ON BM-ALGEBRAS

CHANG BUM KIM^{1,†} AND HEE SIK KIM²

Received March 23, 2005; revised February 8, 2006

ABSTRACT. In this paper we introduce the notion of a BM-algebra which is a specialization of B-algebras. We show that the class of BM-algebras is a proper subclass of B-algebras and show that a BM-algebra is equivalent to a 0-commutative B-algebra. Moreover, we prove that a class of Coxeter algebras is a proper subclass of BM-algebras.

1. Introduction.

Y. Imai and K. Iséki introduced two classes of abstract algebras: BCK-algebras and BCI-algebras ([4,5]). It is known that the class of BCK-algebras is a proper subclass of the class of BCI-algebras. In [2, 3] Q. P. Hu and X. Li introduced a wide class of abstract algebras: BCH-algebras. They have shown that the class of BCI-algebras is a proper subclass of the class of BCH-algebras. J. Neggers and H. S. Kim ([10]) introduced the notion of d-algebras which is another generalization of BCK-algebras, and also they introduced the notion of B-algebras ([11, 12]), i.e., (I) x * x = 0; (II) x * 0 = x; (III) (x*y)*z = x*(z*(0*y)), for any $x,y,z \in X$, which is equivalent in some sense to the groups. Moreover, Y. B. Jun, E. H. Roh and H. S. Kim ([8]) introduced a new notion, called an BH-algebra, which is a generalization of BCH/BCI/BCK-algebras, i.e., (I); (II) and (IV) x * y = 0 and y * x = 0 imply x = y for any $x, y \in X$. A. Walendziak obtained the another equivalent axioms for B-algebra ([13]). H. S. Kim, Y. H. Kim and J. Neggers ([7]) introduced the notion a (pre-) Coxeter algebra and showed that a Coxeter algebra is equivalent to an abelian group all of whose elements have order 2, i.e., a Boolean group. In this paper we introduce the notion of a BM-algebras which is a specialization of B-algebras. We prove that the class of BM-algebras is a proper subclass of B-algebras and also show that a BM-algebra is equivalent to a 0-commutative B-algebra. Moreover, we prove that a class of Coxeter algebras is a proper subclass of BM-algebras. And we investigate several relations between BM-algebras and (pre-) Coxeter algebras.

2. BM-algebras.

A BM-algebra is a non-empty set X with a constant 0 and a binary operation "*" satisfying the following axioms:

(A1)
$$x * 0 = x$$
,

(A2)
$$(z*x)*(z*y) = y*x$$
,

⁰† This paper was supported by Kookmin University Research Fund, 2006.
2000 Mathematics Subject Classification. 06F35, 20A05.
Key words and phrases. BM-algebra, B-algebra, (pre-) Coxeter algebra, 0-commutative.

for any $x, y, z \in X$.

Example 2.1. Let $X = \{0, 1, 2\}$ be a set with the following table:

Then (X; *, 0) is a BM-algebra.

It is easy to calculate the number of BM-algebras on a set X with |X| = 3, 4.

Proposition 2.2. Let X be a set such that |X| = 3 and let $\Gamma(X)$ be the collection of all BM-algebras defined on X. Then $|\Gamma(X)| = 1$.

Proposition 2.3. Let X be a set such that |X| = 4 and let $\Gamma(X)$ be the collection of all BM-algebras defined on X. Then $|\Gamma(X)| = 2$.

Lemma 2.4. Let (X; *, 0) be a BM-algebra. Then

- (i) x * x = 0,
- (ii) 0*(0*x) = x,
- (iii) 0 * (x * y) = y * x,
- (iv) (x*z)*(y*z) = x*y,
- (v) x * y = 0 if and only if y * x = 0,

for any $x, y, z \in X$.

Proof. (i). Substituting x = 0 and y = 0 in (A2), we obtain

$$(z*0)*(z*0) = 0*0$$

Applying (A1) we obtain z * z = 0 for all $z \in X$.

(ii). Substituting z = 0 and x = 0 in (A2), we obtain

$$(0*0)*(0*y) = y*0.$$

Applying (A1) we have

$$0*(0*y) = y$$

for all $y \in X$.

(iii). Using (A2) with z = x we have

$$(x*x)*(x*y) = y*x$$

Hence, by applying (i), we obtain

$$0 * (x * y) = y * x$$

for any $x, y \in X$.

(iv). For any $x, y, z \in X$, we have

$$(x*z)*(y*z) = (0*(z*x))*(0*(z*y))$$
 [(iii)]
= $(z*y)*(z*x)$ [(A2)]
= $x*y$ [(A2)]

(v). It follows immediately from (iii) and (A1).

Note that there is no non-trivial BM-algebra which is also a BCK-algebra, since x = 0 * (0 * x) = 0 * 0 = 0 for any $x \in X$.

A B-algebra ([11]) is a non-empty set X with a constant 0 and a binary operation " \ast " satisfying the following axioms:

- (B1) x * x = 0,
- (A1) x * 0 = x,
- (B3) (x * y) * z = x * (z * (0 * y)),

for any $x, y, z \in X$.

Recently, A. Walendiziak obtained an equivalent axiomatizations for B-algebras ([13]), and he proved that the congruence lattice of any B-algebra is isomorphic to the lattice of its normal subalgebras ([14]).

Theorem 2.5. ([13]) (X; *, 0) is a B-algebra if and only if satisfies the axioms:

- (B1) x * x = 0,
- (C2) 0*(0*x) = x,
- (C3) (x*z)*(y*z) = x*y,

for all $x, y, z \in X$.

From (i), (ii) and (iv) of Lemma 2.4, we have the following theorem.

Theorem 2.6. Every BM-algebra is a B-algebra.

The converse of Theorem 2.6 does not hold in general. Let $X := \{0, 1, 2, 3, 4, 5\}$ be a set with the following table:

*	0	$ \begin{array}{c} 1 \\ 2 \\ 0 \\ 1 \\ 4 \\ 5 \\ 3 \end{array} $	2	3	4	5
0	0	2	1	3	4	5
1	1	0	2	4	5	3
2	2	1	0	5	3	4
3	3	4	5	0	2	1
4	4	5	3	1	0	2
5	5	3	4	2	1	0

Then (X; *, 0) is a B-algebra, but not a BM-algebra, since $(5*1)*(5*4) = 4 \neq 5 = 4*1$.

Proposition 2.7. If (X; *, 0) is a BM-algebra, then

$$(x*y)*z = (x*z)*y$$

for any $x, y, z \in X$.

Proof. By Theorem 2.6 and Lemma 2.4-(iii),

$$\begin{array}{lll} (x*y)*z & = & [(z*y)*(z*x)]*z & [({\rm A2})] \\ & = & (z*y)*[z*(0*(z*x))] & [({\rm B3})] \\ & = & [0*(z*x)]*y & [({\rm A2})] \\ & = & (x*z)*y & [{\rm Lemma~2.4-(iii)}] \end{array}$$

Lemma 2.8. ([13]) If (X; *, 0) is a B-algebra, then 0 * (x * y) = y * x for any $x, y \in X$.

Definition 2.9. ([1]) A *B*-algebra (X; *, 0) is said to be 0-commutative if x*(0*y) = y*(0*x) for any $x, y \in X$.

Theorem 2.10. If (X; *, 0) is a 0-commutative B-algebra, then it is a BM-algebra.

Proof. Since (X; *, 0) is a *B*-algebra, x * 0 = x for all $x \in X$, i.e., (A1) holds. We show that (A2) holds in X.

$$(z*x)*(z*y) = (0*(x*z))*(0*(y*z))$$
 [Lemma 2.8]
= $(y*z)*[0*(0*(x*z))]$ [0-commutative]
= $(y*z)*(x*z)$ [(C2)]
= $y*z$ [(C3)]

Thus (X; *, 0) is a BM-algebra.

Corollary 2.11. If (X; *, 0) is a B-algebra with x * y = y * x for any $x, y \in X$, then it is a BM-algebra.

Proof. Since x * y = y * x for any $x, y \in X$, we obtain x * (0 * y) = x * (y * 0) = x * y = y * x = y * (x * 0) = y * (0 * x) for any $x, y \in X$. Thus (X; *, 0) is a 0-commutative *B*-algebra. Hence (X; *, 0) is a *BM*-algebra by Theorem 2.10.

Proposition 2.12. ([13]) An algebra (X; *, 0) is a 0-commutative B-algebra if and only if it satisfies the following axioms:

- (B1) x * x = 0,
- (D2) y * (y * x) = x,
- (C3) (x*z)*(y*z) = x*y,

for any $x, y, z \in X$.

Theorem 2.13. If (X; *, 0) is a BM-algebra, then it is a 0-commutative B-algebra.

Proof. Let X be a BM-algebra. Then, by Theorem 2.6, it is a B-algebra. From Theorem 2.5, we deduce that it satisfies (B1) and (C3). Substituting x = 0 in (A2) we obtain

$$(z*0)*(z*y) = y*0$$

Applying (A1) we have

$$z * (z * y) = y$$

for any $y, z \in X$. Thus (B1), (D2) and (C3) hold in (X; *, 0). Hence, by Proposition 2.12, it is a 0-commutative B-algebra.

¿From Theorem 2.10 and Theorem 2.13, we have the following result.

Corollary 2.14. An algebra (X; *, 0) is a 0-commutative B-algebra if and only if it is a BM-algebra.

3. BM-algebras and (pre-) Coxeter algebras.

H. S. Kim, Y. H. Kim and J. Neggers introduced and investigated a class of (pre-) Coxeter algebras. A *Coxeter algebra* ([7]) is a non-empty set with a constant 0 and a binary operation "*" satisfying the following axioms:

- (B1) x * x = 0,
- (A1) x * 0 = x,

(E3)
$$(x*y)*z = x*(y*z),$$

for any $x, y, z \in X$.

It is known that a Coxeter algebra is a special type of abelian groups (see [7]).

Proposition 3.1. ([7]) If (X; *, 0) is a Coxeter algebra, then

- (i) 0 * x = x,
- (ii) x * y = y * x,

for any $x, y \in X$.

Lemma 3.2. Let (X; *, 0) be a Coxeter algebra. Then

$$(y * x) * y = x$$

for any $x, y \in X$.

Proof. For any $x, y \in X$, we have

$$\begin{array}{lll} x & = & 0*x & & & & & & & & \\ & = & [(y*x)*(y*x)]*x & & & & & [(B1)] \\ & = & (y*x)*[(y*x)*x] & & & & [(E3)] \\ & = & (y*x)*[(y*(x*x)] & & & [(E3)] \\ & = & (y*x)*(y*0) & & & [(B1)] \\ & = & (y*x)*y, & & & [(A1)] \end{array}$$

proving the lemma.

Theorem 3.3. Every Coxeter algebra is a BM-algebra.

Proof. It is enough to show that the axiom (A2) holds in Coxeter algebra (X; *, 0). For any $x, y, z \in X$, we have

$$\begin{array}{lll} (z*x)*(z*y) & = & (z*x)*(y*z) & & & & & & & \\ & = & [(z*x)*y]*z & & & & & & \\ & = & [z*(x*y)]*z & & & & & & \\ & = & x*y & & & & & & \\ & = & y*x, & & & & & & \\ \end{array}$$
 [Proposition 3.1-(ii)]

proving that (X; *, 0) is a BM-algebra.

The converse of Theorem 3.3 does not hold in general. The BM-algebra (X; *, 0) given by Example 2.1 is not a Coxeter algebra, since $(0*0)*1=2 \neq 1=0*(0*1)$.

From Corollary 2.14 and Theorem 3.3, we have the following result.

Theorem 3.4. Every Coxeter algebra is a 0-commutative B-algebra.

Theorem 3.5. If (X; *, 0) is a BM-algebra with $0 * x = x, \forall x \in X$, then it is a Coxeter algebra.

Proof. It is enough to show (E3). By applying Theorem 2.13, we have, for any $x, y, z \in X$,

$$(x*y)*z = (x*z)*y$$
 [Proposition 2.7]
= $x*[y*(0*z)]$ [(B3)]
= $x*(y*z)$,

completing the proof.

¿From Proposition 3.1-(i), Theorem 3.3 and Theorem 3.5, we have the following result.

Corollary 3.6. An algebra (X; *, 0) is a Coxeter algebra if and only if it is a BM-algebra with 0 * x = x for all $x \in X$.

An algebra (X; *, 0) is called a *pre-Coxeter algebra* ([7]) if it satisfies the axioms: (B1); (A1); (F3) if x * y = 0 = y * x, then x = y; (F4) x * y = y * x, for any $x, y \in X$.

Theorem 3.7. Every BM-algebra X with $0*x = x, \forall x \in X$, is a pre-Coxeter algebra.

Proof. We show that the axioms (F3) and (F4) hold in X. Assume x*y=0=y*x where $x,y\in X$. Then x=x*0=(x*0)*(x*y)=y*0=y. It follows from Proposition 3.1-(ii) and Theorem 3.5 that x*y=y*x for any $x,y\in X$. This completes the proof.

In general, a pre-Coxeter algebra need not be a BM-algbra.

Example 3.8. Let $X := \{0, 1, 2, 3\}$ be a set with the following table:

*	0	1	2	3
0	0	1	2	3
1	1	0	3	3
1 2 3	1 2 3	3	0	1
3	3	3	1	0

Then (X; *, 0) is a pre-Coxeter, but not a BM-algebra, since $(1*0)*(1*2) = 3 \neq 2 = 2*0$.

By Theorem 2.6, Corollary 2.14 and Theorem 3.3, we have the following relation:

The class of Coxeter algebras \subset The class of 0-commutative B-algebras = The class of BM-algebras \subset The class of BG-algebras \subset The class of BH-algebras.

Acknowledgements. The authors are deeply grateful to the referee for the valuable suggestions.

References

- [1] Jung R. Cho and H. S. Kim, On B-algebras and quasigroups, Quasigroups and related systems, 8 (2001), 1-6.
- [2] Q. P. Hu and X. Li, On BCH-algebras, Math. Seminar Notes 11 (1983), 313-320.
- [3] Q. P. Hu and X. Li, On proper BCH-algebras, Math. Japonica 30 (1985), 659-661.
- [4] K. Iséki and S. Tanaka, An introduction to theory of BCK-algebras, Math. Japonica 23 (1978), 1-26.
- [5] K. Iséki, On BCI-algebras, Math. Seminar Notes 8 (1980), 125-130.
- [6] C. B. Kim and H. S. Kim, On BG-algebras, (submitted).
- [7] H. S. Kim, Y. H. Kim and J. Neggers, Coxeters and pre-Coxeter algebras in Smarandache setting, Honam Math. J. **26(4)** (2004) 471-481.
- [8] Y. B. Jun, E. H. Roh and H. S. Kim, On BH-algebras, Sci. Math. Japonica Online 1 (1998), 347-354.
- [9] J. Meng and Y. B. Jun, BCK-algebras, Kyung Moon Sa, Co., Seoul (1994).
- [10] J. Neggers and H. S. Kim, On d-algebras, Math. Slovaca 49 (1999), 19-26.
- [11] J. Neggers and H. S. Kim, On B-algebras, Mate. Vesnik 54 (2002), 21-29.
- [12] J. Neggers and H. S. Kim, A fundamental theorem of B-homomorphism for B-algebras, Int. Math. J. 2 (2002), 215-219.
- [13] A. Walendziak, Some axiomatizations of B-algebras, Math. Slovaca (to appear).
- [14] A. Walendziak, A note on normal subalgebras in B-algebras, Sci. Math. Japo. Online e-2005 (2005), 49-53.
- ¹ Department of Mathematics Kookmin University Seoul, 136-702, Korea cbkim@kookmin.ac.kr
- ² Department of Mathematics Hanyang University Seoul 133-791, Korea heekim@hanyang.ac.kr