribution with a density function f1(x)
and he fires his second bullet at a place y in [c, 1], independently of the place where he has
fired his first bullet, according to the distribution with a density part f2(y) over [c, 1] and
a mass part β on 1 under the condition that player I fires his bullets at different moments,
where ∫ b

a

f(x) dx =
∫ c

b

f1(x) dx =
∫ 1

c

f2(y) dy + β = 1

and
0 < a < b < c < 1.

We denote such a strategy of player I by {α, f(x), f1(x), f2(y), β}. Further we shall search
for an optimal strategy for player II with the following structure:
(i) Player II fires his first bullet when player I is at a place u in [a, s] according to the
distribution with a density function g1(u) over [a, s].
(ii) Player II fires his second bullet when player I is at a place v in [s, 1] according to the
distribution with a density function g2(v) over [s, 1], independently of the place where he
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has fired his first bullet, where
∫ s

a

g1(u) dz =
∫ 1

s

g2(v) dv = 1

and
0 < a < s < 1.

We denote such a strategy of player II by {g1(u), g2(v)}.

3 Preliminary lemmas In this section we prove two preliminary lemmas which will
be used in the following sections.

It is seen that the equation

(1) log
1 + x

2x
=

1 − 4x2 + 4x3 − 5x4

4x2(1 − x)2

has a unique root in the interval (0, 1). We denote by c the unique root in (0, 1) of the
equation (1). We set

(2) b =
1 − c

1 + c
.

The values of b and c are approximately 0.3106 and 0.5261, respectively. It is also shown
that the equation

(3)
1 − x

x(1 + 2x − x2)
−

∫ b

x

dt

t2(1 + 2t − t2)
=

(1 − 2b − b2)(1 + b2)
4b2(1 − b)2

has a unique root in the interval (0, b). We denote by s the unique root of the equation (3).
Further the equation

(4)
1 − x

x(1 + 2x − x2)
−

∫ s

x

dt

t2(1 + 2t − t2)
=

1
s(1 + 2s − s2)

has a unique root in (0, s), and we denote by a the root of the equation (4). The values of
a and s are nearly equal to 0.0929 and 0.2025, respectively.
Lemma 1. Set

α =
a(1 + 2a − a2)(1 − 2b − b2)(1 + b2)

4(1 − a)(1 − s)(1 − b)2b2
(= 0.1747),

f(x) =

⎧⎪⎨
⎪⎩

k1

x2(1 + 2x − x2)
, if a � x � s

k2

x2(1 + 2x − x2)
, if s < x � b,

f1(x) =
k3

x3
, b � x � c,

f2(y) =
k4

y2(1 + y)
, c � y � 1,

β =
k4

2
(= 0.4859),
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where

k1 =
a(1 + 2a − a2)
(1 − α)(1 − a)

,

k2 =
a(1 + 2a − a2)

(1 − α)(1 − a)(1 − s)
,

k3 =
2b2(1 − b)2

(1 + b2)(1 − 2b − b2)

and

k4 =
4c2(1 − c)2

(3c2 − 2c + 1)(c2 + 2c − 1)
.

Then the following statements hold:

(i)
∫ b

a

f(x) dx = 1.

(ii)
∫ c

b

f1(x) dx = 1.

(iii)
∫ 1

c

f2(y) dy + β = 1.

(iv)
∫ c

b

(1 + x)f1(x) dx +
∫ c

b

(1 − x)f1(x) dx

{ ∫ 1

c

yf2(y) dy + β

}
=

k2(1 − α)
αb

.

(v) For all u in [a, b],

u

∫ b

u

(1 + 2x − x2)f(x) dx � k2{b − u + b(u − s)}
b

.

(vi) For all u and v such that a � u � v � b,

u

∫ b

u

(1 + 2x − x2)f(x) dx + (1 − u)v
∫ b

v

(1 + 2x − x2)f(x) dx � k2

{
2 − s +

uv − u − v

b

}
.

Proof. (i) Since s and a are the roots of the equations (3) and (4), respectively, we have

∫ b

s

dx

x2(1 + 2x − x2)
=

1 − s

s(1 + 2s − s2)
− (1 − 2b − b2)(1 + b2)

4b2(1 − b)2

and ∫ s

a

dx

x2(1 + 2x − x2)
=

1 − a

a(1 + 2a − a2)
− 1

s(1 + 2s − s2)
.

Thus we get∫ s

a

dx

x2(1 + 2x − x2)
+

1
1 − s

∫ b

s

dx

x2(1 + 2x − x2)

=
1 − a

a(1 + 2a − a2)

{
1 − a(1 + 2a − a2)(1 − 2b − b2)(1 + b2)

4(1 − a)(1 − s)(1 − b)2b2

}
=

(1 − α)(1 − a)
a(1 + 2a − a2)

,
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i.e., ∫ b

a

f(x) dx = 1.

(ii) From (2), it follows that ∫ c

b

f1(x) dx =
k3(c2 − b2)

2b2c2
= 1.

(iii) We get ∫ 1

c

f2(y) dy + β = k4

{
log

2c

1 + c
− 1

2
+

1
c

}
.

Since c is the root of the equation (1), we have

∫ 1

c

f2(y) dy + β =
k4(3c2 − 2c + 1)(c2 + 2c − 1)

4c2(1 − c)2
= 1.

(iv) It follows, from (2), that

(5) k4 =
4b2(1 − b)2

(1 − 2b + 3b2)(1 − 2b − b2)

and thus∫ 1

c

yf2(y)dy + β =
∫ 1

c

(y + 1)f2(y)dy + 2β − 1 =
4b2(1 − b)(1 + b)

(1 − 2b + 3b2)(1 − 2b − b2)
− 1.

Therefore we have∫ c

b

(1 + x)f1(x) dx +
∫ c

b

(1 − x)f1(x) dx

{ ∫ 1

c

yf2(y) dy + β

}

=
2k3(c − b)

bc
+

4b2(1 − b)(1 + b)
(1 − 2b + 3b2)(1 − 2b − b2)

{
1 − k3(c − b)

bc

}

=
4b(1 − b)2

(1 + b2)(1 − 2b − b2)
=

k2(1 − α)
αb

.

Thus we obtain the desired result.
(v) We directly get

(6) u

∫ b

u

(1 + 2x − x2)f(x) dx =
k2{b − u + b(u − s)}

b

for all u in [a, s] and

(7) u

∫ b

u

(1 + 2x − x2)f(x) dx =
k2(b − u)

b

for all u in [s, b]. Thus we have the result.
(vi) By (6) and (7), we get the result.
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Lemma 2. Set

g1(u) =
2(1 + 2a − a2)(1 − u)

u(1 + 2u − u2)2
, a � u � s,

g2(v) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2(1 + 2s − s2)(1 − v)
v(1 + 2v − v2)2

, if s � v � b

l1
v3

, if b < v � c

l2
v(1 + v)2

, if c < v � 1,

where

l1 =
b(1 − b)(1 + 2s − s2)

2(1 + 2b − b2)

and

l2 =
(1 + b)(1 + 2s − s2)

1 + 2b − b2
.

Then the following statements hold:

(i)
∫ s

a

g1(u) du = 1.

(ii)
∫ 1

s

g2(v) dv = 1 .

(iii) For all x in [b, 1],

1 −
∫ x

s

vg2(v) dz � min

{
l2

1 + x
,

1 + 2s − s2

2(1 + 2b − b2)

{
1 + b +

b(1 − b)
x

}}
.

Proof. (i) Since a is the root of the equation (4), we get∫ s

a

2(1 − u)
u(1 + 2u − u2)2

du =
1

a(1 + 2a − a2)
− 1

s(1 + 2s − s2)
−

∫ s

a

du

u2(1 + 2u − u2)

=
1

a(1 + 2a − a2)
− 1 − a

a(1 + 2a − a2)
=

1
1 + 2a − a2

.

Thus we have the desired result.
(ii) As s is the root of the equation (3), we get

(8)
∫ b

s

2(1 + 2s − s2)(1 − v)
v(1 − 2v − v2)2

dv =
1
s
− 1 + 2s − s2

b(1 + 2b − b2)
−

∫ b

s

1 + 2s − s2

v2(1 + 2v − v2)
dv

= 1 − 1 + 2s − s2

b(1 + 2b − b2)
+

(1 + 2s − s2)(1 − 2b − b2)(1 + b2)
4b2(1 − b)2

.

Further we have

(9)
∫ c

b

l1
v3

dv =
(1 + 2s − s2)(1 − 2b − b2)(1 + b2)

4b(1 − b)(1 + 2b − b2)
.
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In addition, as c is the root of the equation (1), we get∫ 1

c

l2
v(1 + v)2

dv = l2

{
log

1 + c

2c
+

1
2
− 1

1 + c

}
= l2

{
1 − 4c2 + 4c3 − 5c4

4c2(1 − c)2
+

1
2
− 1

1 + c

}
.

Thus, from (2), it follows that

(10)
∫ 1

c

l2
v(1 + v)2

dv =
(1 + 2s − s2)(1 + b)(−2b5 + b4 + 6b3 − 4b2 + 4b − 1)

4b2(1 − b)2(1 + 2b − b2)
.

By (8) to (10), we obtain the desired result.
(iii) For all x in [b, c], we have

1 −
∫ x

s

vg2(v) dv =
1 + 2s − s2

2(1 + 2b − b2)

{
1 + b +

b(1 − b)
x

}
,

and hence,

1 −
∫ x

s

vg2(v) dv � (1 + 2s − s2)(1 + b)
(1 + 2b − b2)(1 + x)

=
l2

1 + x
.

Further for all x in [c, 1], we get

1 −
∫ x

s

vg2(v) dv =
1 + 2s − s2

1 + 2b − b2

{
1 − b(1 − b)

2

(
1
b
− 1

c

)
− 1 + b

1 + c
+

1 + b

1 + x

}
=

l2
1 + x

and hence

1 −
∫ x

s

vg2(v) dv � 1 + 2s − s2

2(1 + 2b − b2)

{
1 + b +

b(1 − b)
x

}
.

Thus we obtain the desired result.

4 A strategy for player I in G In the following sections, we denote by V1(u, v) the
expected payoff of the game G when player I applies the strategy {α, f(x), f1(x), f2(y), β}
given in Lemma 1 and player II fires his bullets when player I is at the points u and v
(0 � u � v � 1). Similarly, we denote by V2(x, y) the expected payoff of the game G when
player II applies the strategy {g1(u), g2(v)} given in Lemma 2 and player I fires his first
and second bullets when he is at the points x and y (0 � x � y � 1), respectively.

Lemma 3. For all u and v such that a � u � v < 1, V1(u, v) � 2a − a2 (= 0.1772).

Proof. For all u and v with a � u � v � b, we have

V1(u, v) = (1 − α)

� u

a

(2x − x2)f(x) dx + (1 − α)

� v

u

{−u + (1 − u)(2x − x2)}f(x) dx

+(1 − α)

� b

v

{−u − (1 − u)v + (1 − u)(1 − v)(2x − x2)}f(x) dx

+α

� c

b

� 1

c

{−u − (1 − u)v + (1 − u)(1 − v)x + (1 − u)(1 − v)(1 − x)y}f1(x)f2(y) dydx

+αβ

� c

b

{−u − (1 − u)v + (1 − u)(1 − v)x + (1 − u)(1 − v)(1 − x)}f1(x) dx

= −1 + (1 − α)

� b

a

(1 + 2x − x2)f(x) dx

−(1 − α)

�
u

� b

u

(1 + 2x − x2)f(x) dx + (1 − u)v

� b

v

(1 + 2x − x2)f(x) dx

�

+α(1 − u)(1 − v)

� � c

b

(1 + x)f1(x) dx +

� c

b

(1 − x)f1(x) dx

�� 1

c

yf2(y) dy + β

��
.
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Thus, from (iv) and (vi) in Lemma 1, it follows that

V1(u, v) � −1 + (1 − α)
∫ b

a

(1 + 2x − x2)f(x) dx +
k2(1 − α)(1 − 2b + bs)

b

= −1 +
k1(1 − α)(1 − a)

a
= 2a − a2.

For every u and v such that a � u � b � v � c, we get

V1(u, v)) = (1 − α)

� u

a

(2x − x2)f(x) dx + (1 − α)

� b

u

{−u + (1 − u)(2x − x2)}f(x) dx

+α

� v

b

� 1

c

{−u + (1 − u)x − (1 − u)(1 − x)v + (1 − u)(1 − x)(1 − v)y}f1(x)f2(y) dydx

+αβ

� v

b

{−u + (1 − u)x − (1 − u)(1 − x)v + (1 − u)(1 − x)(1 − v)}f1(x) dx

+α

� c

v

� 1

c

{−u − (1 − u)v + (1 − u)(1 − v)x + (1 − u)(1 − v)(1 − x)y}f1(x)f2(y) dydx

+αβ

� c

v

{−u − (1 − u)v + (1 − u)(1 − v)x + (1 − u)(1 − v)(1 − x)}f1(x) dx

= −1 + (1 − α)

� b

a

(1 + 2x − x2)f(x) dx − (1 − α)u

� b

u

(1 + 2x − x2)f(x) dx

+α(1 − u)(1 − v)

	� c

b

(1 + x)f1(x) dx +

� c

b

(1 − x)f1(x) dx

�� 1

c

yf2(y)dy + β

�


+2α(1 − u)v

� v

b

xf1(x) dx.

Thus by (iv), (v) in Lemma 1 and

(11) 2αk3 = (1 − α)k2

we have

V1(u, v) � −1 + (1 − α)
∫ b

a

(1 + 2x − x2)f(x) dx +
k2(1 − α)(1 − 2b + bs)

b
= 2a − a2.

For all u in [a, b] and v in [c, 1), we get

V1(u, v) = (1 − α)

� u

a

(2x − x2)f(x) dx + (1 − α)

� b

u

{−u + (1 − u)(2x − x2)}f(x) dx

+α

� c

b

� v

c

{−u + (1 − u)x + (1 − u)(1 − x)y}f1(x)f2(y) dydx

+α

� c

b

� 1

v

{−u + (1 − u)x − (1 − u)(1 − x)v + (1 − u)(1 − x)(1 − v)y}f1(x)f2(y) dydx

+αβ

� c

b

{−u + (1 − u)x − (1 − u)(1 − x)v + (1 − u)(1 − x)(1 − v)}f1(x) dx

= −1 + (1 − α)

� b

a

(1 + 2x − x2) f(x)dx − (1 − α)u

� b

u

(1 + 2x − x2)f(x) dx

+α(1 − u)

	� c

b

(1 + x)f1(x) dx +

� c

b

(1 − x)f1(x) dx

�� 1

c

yf2(y) dy + β

�


−α(1 − u)v

� c

b

(1 − x)f1(x) dx

�� 1

v

(1 + y)f2(y) dy + 2β

�
.
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Consequently, by (iv) and (v) in Lemma 1, we have

V1(u, v) � −1 + (1 − α)
∫ b

a

(1 + 2x − x2)f(x) dx − k2(1 − α){b − u + b(u − s)}
b

+
k2(1 − α)(1 − u)

b
− αk4(1 − u)

∫ c

b

(1 − x)f1(x) dx

= −1 + (1 − α)
∫ b

a

(1 + 2x − x2)f(x) dx +
k2(1 − α)(1 − 2b + bs)

b
= 2a − a2.

For every u and v such that b � u � v � c, we get

V1(u, v) = (1 − α)

� b

a

(2x − x2)f(x)dx

+α

� u

b

� 1

c

{x − (1 − x)u − (1 − x)(1 − u)v + (1 − x)(1 − u)(1 − v)y}f1(x)f2(y) dydx

+αβ

� u

b

{x − (1 − x)u − (1 − x)(1 − u)v + (1 − x)(1 − u)(1 − v)}f1(x) dx

+α

� v

u

� 1

c

{−u + (1 − u)x − (1 − u)(1 − x)v + (1 − u)(1 − x)(1 − v)y}f1(x)f2(y) dydx

+αβ

� v

u

{−u + (1 − u)x − (1 − u)(1 − x)v + (1 − u)(1 − x)(1 − v)}f1(x) dx

+α

� c

v

� 1

c

{−u − (1 − u)v + (1 − u)(1 − v)x + (1 − u)(1 − v)(1 − x)y}f1(x)f2(y) dydx

+αβ

� c

v

{−u − (1 − u)v + (1 − u)(1 − v)x + (1 − u)(1 − v)(1 − x)}f1(x) dx.

Thus

V1(u, v) = −1 + (1 − α)
∫ b

a

(1 + 2x − x2)f(x) dx

+α(1 − u)(1 − v)

[ ∫ c

b

(1 + x)f1(x) dx +
∫ c

b

(1 − x)f1(x) dx

{ ∫ 1

c

yf2(y) dy + β

}]

+2α

{
u

∫ u

b

xf1(x) dx + (1 − u)v
∫ v

b

xf1(x) dx

}
,

and hence by (11) and (iv) in Lemma 1, we get

∂V1(u, v)
∂u

= 2αk3 > 0

and thus

V1(u, v) � V1(b, v) � 2a − a2
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for all u and v with b � u � v � c. Further, for all u and v with b � u � c � v < 1, we get

V1(u, v) = (1 − α)

� b

a

(2x − x2)f(x) dx + α

� u

b

� v

c

{x − (1 − x)u + (1 − x)(1 − u)y}f1(x)f2(y) dydx

+α

� u

b

� 1

v

{x − (1 − x)u − (1 − x)(1 − u)v + (1 − x)(1 − u)(1 − v)y}f1(x)f2(y) dydx

+αβ

� u

b

{x − (1 − x)u − (1 − x)(1 − u)v + (1 − x)(1 − u)(1 − v)}f1(x) dx

+α

� c

u

� v

c

{−u + (1 − u)x + (1 − u)(1 − x)y}f1(x)f2(y) dydx

+α

� c

u

� 1

v

{−u + (1 − u)x − (1 − u)(1 − x)v + (1 − u)(1 − x)(1 − v)y}f1(x)f2(y) dydx

+αβ

� c

u

{−u + (1 − u)x − (1 − u)(1 − x)v + (1 − u)(1 − x)(1 − v)}f1(x) dx

= −1 + (1 − α)

� b

a

(1 + 2x − x2)f(x) dx

+α(1 − u)

�� c

b

(1 + x)f1(x) dx +

� c

b

(1 − x)f1(x) dx

�� 1

c

yf2(y) dy + β

��

+2αu

� u

b

xf1(x) dx − α(1 − u)v

� c

b

(1 − x)f1(x) dx

�� 1

v

(1 + y)f2(y) dy + 2β

�
.

Thus we have, by (iv) in Lemma 1 and (11),

∂V1(u, v)
∂u

= αk4

∫ c

b

(1 − x)f1(x) dx > 0.

Consequently we get
V1(u, v) � V1(b, v) � 2a − a2

for all u and v such that b � u � c � v < 1. For all u and v with c � u � v < 1, we have

V1(u, v) = (1 − α)

� b

a

(2x − x2)f(x) dx + α

� c

b

� u

c

{x + (1 − x)y}f1(x)f2(y) dydx

+α

� c

b

� v

u

{x − (1 − x)u + (1 − x)(1 − u)y}f1(x)f2(y) dydx

+α

� c

b

� 1

v

{x − (1 − x)u − (1 − x)(1 − u)v + (1 − x)(1 − u)(1 − v)y}f1(x)f2(y) dydx

+αβ

� c

b

{x − (1 − x)u − (1 − x)(1 − u)v + (1 − x)(1 − u)(1 − v)}f1(x) dx.

Accordingly we get

V1(u, v) = −1 + (1 − α)

� b

a

(1 + 2x − x2)f1(x) dx

+α

	� c

b

(1 + x)f1(x) dx +

� c

b

(1 − x)f1(x) dx

�� 1

c

yf2(y) dy + β

�


−α

� c

b

(1 − x)f1(x) dx

�
u

� 1

u

(1 + y)f2(y) dy + v(1 − u)

� 1

v

(1 + y)f2(y) dy

�

−2αβ{u + (1 − u)v}
� c

b

(1 − x)f1(x) dx.
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It is seen that
∂V1(u, v)

∂u
= αk4

∫ c

b

(1 − x)f1(x)dx > 0

for all u and v with c � u � v < 1, and hence

V1(u, v) � V1(c, v) � 2a − a2.

Therefore we obtain
V1(u, v) � 2a − a2

for all u and v such that a � u � v �< 1. This completes our proof.

5 A strategy for player II in G

Lemma 4. For all x and y such that a � x � y � 1, V2(x, y) � 2a − a2 (= 0.1772).

Proof. We get, for all x in [a, s],

V2(x, x) =
∫ x

a

{−u + (1 − u)(2x − x2)}g1(u) du +
∫ s

x

(2x − x2)g1(u) du

= −1 + (1 + 2x − x2)
{

1 −
∫ x

a

ug1(u) du

}
= 2a − a2

and for all x in [s, b]

V2(x, x) =
∫ s

a

∫ x

s

{−u − (1 − u)v + (1 − u)(1 − v)(2x − x2)}g1(u)g2(v) dvdu

+
∫ s

a

∫ 1

x

{−u + (1 − u)(2x − x2)}g1(u)g2(v) dvdu

= −1 + (1 + 2x − x2)
∫ s

a

(1 − u)g1(u) du

{
1 −

∫ x

s

vg2(v) dv

}
= 2a − a2.

Further for all x and y such that a � x � y � s, we have

V2(x, y) =
∫ x

a

{−u + (1 − u)x + (1 − u)(1 − x)y}g1(u) du

+
∫ y

x

{x − (1 − x)u + (1 − x)(1 − u)y}g1(u) du +
∫ s

y

{x + (1 − x)y}g1(u) du

= −1 + (1 − x)(1 + y)
{

1 −
∫ y

a

ug1(u) du

}
+ 2x

{
1 −

∫ x

a

ug1(u)du

}

= −1 + (1 + 2a − a2)
{

(1 − x)(1 + y)
1 + 2y − y2

+
2x

1 + 2x − x2

}
.

It is seen that V2(x, y) is decreasing in y for every x such that a � x � y � s, and hence

V2(x, y) � V2(x, x) = 2a − a2

for all x and y with a � x � y � s. For all x and y such that s � x � y � 1, we get
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V2(x, y) =

� s

a

� x

s

{−u − (1 − u)v + (1 − u)(1 − v)x + (1 − u)(1 − v)(1 − x)y} g1(u)g2(v) dvdu

+

� s

a

� y

x

{−u + (1 − u)x − (1 − u)(1 − x)v + (1 − u)(1 − x)(1 − v)y}g1(u)g2(v) dvdu

+

� s

a

� 1

y

{−u + (1 − u)x + (1 − u)(1 − x)y}g1(u)g2(v) dvdu

= −1 + X(x, y)

� s

a

(1 − u)g1(u) du,

where

X(x, y) =

� x

s

{1 − v + (1 − v)x + (1 − v)(1 − x)y}g2(v) dv

+

� y

x

{1 + x − (1 − x)v + (1 − x)(1 − v)y}g2(v) dv +

� 1

y

{1 + x + (1 − x)y}g2(v) dv

= (1 − x)(1 + y)

�
1 −

� y

s

vg2(v) dv

�
+ 2x

�
1 −

� x

s

vg2(v) dv

�
.

Thus, by (iii) in Lemma 2, we have

X(x, y) � (1 − x)l2 +
1 + 2s − s2

1 + 2b − b2
{(1 + b)x + b(1 − b)} = 1 + 2s − s2

for all x and y such that b � x � y � 1. We get, for every x and y with s � x � y � b,

X(x, y) = (1 + 2s − s2)
{

(1 − x)(1 + y)
1 + 2y − y2

+
2x

1 + 2x − x2

}

and for all x in [s, b] and y in [c, 1]

X(x, y) = (1 + 2s − s2)
{

(1 − x)(1 + b)
1 + 2b − b2

+
2x

1 + 2x − x2

}
.

In both cases above we have
X(x, y) � 1 + 2s − s2.

Further, for any x and y such that s � x � b � y � c, we get

X(x, y) = (1 + 2s − s2)
[
(1 − x)(1 + y)
2(1 + 2b − b2)

{
1 + b +

b(1 − b)
y

}
+

2x

1 + 2x − x2

]

and hence
∂2X(x, y)

∂y2
> 0.

Thus we get
X(x, y) � 1 + 2s − s2.

Accordingly we obtain

V2(x, y) � −1 + (1 + 2s − s2)
{

1 −
∫ s

a

ug1(u) du

}
= 2a − a2
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for all x and y such that s � x � y � 1. For every x and y such that a � x � s � y � 1,
we have

V2(x, y) =

� x

a

� y

s

{−u + (1 − u)x − (1 − u)(1 − x)v + (1 − u)(1 − x)(1 − v)y}g1(u)g2(v) dvdu

+

� x

a

� 1

y

{−u + (1 − u)x + (1 − u)(1 − x)y}g1(u)g2(v) dvdu

+

� s

x

� y

s

{x − (1 − x)u − (1 − x)(1 − u)v + (1 − x)(1 − u)(1 − v)y}g1(u)g2(v) dvdu

+

� s

x

� 1

y

{x − (1 − x)u + (1 − x)(1 − u)y}g1(u)g2(v) dvdu

and thus

(12) V2(x, y) = −1 + 2x

{
1 −

∫ x

a

ug1(u) du

}

+(1 − x)(1 + y)
∫ s

a

(1 − u)g1(u) du

{
1 −

∫ y

s

vg2(v) dv

}

= −1 + (1 + 2a − a2)
[

2x

1 + 2x − x2
+

(1 − x)(1 + y)
1 + 2s − s2

{
1 −

∫ y

s

vg2(v) dv

}]
.

Hence for all x and y such that a � x � s � y � b we get

V2(x, y) = −1 + (1 + 2a − a2)
{

2x

1 + 2x − x2
+

(1 − x)(1 + y)
1 + 2y − y2

}

and thus V2(x, y) is decreasing in y over [s, b] for all x in [a, s]. Accordingly we have

V2(x, y) � V2(x, s) � 2a − a2

for all x and y such that a � x � s � y � b. For any x in [a, s] and y in [c, 1], by (12) we
get

V2(x, y) = −1 + (1 + 2a − a2)
{

2x

1 + 2x − x2
+

(1 − x)(1 + b)
1 + 2b − b2

}
� 2a − a2.

Further for all x in [a, s] and y in [b, c], we have

V2(x, y) = −1 + (1 + 2a − a2)
[
(1 − x)(1 + y)
2(1 + 2b − b2)

{
1 + b +

b(1 − b)
y

}
+

2x

1 + 2x − x2

]
.

It is seen that V2(x, y) is a convex function of y over [b, c] for every x in [a, s]. Therefore we
have

V2(x, y) � 2a − a2

for every x in [a, s] and y in [b, c]. Thus we obtain

V2(x, y) � 2a − a2

for all x and y such that with a � x � y � 1. This completes our proof.
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6 A Theorem

Theorem 1. For the game G, the strategy {α, f(x), f1(x), f2(y), β} given in Lemma 1 is
optimal for player I, and the strategy {g1(u), g2(v)} given in Lemma 2 is optimal for player
II. Moreover, the game value of the game G is 2a − a2 (= 0.1772).

Proof. It suffices to show that
V1(u, v) � 2a − a2

for all u and v such that 0 � u � v � 1 and

V2(x, y) � 2a − a2

for all x and y such that 0 � x � y � 1. From Lemma 3, we have

V1(u, v) � 2a − a2

for every u and v with a � u � v < 1. It is seen that V1(u, v) decreases in u over [0, a] for
all v in [a, 1), and hence

V1(u, v) � V1(a, v) � 2a − a2.

Further, for all u and v such that 0 � u � v � a, it is seen that V1(u, v) decreases in v, and
thus

V1(u, v) � V1(u, a) � 2a − a2.

We can verify that
V1(u, 1) � lim

v→1−0
V1(u, v) � 2a − a2

for all u in [0, 1) and
V1(1, 1) � 2a − a2.

Therefore we obtain
V1(u, v) � 2a − a2

for all u and v such that 0 � u � v � 1. Now by Lemm 4

V2(x, y) � 2a − a2

for all x and y such that a � x � y � 1. For all x and y such that 0 � x � y � a, we have

V2(x, y) = x + (1 − x)y � 2a − a2.

In addition, we get

V2(x, y) = x + (1 − x)
∫ y

a

{−u + (1 − u)y}g1(u) du + (1 − x)
∫ s

y

yg1(u) du

= x + (1 − x)y − (1 − x)(1 + y)
∫ y

a

ug1(u)du

for all x in [0, a] and y in [a, s], and

V2(x, y) = x + (1 − x)
∫ s

a

∫ y

s

{−u − (1 − u)v + (1 − u)(1 − v)y}g1(u)g2(v) dvdu

+(1 − x)
∫ s

a

∫ 1

y

{−u + (1 − u)y}g1(u)g2(v) dvdu

= 2x − 1 + (1 − x)(1 + y)
∫ s

a

(1 − u)g1(u) du

{
1 −

∫ y

s

vg2(v) dv

}
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for all x in [0, a] and y in [s, 1]. In both cases above, V2(x, y) is increasing in x and hence

V2(x, y) � V2(a, y) � 2a − a2

for all x and y such that 0 � x � a and x � y � 1. Therefore we obtain

v2(x, y) � 2a − a2

for all x and y such that 0 � x � y � 1. This completes our proof.

7 Optimal Strategies In this section, we examine the game G∗ defined at the beginning
of section 2. For any ε in (0, 1), we define N as the smallest natural number that is
larger than 1/ε. For the N , we define constants ai (i = 0, 1, 2, · · · , n1 + 1) and ci (i =
1, 2, · · · , n2 + 1) as follows:

a0 = a,∫ ai

ai−1

f(x) dx =
1

(1 − α)N
, i = 1, 2, · · · , n1,

an1+1 = b,

c0 = c,∫ ci

ci−1

f2(y) dy =
1

αN
, i = 1, 2, · · · , n2,

cn2+1 = 1,

where ∫ b

a

f1(x) dx >

∫ an1

a

f1(x) dx �
∫ b

a

f1(x) dx − 1
(1 − α)N

and ∫ 1

c

f2(y) dy >

∫ cn2

c

f2(y) dy �
∫ 1

c

f2(y) dy − 1
αN

.

Now we define the strategy {α, f(x), f1(x), f2(y), β}ε of player I in the game G∗ as
follows:
(i) Player I fires both of his bullets simultaneously with probability 1 − α and he fires his
bullets at different moments with probability α.
(ii) Player I moves back and forth at first between 0 and a1, then between 0 and a2, · · · ,
and then between 0 and an1+1 regardless of whether he fires his bullets simultaneously or
not. If he fires his bullets simultaneously, then he fires both of his bullets, at the i-th step
(i = 1, 2, · · · , n1 + 1), only if he is between ai−1 and ai and goes forward, according to the
distribution with the conditional probability density f(x) under the condition that he fires
both his bullets simultaneously. After he has fired both of his bullets at the i-th step, he
reaches the point ai, escapes to 0 and never approaches player II.
(iii) When player I has not fired his bullets in [a, b], he further moves back and forth between
0 and c and he fires his first bullet between b and c, only if he goes forward, according to the
conditional distriburion with the conditional probability density f1(x) under the condition
that he fires his bullets at different moments. Furthermore player I moves back and forth
between 0 and c1, then between 0 and c2, · · · , and then between 0 and cn2+1. When he
moves back and forth between 0 and ci, he fires his second bullet only if he is between
ci−1 and ci and goes forward, according to the conditional distribution with the density
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part f2(y) and the mass part β at 1, independently of the point where he has fired his first
bullet. If he has fired his second bullet between ci−1 and ci, he reaches the point ci, escapes
to 0 and never approaches player II.

Theorem 2. For the game G∗, the strategy {α, f(x), f1(x), f2(y), β}ε is ε-optimal for player
I, and the strategy {g1(u), g2(v)} given in Lemma 2 is optimal for player II. Moreover, the
game value of G∗ is 2a − a2.

Proof. It is seen that if player I fires at a point, then he has to fire when he is at the point for
the first time. Similarly, if player II fires when player I is at a point, then player II has to fire
when player I is at the point for the first time. Thus, in what follows, we assume that player I
fires at points when he is at these points for the first tme, and player II fires his bullets when
player I is at the points for the first time. Now we denote by V ∗

1 (u, v) the expected payoff
of the game G∗ when player I applies the strategy {α, f(x), f1(x), f2(y), β}ε and player II
fires his bullets when player I is at the points u and v (0 � u � v � 1). Similarly, we
denote by V ∗

2 (x, y) the expected payoff of the game G∗ when player II applies the strategy
{g1(u), g2(v)} and player I fires his bullets when he is at the points x and y (0 � x � y � 1).
For all u in (ai, ai+1] (i = 0, 1, 2, · · · , n1) and v in (cj , cj+1] (j = 0, 1, 2, · · · , N2), we get

V ∗
1 (u, v) = (1 − α)

� ai

a

(2x − x2)f(x) dx + (1 − α)

� u

ai

{2x − x2 − (1 − x)2u}f(x) dx

+(1 − α)

� b

u

{−u + (1 − u)(2x − x2)}f(x) dx

+α

� c

b

� cj

c

{−u + (1 − u)x + (1 − u)(1 − x)y}f1(x)f2(y) dydx

+α

� c

b

� v

cj

{−u + (1 − u)x + (1 − u)(1 − x)y − (1 − u)(1 − x)(1 − y)v}f1(x)f2(y) dydx

+α

� c

b

� 1

v

{−u + (1 − u)x − (1 − u)(1 − x)v + (1 − u)(1 − x)(1 − v)}f1(x)f2(y) dydx

+αβ

� c

b

{−u + (1 − u)x − (1 − u)(1 − x)v + (1 − u)(1 − x)(1 − v)}f1(x)f2(y) dydx

= V1(u, v) − (1 − α)u

� u

ai

(1 − x)2f1(x) dx

−α(1 − u)v

� c

b

� v

cj

(1 − x)(1 − y)f1(x)f2(y) dydx

� V1(u, v) − 1

N
> 2a − a2 − ε.

Similarly we can show that

V ∗
1 (u, v) � V1(u, v) − 1

N
> 2a − a2 − ε

for every u and v with 0 � u � v � 1. It is clear that

V ∗
2 (x, y) = V2(x, y) � 2a − a2

for all x and y such that 0 � x � y � 1. We suppose that player I fires his first bullet
when he is at a place x in (0, 1], and escapes to 0 and stays in 0 forever. We denote such
a strategy by (x, ∗) and we denote by V ∗

2 (x, ∗) the expected payoff when players I and II
apply the strategies (x, ∗) and {g1(u), g2(v)}, respectively. Then we get

V ∗
2 (x, ∗) = x � 2a − a2
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for every x in [0, a) and

V ∗
2 (x, ∗) =

∫ x

a

{−u + (1 − u)x}g1(u) du +
∫ s

x

xg1(u) du

= x − (1 + x)
∫ x

a

ug1(u) du � a � 2a − a2

for every x in [a, s]. Further we have

V ∗
2 (x, ∗) =

∫ s

a

∫ x

s

{−u − (1 − u)v + (1 − u)(1 − v)x}g1(u)g2(v) dvdu

+
∫ s

a

∫ 1

x

{−u + (1 − u)x}g1(u)g2(v) dvdu

� a � 2a − a2

for all x in [s, 1]. Thus we can conclude that, if player II applies the strategy {g1(u), g2(v)},
the expected payoff is at most 2a−a2 whatever strategy player I may apply. This completes
our proof.

In this paper, we have assumed that player I can fire his two bullets at different moments
and we have figured out that the game value is 2a−a2 = 0.1772. As is mentioned in section
1, Trybula [10] solved an m-versus-n silent duel with arbitrary accuracy functions under
arbitrary motion. In Trybula’s model, player I has to fire his m bullets simultaneously,
whereas player II can fire his n bullets at different moments. If we set m = 2, n =2 and
p(x) = q(x) = x in Trybula’s model, then the game value is 2â − â2 (= 0.1618), where
â = 0.0845 is the unique root in (0, b̂) of the equation

∫ b̂

x

2 − 2t

t(1 + 2t − t2)2
dt =

1
1 + 2x − x2

and b̂ = 0.1779 is the unique root in (0, 1) of the equation

∫ 1

x

2 − 2t

t(1 + 2t − t2)2
dt =

1
1 + 2x − x2

.

Thus the game value of our model is larger than the game value of the Trybula’s model as
might be expected.
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