ON $B M$-ALGEBRAS

Chang Bum Kim ${ }^{1, \dagger}$ and Hee Sik Kim ${ }^{2}$

Received March 23, 2005; revised February 8, 2006

Abstract

In this paper we introduce the notion of a $B M$-algebra which is a specialization of B-algebras. We show that the class of $B M$-algebras is a proper subclass of B-algebras and show that a $B M$-algebra is equivalent to a 0 -commutative B-algebra. Moreover, we prove that a class of Coxeter algebras is a proper subclass of $B M$ algebras.

1. Introduction.

Y. Imai and K. Iséki introduced two classes of abstract algebras: $B C K$-algebras and $B C I$-algebras $([4,5])$. It is known that the class of $B C K$-algebras is a proper subclass of the class of $B C I$-algebras. In $[2,3] \mathrm{Q} . \mathrm{P} . \mathrm{Hu}$ and $\mathrm{X} . \mathrm{Li}$ introduced a wide class of abstract algebras: $B C H$-algebras. They have shown that the class of $B C I$-algebras is a proper subclass of the class of BCH -algebras. J. Neggers and H. S. Kim ([10]) introduced the notion of d-algebras which is another generalization of $B C K$-algebras, and also they introduced the notion of B-algebras ([11, 12]), i.e., (I) $x * x=0$; (II) $x * 0=x$; (III) $(x * y) * z=x *(z *(0 * y))$, for any $x, y, z \in X$, which is equivalent in some sense to the groups. Moreover, Y. B. Jun, E. H. Roh and H. S. Kim ([8]) introduced a new notion, called an $B H$-algebra, which is a generalization of $B C H / B C I / B C K$-algebras, i.e., (I); (II) and (IV) $x * y=0$ and $y * x=0$ imply $x=y$ for any $x, y \in X$. A. Walendziak obtained the another equivalent axioms for B-algebra ([13]). H. S. Kim, Y. H. Kim and J. Neggers ([7]) introduced the notion a (pre-) Coxeter algebra and showed that a Coxeter algebra is equivalent to an abelian group all of whose elements have order 2, i.e., a Boolean group. In this paper we introduce the notion of a $B M$-algebras which is a specialization of B-algebras. We prove that the class of $B M$-algebras is a proper subclass of B-algebras and also show that a $B M$-algebra is equivalent to a 0 -commutative B-algebra. Moreover, we prove that a class of Coxeter algebras is a proper subclass of $B M$-algebras. And we investigate several relations between $B M$-algebras and (pre-) Coxeter algebras.

2. $B M$-algebras.

A $B M$-algebra is a non-empty set X with a constant 0 and a binary operation "*" satisfying the following axioms:
(A1) $x * 0=x$,
(A2) $(z * x) *(z * y)=y * x$,

[^0]for any $x, y, z \in X$.
Example 2.1. Let $X=\{0,1,2\}$ be a set with the following table:

$*$	0	1	2
0	0	2	1
1	1	0	2
2	2	1	0

Then $(X ; *, 0)$ is a $B M$-algebra.
It is easy to calculate the number of $B M$-algebras on a set X with $|X|=3,4$.
Proposition 2.2. Let X be a set such that $|X|=3$ and let $\Gamma(X)$ be the collection of all $B M$-algebras defined on X. Then $|\Gamma(X)|=1$.
Proposition 2.3. Let X be a set such that $|X|=4$ and let $\Gamma(X)$ be the collection of all $B M$-algebras defined on X. Then $|\Gamma(X)|=2$.

Lemma 2.4. Let $(X ; *, 0)$ be a $B M$-algebra. Then
(i) $x * x=0$,
(ii) $0 *(0 * x)=x$,
(iii) $0 *(x * y)=y * x$,
(iv) $(x * z) *(y * z)=x * y$,
(v) $x * y=0$ if and only if $y * x=0$,
for any $x, y, z \in X$.
Proof. (i). Substituting $x=0$ and $y=0$ in (A2), we obtain

$$
(z * 0) *(z * 0)=0 * 0
$$

Applying (A1) we obtain $z * z=0$ for all $z \in X$.
(ii). Substituting $z=0$ and $x=0$ in (A2), we obtain

$$
(0 * 0) *(0 * y)=y * 0
$$

Applying (A1) we have

$$
0 *(0 * y)=y
$$

for all $y \in X$.
(iii). Using (A2) with $z=x$ we have

$$
(x * x) *(x * y)=y * x
$$

Hence, by applying (i), we obtain

$$
0 *(x * y)=y * x
$$

for any $x, y \in X$.
(iv). For any $x, y, z \in X$, we have

$$
\begin{array}{rlr}
(x * z) *(y * z) & =(0 *(z * x)) *(0 *(z * y)) & {[(\mathrm{iii})]} \\
& =(z * y) *(z * x) & {[(\mathrm{A} 2)]} \\
& =x * y & {[(\mathrm{~A} 2)]} \tag{A2}
\end{array}
$$

(v). It follows immediately from (iii) and (A1).

Note that there is no non-trivial $B M$-algebra which is also a $B C K$-algebra, since $x=$ $0 *(0 * x)=0 * 0=0$ for any $x \in X$.

A B-algebra ([11]) is a non-empty set X with a constant 0 and a binary operation "*" satisfying the following axioms:
(B1) $x * x=0$,
(A1) $x * 0=x$,
(B3) $(x * y) * z=x *(z *(0 * y))$,
for any $x, y, z \in X$.
Recently, A. Walendiziak obtained an equivalent axiomatizations for B-algebras ([13]), and he proved that the congruence lattice of any B-algebra is isomorphic to the lattice of its normal subalgebras ([14]).
Theorem 2.5. ([13]) $(X ; *, 0)$ is a B-algebra if and only if satisfies the axioms:
(B1) $x * x=0$,
(C2) $0 *(0 * x)=x$,
(C3) $(x * z) *(y * z)=x * y$,
for all $x, y, z \in X$.
¿From (i), (ii) and (iv) of Lemma 2.4, we have the following theorem.
Theorem 2.6. Every BM-algebra is a B-algebra.
The converse of Theorem 2.6 does not hold in general. Let $X:=\{0,1,2,3,4,5\}$ be a set with the following table:

$*$	0	1	2	3	4	5
0	0	2	1	3	4	5
1	1	0	2	4	5	3
2	2	1	0	5	3	4
3	3	4	5	0	2	1
4	4	5	3	1	0	2
5	5	3	4	2	1	0

Then $(X ; *, 0)$ is a B-algebra, but not a $B M$-algebra, since $(5 * 1) *(5 * 4)=4 \neq 5=4 * 1$.
Proposition 2.7. If $(X ; *, 0)$ is a $B M$-algebra, then

$$
(x * y) * z=(x * z) * y
$$

for any $x, y, z \in X$.

Proof. By Theorem 2.6 and Lemma 2.4-(iii),

$$
\begin{array}{rlc}
(x * y) * z & =[(z * y) *(z * x)] * z & {[(\mathrm{~A} 2)]} \\
& =(z * y) *[z *(0 *(z * x))] & {[(\mathrm{B} 3)]} \\
& =[0 *(z * x)] * y & {[(\mathrm{~A} 2)]} \tag{A2}\\
& =(x * z) * y & \text { [Lemma 2.4-(iii)] }
\end{array}
$$

Lemma 2.8. ([13]) If $(X ; *, 0)$ is a B-algebra, then $0 *(x * y)=y * x$ for any $x, y \in X$.
Definition 2.9. ([1]) A B-algebra $(X ; *, 0)$ is said to be 0 -commutative if $x *(0 * y)=y *(0 * x)$ for any $x, y \in X$.
Theorem 2.10. If $(X ; *, 0)$ is a 0 -commutative B-algebra, then it is a $B M$-algebra.
Proof. Since $(X ; *, 0)$ is a B-algebra, $x * 0=x$ for all $x \in X$, i.e., (A1) holds. We show that (A2) holds in X.

$$
\begin{array}{rlr}
(z * x) *(z * y) & =(0 *(x * z)) *(0 *(y * z)) & {[\text { Lemma 2.8] }} \\
& =(y * z) *[0 *(0 *(x * z))] & \\
& {[0 \text {-commutative }]} \\
& =(y * z) *(x * z) & {[(\mathrm{C} 2)]} \\
& =y * z & {[(\mathrm{C} 3)]}
\end{array}
$$

Thus $(X ; *, 0)$ is a $B M$-algebra.
Corollary 2.11. If $(X ; *, 0)$ is a B-algebra with $x * y=y * x$ for any $x, y \in X$, then it is a BM-algebra.
Proof. Since $x * y=y * x$ for any $x, y \in X$, we obtain $x *(0 * y)=x *(y * 0)=x * y=$ $y * x=y *(x * 0)=y *(0 * x)$ for any $x, y \in X$. Thus $(X ; *, 0)$ is a 0 -commutative B-algebra. Hence $(X ; *, 0)$ is a $B M$-algebra by Theorem 2.10.
Proposition 2.12. ([13]) An algebra $(X ; *, 0)$ is a 0 -commutative B-algebra if and only if it satisfies the following axioms:
(B1) $x * x=0$,
(D2) $y *(y * x)=x$,
(C3) $(x * z) *(y * z)=x * y$,
for any $x, y, z \in X$.
Theorem 2.13. If $(X ; *, 0)$ is a $B M$-algebra, then it is a 0 -commutative B-algebra.
Proof. Let X be a $B M$-algebra. Then, by Theorem 2.6, it is a B-algebra. From Theorem 2.5 , we deduce that it satisfies (B1) and (C3). Substituting $x=0$ in (A2) we obtain

$$
(z * 0) *(z * y)=y * 0
$$

Applying (A1) we have

$$
z *(z * y)=y
$$

for any $y, z \in X$. Thus (B1), (D2) and (C3) hold in (X;*,0). Hence, by Proposition 2.12, it is a 0 -commutative B-algebra.
¿From Theorem 2.10 and Theorem 2.13, we have the following result.

Corollary 2.14. An algebra $(X ; *, 0)$ is a 0-commutative B-algebra if and only if it is a BM-algebra.

3. $B M$-algebras and (pre-) Coxeter algebras.

H. S. Kim, Y. H. Kim and J. Neggers introduced and investigated a class of (pre-) Coxeter algebras. A Coxeter algebra ([7]) is a non-empty set with a constant 0 and a binary operation "*" satisfying the following axioms:
(B1) $x * x=0$,
(A1) $x * 0=x$,
(E3) $(x * y) * z=x *(y * z)$,
for any $x, y, z \in X$.
It is known that a Coxeter algebra is a special type of abelian groups (see [7]).
Proposition 3.1. ([7]) If $(X ; *, 0)$ is a Coxeter algebra, then
(i) $0 * x=x$,
(ii) $x * y=y * x$,
for any $x, y \in X$.
Lemma 3.2. Let $(X ; *, 0)$ be a Coxeter algebra. Then

$$
(y * x) * y=x
$$

for any $x, y \in X$.
Proof. For any $x, y \in X$, we have

$$
\begin{align*}
x & =0 * x \tag{i}\\
& =[(y * x) *(y * x)] * x \tag{B1}\\
& =(y * x) *[(y * x) * x] \tag{E3}\\
& =(y * x) *[(y *(x * x)] \tag{E3}\\
& =(y * x) *(y * 0) \tag{B1}\\
& =(y * x) * y \tag{A1}
\end{align*}
$$

proving the lemma.
Theorem 3.3. Every Coxeter algebra is a BM-algebra.
Proof. It is enough to show that the axiom (A2) holds in Coxeter algebra ($X ; *, 0$). For any $x, y, z \in X$, we have

$$
\begin{align*}
(z * x) *(z * y) & =(z * x) *(y * z) \\
& =[(z * x) * y] * z \tag{E3}\\
& =[z *(x * y)] * z \\
& =x * y \\
& =y * x
\end{align*}
$$

[Proposition 3.1-(ii)]
[(E3)]
[Lemma 3.2]
[Proposition 3.1-(ii)]
proving that $(X ; *, 0)$ is a $B M$-algebra.
The converse of Theorem 3.3 does not hold in general. The $B M$-algebra $(X ; *, 0)$ given by Example 2.1 is not a Coxeter algebra, since $(0 * 0) * 1=2 \neq 1=0 *(0 * 1)$.
¿From Corollary 2.14 and Theorem 3.3, we have the following result.
Theorem 3.4. Every Coxeter algebra is a 0-commutative B-algebra.
Theorem 3.5. If $(X ; *, 0)$ is a $B M$-algebra with $0 * x=x, \forall x \in X$, then it is a Coxeter algebra.
Proof. It is enough to show (E3). By applying Theorem 2.13, we have, for any $x, y, z \in X$,

$$
\begin{array}{rlr}
(x * y) * z & =(x * z) * y & \text { [Proposition 2.7] } \\
& =x *[y *(0 * z)] & {[(\mathrm{B} 3)]} \tag{B3}\\
& =x *(y * z) &
\end{array}
$$

completing the proof.
¿From Proposition 3.1-(i), Theorem 3.3 and Theorem 3.5, we have the following result.
Corollary 3.6. An algebra $(X ; *, 0)$ is a Coxeter algebra if and only if it is a $B M$-algebra with $0 * x=x$ for all $x \in X$.

An algebra $(X ; *, 0)$ is called a pre-Coxeter algebra ([7]) if it satisfies the axioms: (B1); (A1); (F3) if $x * y=0=y * x$, then $x=y$; (F4) $x * y=y * x$, for any $x, y \in X$.
Theorem 3.7. Every BM-algebra X with $0 * x=x, \forall x \in X$, is a pre-Coxeter algebra.
Proof. We show that the axioms (F3) and (F4) hold in X. Assume $x * y=0=y * x$ where $x, y \in X$. Then $x=x * 0=(x * 0) *(x * y)=y * 0=y$. It follows from Proposition 3.1-(ii) and Theorem 3.5 that $x * y=y * x$ for any $x, y \in X$. This completes the proof.

In general, a pre-Coxeter algebra need not be a $B M$-algbra.
Example 3.8. Let $X:=\{0,1,2,3\}$ be a set with the following table:

$*$	0	1	2	3
0	0	1	2	3
1	1	0	3	3
2	2	3	0	1
3	3	3	1	0

Then $(X ; *, 0)$ is a pre-Coxeter, but not a $B M$-algebra, since $(1 * 0) *(1 * 2)=3 \neq 2=2 * 0$.

By Theorem 2.6, Corollary 2.14 and Theorem 3.3, we have the following relation:
The class of Coxeter algebras \subset The class of 0-commutative B-algebras
$=$ The class of $B M$-algebras \subset The class of B-algebras
\subset The class of $B G$-algebras \subset The class of $B H$-algebras.

Acknowledgements. The authors are deeply grateful to the referee for the valuable suggestions.

References

[1] Jung R. Cho and H. S. Kim, On B-algebras and quasigroups, Quasigroups and related systems, 8 (2001), 1-6.
[2] Q. P. Hu and X. Li, On BCH-algebras, Math. Seminar Notes 11 (1983), 313-320.
[3] Q. P. Hu and X. Li, On proper BCH-algebras, Math. Japonica 30 (1985), 659-661.
[4] K. Iséki and S. Tanaka, An introduction to theory of BCK-algebras, Math. Japonica 23 (1978), 1-26.
[5] K. Iséki, On BCI-algebras, Math. Seminar Notes 8 (1980), 125-130.
[6] C. B. Kim and H. S. Kim, On BG-algebras, (submitted).
[7] H. S. Kim, Y. H. Kim and J. Neggers, Coxeters and pre-Coxeter algebras in Smarandache setting, Honam Math. J. 26(4) (2004) 471-481.
[8] Y. B. Jun, E. H. Roh and H. S. Kim, On BH-algebras, Sci. Math. Japonica Online 1 (1998), 347-354.
[9] J. Meng and Y. B. Jun, BCK-algebras, Kyung Moon Sa, Co., Seoul (1994).
[10] J. Neggers and H. S. Kim, On d-algebras, Math. Slovaca 49 (1999), 19-26.
[11] J. Neggers and H. S. Kim, On B-algebras, Mate. Vesnik 54 (2002), 21-29.
[12] J. Neggers and H. S. Kim, A fundamental theorem of B-homomorphism for B-algebras, Int. Math. J. 2 (2002), 215-219.
[13] A. Walendziak, Some axiomatizations of B-algebras, Math. Slovaca (to appear).
[14] A. Walendziak, A note on normal subalgebras in B-algebras, Sci. Math. Japo. Online e-2005 (2005), 49-53.
${ }^{1}$ Department of Mathematics
Kookmin University
Seoul, 136-702, Korea
cbkim@kookmin.ac.kr
${ }^{2}$ Department of Mathematics
Hanyang University
Seoul 133-791, Korea
heekim@hanyang.ac.kr

[^0]: ${ }^{0} \dagger$ This paper was supported by Kookmin University Research Fund, 2006. 2000 Mathematics Subject Classification. 06F35, 20A05.
 Key words and phrases. BM-algebra, B-algebra, (pre-) Coxeter algebra, 0-commutative.

