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NOTE ON THE BRONSHTEIN THEOREM CONCERNING HYPERBOLIC
POLYNOMIALS
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Abstract. Using the argument of Bronshtein, we give proofs of some inequalities
related to hyperbolic polynomials whose coefficients are not sufficiently smooth. We
give also the correction of previously announced estimates.

1 Introduction We call a polynomial which has only real roots a hyperbolic polynomial.
Consider a hyperbolic polynomial with parameter t

P (t, τ) = τM +
M∑

h=1

Ah(t)τM−h.

We assume the multiplicity of roots is at most m. Bronshtein [2] showed Lipschitz continuity
of roots with respect to t under the assumption that all the coefficients are Cm. Using this,
Bronshtein [1] drew the estimate∣∣∣∣∂tP (t, τ)

P (t, τ)

∣∣∣∣ ≤ C|�τ |−1, 1 ≥ |�τ | > 0

and showed the Gevrey wellposedness of Cauchy problem. Using the idea of [1], Ohya-
Tarama [3] considered Cauchy problem for a hyperbolic operator with coefficients that are
κ-Hölder continuous with respect to the time variable. In the case where 2 ≥ κ > 1, a
modified version of the estimate above under the assumption m ≥ 2∣∣∣∣∂tP (t, τ)

P (t, τ)

∣∣∣∣ ≤ C|�τ |− m
κ , 1 ≥ |�τ | > 0,

(for the precise statement see Theorem 1.1 and the remark after Corollary 1.3), is used.
Concerning the regularity of roots, we see that the roots are α-Hölder continuous with
α = min{1, κ/m} if the coefficients belong to Cκ. Although the proofs of these results have
already been given by Wakabayashi [5] with some extension, we give here our proofs directly
based on the idea of Bronshtein [2]. In the course of proof, we show also that the estimate
above and Hölder continuity of roots are equivalent.

Theorem 1.1. Let T > 0, m and M positive integers with 2 ≤ m ≤ M , r0 a positive
integer and γ ∈ (0, 1]. Let

P (t, τ) = τM +
M∑

h=1

Ah(t)τM−h
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be a hyperbolic polynomial with coefficients Ah(t) (h = 1, . . . , M) in Cr0,γ([−T, T ]). We
assume that the multiplicity of roots of P (t, τ) is at most m. Then for any S ∈ (0, T ) there
exists a positive constant C such that for j = 1, . . . , min{m − 1, r0}∣∣∣∣∣∂

j
t P (t, τ)
P (t, τ)

∣∣∣∣∣ ≤ C|�τ |−j max{1, m
r0+γ }(1.1)

when τ ∈ C with �τ ∈ (0, 1] and t ∈ [−S, S].
Here the constant C may depend on S but it can be chosen uniformly when coefficients

Aj(t) belong to a bounded set in Cr0,γ([−T, T ]) as long as P (t, τ) is hyperbolic and the
multiplicity of roots is at most m uniformly. That is to say, in the case of m < M , let
Pθ(t, τ) = τM +

∑M
h=1 Ah,θ(t)τM−h be a hyperbolic polynomial with a parameter θ ∈ Θ

where {Ah,θ(t) | h = 1, . . . , M, θ ∈ Θ} is a bounded set in Cr0,γ([−T, T ]). Assume that,
using the factorization Pθ(t, τ) =

∏M
l=1(τ − λl,θ(t)) with λ1,θ(t) ≤ λ2,θ(t) ≤ · · · ≤ λM,θ(t),

we have for l = 1, . . . , M − m

λl+m,θ(t) − λl,θ(t) ≥ D, |t| ≤ T, θ ∈ Θ.(1.2)

with some positive constant D. Then we have the uniform estimate (1.1) for Pθ(t, τ) with
θ ∈ Θ.

Here we denote by Ck,α([−T, T ]) with a non-negative integer k and α ∈ (0, 1] the space
of function f(t) on [−T, T ] that has continuous derivatives up to order k and whose k-th
derivative f (k)(t) is α-Hölder continuous, that is to say,

|f (k)(s) − f (k)(t)| ≤ C|s − t|α, s, t ∈ [−T, T ]

with some constant C.

Remark 1.1. When a hyperbolic polynomial P (t) = τM +
∑M

h=1 Ah(t)τM−h with coefficients
Ah(t) in Cr0,γ([−T, T ]) have only roots with the multiplicity at most m with m < M , we
see, using the factorization P (t, τ) =

∏M
l=1(τ − λl(t)) with λ1(t) ≤ λ2(t) ≤ · · · ≤ λM (t),

that

min
|t|≤T, l=1,... ,M−m

(λl+m(t) − λl(t)) > 0,

which follows from the continuity of roots λl(t) with respect to the variable t.

For the case where coefficients depend on two variables t and x, we have the following.

Corollary 1.2. Let

P (t, x, τ) = τM +
M∑

h=1

Ah(t, x)τM−h

be a hyperbolic polynomial with coefficients Ah(t, x) (h = 1, . . . , M) in
C(r0,γ0),(r1,γ1)([−T, T ] × [−L, L]). We assume that the multiplicity of roots of P (t, x, τ) is
at most m. Then for any S ∈ (0, T ) and L0 ∈ (0, L) there exists a positive constant C such
that for j = 0, . . . , min{m − 1, r0} and k = 0, . . . , r1 satisfying 1 ≤ j + k ≤ m∣∣∣∣∣∂

j
t ∂k

xP (t, x, τ)
P (t, x, τ)

∣∣∣∣∣ ≤ C|�τ |−j max{1, m
r0+γ }−k max{1, m

r1+γ1
}(1.3)

when τ ∈ C with �τ ∈ (0, 1], t ∈ [−S, S] and x ∈ [−L0, L0].
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If we consider the case τ2 − (t − T ), we cannot expect the estimate (1.1) near the
extremity of interval, t = T or t = −T . In this case we have the following simple corollary.

Corollary 1.3. Under the assumption of Theorem 1.1 with r0 = 1, we have∣∣∣∣∂tP (t, τ)
P (t, τ)

∣∣∣∣ ≤ C(|t + T ||t− T |)− γ
1+γ |�τ |−max{1, m

1+γ }(1.4)

when t ∈ (−T, T ) and τ ∈ C with 0 < |�τ | ≤ 1.

Here we remark, taking into account the singularity appearing in (1.4) at t = ±T , that
the statement of Lemme 14.1 of [3] is not always valid unless the operator has an extension
to an open set keeping regularity of coefficients, hyperbolicity and the maximal multiplicity
of roots. Then we have to modify some arguments in [3] unless we consider Cauchy problem
in an open interval of the variable t. The necessary modification is given in the forth coming
paper [4].

The Hölder continuity of roots are given in the following form.

Theorem 1.4. Under the assumption of Theorem 1.1, we see that the roots λl(t) l =
1, . . . , M are locally Hölder continuous with the index min{1, r0+γ

m } on the open interval
(−T, T ) that is to say, λl(t) ∈ ∩S∈(0,T )C

min{1,
r0+γ

m }([−S, S]).
Furthermore as Theorem 1.1, for a bounded family of coefficients Aj(t) in Cr0,γ([−T, T ]),

the roots λj(t) j = 1, . . . , M of P (t, τ) form a bounded set in Cmin{1,
r0+γ

m }([−S, S]) for any
S ∈ (0, T ), as long as P (t, τ) is hyperbolic and the multiplicity of roots is uniformly at most
m.

As mentioned above, the two theorems above have already been proven by Wakabayashi
[5] with some extension for Theorem 1.1.

Our interest is, in one hand, to show that the idea of Bronshtein [2] is applicable for
their proofs and in other hand, to show that Theorem 1.1 and Theorem 1.4 is equivalent.

In the next section we recall some properties of a hyperbolic polynomial. In the section
3, we prove the key proposition on the behavior of coefficients with a parameter. Using the
results in the section 3, we give the proof of Theorem 1.1 in the section 4. Two Corollaries
are proven in the section 5. Theorem 1.4 is proven in the section 6 where we give two proofs
of the key lemma, Lemma 6.2. One proof is based on the results in the section 3, while
another proof is based only Theorem 1.1. Finally in the section 7 we prove Theorem 1.1
only assuming that Theorem 1.4 is valid.

For a(t) ∈ Ck,α([−t0, t0]) we denote by ‖a(·)‖Ċk,α

‖a(·)‖Ċk,α = sup
−t0≤s<t≤t0

|a(k)(t) − a(k)(s)|
|t − s|α

Then the norm of a(t) in Ck,α is given by maxt∈[−T,T ], j=0,... ,k |a(j)(t)|+ ‖a(·)‖Ċk,α . In the
following, we use C, D suffixed or not in order to denote constants that may be different
line by line. As mentioned in the section 3, there is a distinction of usage between C and
D in the section 3.

2 Properties of hyperbolic polynomials In this section we collect some known prop-
erties of hyperbolic polynomials (see Bronshtein [2]). In this section we call a polynomial
in τ with real coefficients

p(τ) =
m∑

j=0

ajτ
m−j ,
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that is not identically zero, hyperbolic when p(τ) �= 0 for any τ ∈ C\R, that is to say, all
the zeros of p(τ) are real. We remark that nonzero real constant is also hyperbolic by the
definition.

Lemma 2.1. If p(τ) =
∑m

j=0 ajτ
m−j is hyperbolic, then q(τ) =

∑m
j=0 ajτ

j is also hyper-
bolic.

Proof. When p(τ) is monomial, say, p(τ) = ajτ
m−j with aj �= 0, then q(τ) = ajτ

j that is
clearly hyperbolic. In the case where p(τ) is not monomial, we may assume that p(τ) can
be written in the following way

p(τ) = Bτk1Πk2
j=1(τ − µj)

where k1 and k2 are non negative integer satisfying k1 + k2 ≤ m and B and µj (1 ≤ j ≤ k2)
are non zero real numbers. Since q(τ) = τmp(τ−1), we have

q(τ) = Bτm−k1−k2Πk2
j=1(1 − µjτ),

which implies that q(τ) is hyperbolic.

Lemma 2.2. Let p(τ) =
∑m

j=0 ajτ
m−j be a hyperbolic polynomial with m ≥ 1 and a0 �= 0.

Then we have the followings.

1). For 0 ≤ k ≤ m, dk

dτk p(τ) is also hyperbolic.

2). (
a1

a0

)2

− 2
a2

a0
≥ 0(2.1)

and

|aj |
|a0| ≤ (3m)

j
2 max

{∣∣∣∣a1

a0

∣∣∣∣ ,
∣∣∣∣a2

a0

∣∣∣∣
1
2
}j

(2.2)

for j ≥ 1.

3). When ak �= 0 with k ∈ {1, . . . , m − 2}, we have(
ak+1

ak

)2

− ak+2

ak
≥ 0(2.3)

and

|ak+j |
|ak| ≤ (3m3)

j
2 max

{∣∣∣∣ak+1

ak

∣∣∣∣ ,
∣∣∣∣ak+2

ak

∣∣∣∣
1
2
}j

(2.4)

for m − k ≥ j ≥ 1.

4). When ak �= 0 with k ∈ {2, . . . , m}, we have

|ak−j |
|ak| ≤ (3m3)

j
2 max

{∣∣∣∣ak−1

ak

∣∣∣∣ ,
∣∣∣∣ak−2

ak

∣∣∣∣
1
2
}j

(2.5)

for k ≥ j ≥ 1.
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Proof. The assertion 1). may be evident. But for completeness, we give a proof. Let
p(τ) = a0

∏Q
q=1(τ − εq)mq where mq ≥ 1 and εq < εq+1 for 1 ≤ q ≤ Q − 1. Then we have

p′(τ) = p1(τ)p2(τ) where p1(τ) = a0

∏Q
q=1(τ − εq)mq−1 and p2(τ) =

∑Q
q=1 mq

∏
r �=q(τ − εr).

Since p2(εq)p2(εq+1) < 0 for 1 ≤ q ≤ Q − 1, we see that p2(τ) is hyperbolic, while p1(τ) is
evidently hyperbolic. Then p′(τ) is hyperbolic.

Let

p(τ) = a0Πm
j=1(τ − µj)

with µj ∈ R. Since

aj

a0
= (−1)j

∑
0≤l1<l2<...<lj≤m

µl1µl2 · · ·µlj ,(2.6)

we have
m∑

i=1

µ2
i =

(
a1

a0

)2

− 2a2

a0
(2.7)

and ∣∣∣∣aj

a0

∣∣∣∣ ≤ (
m∑

i=1

|µi|)j .(2.8)

We see that (2.7) and µi ∈ R imply (2.1). Noting that
(

a1

a0

)2

− 2
a2

a0
≤ 3 max{

∣∣∣∣a1

a0

∣∣∣∣
2

,

∣∣∣∣a2

a0

∣∣∣∣}
and that

∑m
i=1 |µi| ≤ m1/2(

∑m
j=1 µ2

i )
1/2 we obtain (2.2) from (2.7) and (2.8).

Let

q(τ) =
m∑

j=0

ajτ
j ,

that is hyperbolic thanks to Lemma 2.1. When ak �= 0 with k ≥ 1, the assertion 1). implies
that qk(τ) = dk

dτk q(τ) is hyperbolic. Hence Lemma 2.1 implies that r(τ) = τm−kqk(τ−1) is
also hyperbolic. Since

r(τ) =
m∑

j=k

j!
(j − k)!

ajτ
m−j ,

we see from (2.1), if ak �= 0, that
(

(k + 1)ak+1

ak

)2

− 2
(k + 2)(k + 1)ak+2

2ak
≥ 0,

from which we obtain (2.3). While (2.2) implies that

∣∣∣∣(k + j)!ak+j

k!j!ak

∣∣∣∣ ≤ (3m)
j
2

(
max{

∣∣∣∣(k + 1)ak+1

ak

∣∣∣∣ ,
∣∣∣∣(k + 2)(k + 1)ak+2

2ak

∣∣∣∣
1
2

}
)j

.
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Then noting that

max{
∣∣∣∣(k + 1)ak+1

ak

∣∣∣∣ ,
∣∣∣∣ (k + 2)(k + 1)ak+2

2ak

∣∣∣∣
1
2

} ≤ m max{
∣∣∣∣ak+1

ak

∣∣∣∣ ,
∣∣∣∣ak+2

ak

∣∣∣∣
1
2

},

we obtain (2.4).
When ak �= 0 with k ∈ {2, . . . , m}, the degree of q(τ) is at least k. Then we see that

the estimate (2.4) applied to q(τ) implies that (2.5) is valid.

We see from the assertion 3). of Lemma 2.2 that the following lemma is valid.

Lemma 2.3. Let p(τ) =
∑m

j=0 ajτ
m−j be hyperbolic with a0 �= 0. If aj0 = 0, aj0+1 = 0 for

some j0, then aj = 0 for any j satisfying j0 ≤ j ≤ m.

Proof. Indeed, let k0 be the largest integer j satisfying aj �= 0 and j < j0. The assumption
aj0 = 0, aj0+1 = 0 implies ak0+1 = 0 and ak0+2 = 0. Then the estimate (2.4) shows that
aj = 0 for any j satisfying k0 < j ≤ m.

The following lemma is due to Bronshtein [2].

Lemma 2.4. Let p(τ) =
∑m

j=0 ajτ
m−j be hyperbolic with a0 �= 0. Let k0 be the largest

integer j satisfying aj �= 0. Then there exists a subset M of {0, 1, . . . , k0} satisfying the
followings.

1). 0, k0 ∈ M. If j ∈ M and 0 ≤ j ≤ k0 − 1, then j + 1 ∈ M or j + 2 ∈ M.

2). aj �= 0 for any j ∈ M

3). If j, j+1 ∈ M, then (aj+1
aj

)2 > |aj+2
aj

|. If j, j+2 ∈ M and j+1 �∈ M, then (aj+1
aj

)2 ≤ |aj+2
aj

|.
Here we consider aj = 0 for j > m if necessary.

Proof. We assume that k0 > 0. We construct the sequence j0, j1, . . . in {0, 1, . . . , k0}
inductively. Let j0 = 0. If a2

j0+1 > |aj0aj0+2|, we put j1 = j0 + 1. Otherwise we put
j1 = j0 +2. We note that, if j1 ≤ k0, aj1 �= 0. Indeed when j1 = j0 +1, we see aj1 �= 0 from
the definition of j1. Consider the case where j1 = j0 + 2. Then we have a2

j0+1 ≤ |aj0aj0+2|.
Thus if aj1 = 0, we have aj0+1 = 0. Hence aj0+1 = aj0+2 = 0 from which and Lemma 2.3
follows that ak = 0 for k ≥ j0 + 1. That is not consistent with the assumption j1 ≤ k0 and
ak0 �= 0. Hence in the case where j1 = j0 + 2 also, we have aj1 �= 0. If j1 < k0, we put

j2 =

{
j1 + 1 if a2

j1+1 > |aj1aj1+2|
j1 + 2 otherwise.

Noting ak0 �= 0 and ak0+1 = 0, we see that a2
k0

> |ak0−1ak0+1|, where we put aj = 0 for
j > m if necessary. Then we see that j2 ≤ k0. Hence we see that aj2 �= 0 by the same way
as for aj1 �= 0. We repeat this procedure of the construction of a sequence j0, j1, . . . until
we have js = k0 with some s. Now we define the subset M by M = {j0, j1, . . . , js}. From
the construction of a sequence j0, j1, . . . , js we see that the subset M satisfies the desired
properties.

For an element l < k0 in M, we denote by l the smallest element in M∩ {l + 1, . . . , k0}.
We see from the property 1) of M in Lemma 2.4 that l − l is 1 or 2. Similarly for l ∈ M
with l > 0, we denote by l the largest element in M ∩ {0, . . . , l − 1}. Then we have (l) = l.
Using this notation we have the following lemma.
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Lemma 2.5. Under the assumption of Lemma 2.4, there exist a constant K depending only
on the degree of the polynomial p(τ) such that we have the following estimates, where M is
a set given in Lemma 2.4;

max{
∣∣∣∣al+1

al

∣∣∣∣ ,
∣∣∣∣al+2

al

∣∣∣∣
1
2

} =
∣∣∣∣al

al

∣∣∣∣
1

l−l

for any l ∈ M with k0 > l ,(2.9)

max{
∣∣∣∣al−1

al

∣∣∣∣ ,
∣∣∣∣al−2

al

∣∣∣∣
1
2

} ≤ K

∣∣∣∣al

al

∣∣∣∣
1

l−l

for any l ∈ M with 2 ≤ l ,(2.10)

|al|l ≤ K|al|l|a0|l−l for any l ∈ M with 0 < l < k0 ,(2.11)

and

( |ah|
|ah|

) 1
h−h ≤ K

( |al|
|al|
) 1

l−l for any l, h ∈ M with l < h < k0 .(2.12)

Proof. In this proof , we denote by K an arbitrary constant depending only on the degree
of p(τ).

Noting the property 3) of M in Lemma 2.4 and the definition of l, we see that (2.9) is
valid.

Let l ≥ 2 be in M. If l = l−2, then we see from the property 3) of M in Lemma 2.4 that
(|al||al|)1/2 ≥ |al−1| which implies that max{( |al|

|al| )
1/2,

|al−1|
|al| } is equal to ( |al|

|a|
)1/2 = ( |al|

|al| )
1

l−l .

Then if l = l − 2, we have (2.10). Assume now l = l − 1. Then (|al|/|al|)l−l = |al−1|/|al|.
When l − 2 ∈ M, then we have l − 2, l − 1 ∈ M which and the property 3) of M in Lemma
2.4 imply (|al||al−2|)1/2 < |al−1|. Hence max{( |al−2|

|al| )1/2, |al−1|
|al| } is equal to |al−1|

|al| . We have
(2.10). On the other hand, when l−2 /∈ M, it follows from l ≥ 2 and the property 1) of M in
Lemma 2.4 that l− 3 ∈ M. Noting that l− 3, l− 1 ∈ M and l− 2 /∈ M, that is l − 3 = l− 1,
we see from (2.9) with l = l − 3 that max{( |al−1|

|al−3| )
1/2, |al−2|

|al−3|} is equal to ( |al−1|
|al−3| )

1/2. Then
the estimate (2.4) with k = l − 3 and j = 3 implies

|al|
|al−3| ≤ K

( |al−1|
|al−3|

) 3
2 ,

from which and

|al−2|
|al−3| ≤

( |al−1|
|al−3|

) 1
2

we obtain

|al−2| ≤ K
|al−1|2
|al| .

Hence

max{( |al−2|
|al|

) 1
2 ,

|al−1|
|al| } ≤ K(

|al|
|al−1| ).

Therefore if l = l − 1, we have also (2.10).
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For l ∈ M with 0 < l < k0, we have l ≥ 2. Then from (2.10) we obtain

max{( |al−2|
|al|

) 1
2 ,

|al−1|
|al|

} ≤ K(
|al|
|al|

)
1

l−l .

Then we see from (2.5) with k = j = l,

|a0|
|al|

≤ K(
|al|
|al|

)
l

l−l .

Then we obtain (2.11).
In order to show (2.12) we have only to consider the case h = l. We note that

max{ |al+1|
|al| ,

( |al+2|
|al|

) 1
2 } =

( |al|
|al|
) 1

l−l .

Then we see from (2.4) with k = l that

|al+j |
|al| ≤ K

( |al|
|al|
) j

l−l .

Hence

|al+j |
|al|

≤ K
( |al|
|al|
) j

l−l
−1

.

Let h = l. If h = h + i, then h = l + l − l + i. Therefore we obtain

|ah|
|ah| ≤ K

( |al|
|al|
) i

l−l .

Then we get

( |ah|
|ah|

) 1
h−h ≤ K

( |al|
|al|
) 1

l−l .

3 Properties of coefficients of hyperbolic polynomials In this section, we show the
properties of coefficients of a hyperbolic polynomial p(t, τ) with a parameter t.

Let

p(t, τ) = τm +
m∑

j=1

Aj(t)τm−j ,

where m ≥ 2 and Aj(t) ∈ Cr0,γ([−t0, t0]) (1 ≤ j ≤ m) with a positive integer r0 and
0 < γ ≤ 1.

In the following we put aj = Aj(0), a
(l)
j = dlAj

dtl (0) with a0 = A0(t) = 1. Let k0 be the
largest integer satisfying aj �= 0. Let the subset M of {0, 1, . . . , k0} be the subset given in
Lemma 2.2 applied to the hyperbolic polynomial p(0, τ) =

∑m
j=0 ajτ

m−j . As in the section
2, for l ∈ M with l < k0 we denote by l the smallest integer in M ∩ {l + 1, . . . , k0}.

Then we have the following proposition which is due to Bronshtein [2] in the case m ≤
r0 + γ.
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Proposition 3.1. Under the setting above, assuming that k0 ≥ 1, we see that for any l ∈ M
with l < k0 there exists a positive constant Cl ∈ (0, 1] satisfying

Cl

∣∣∣∣al

al

∣∣∣∣
( 1

l−l
)max{1, h

r0+γ }
≤ t0 for h = l + 1, . . . , m

such that we have, when |t| ≤ Cl

∣∣al

al

∣∣( 1
l−l

) max{1, l
r0+γ },∣∣∣∣Al(t)

al
− 1
∣∣∣∣ ≤ 1

2
(3.1) ∣∣∣∣Al(t)

al

− 1
∣∣∣∣ ≤ 1

2
(3.2)

and when |t| ≤ Cl

∣∣al

al

∣∣( 1
l−l

)max{1, l+2
r0+γ }

max{ |Al+1(t)|
|Al(t)| ,

( |Al+2(t)|
|Al(t)|

) 1
2 } ≤ 4

∣∣∣∣al

al

∣∣∣∣
1

l−l

(3.3)

where we put Am+1(t) = am+1 = 0 if necessary. Furthermore we have

∣∣∣∣Ah(t)
al

∣∣∣∣ ≤ K

∣∣∣∣al

al

∣∣∣∣
h−l

l−l

, |t| ≤ Cl

∣∣∣∣al

al

∣∣∣∣
( 1

l−l
)max{1, h

r0+γ }
(3.4)

when m ≥ h ≥ l + 1 with a constant K depending only on the degree of polynomial m.
Here the positive constants above Cl can be chosen uniformly for the coefficients Aj(t)

belonging to a bounded set in Cr0,γ([−t0, t0]) as long as P (t, τ) is hyperbolic. That is to
say for any M > 0 there exist the positive constants δ1 and δ2, that are independent of k0

and M, such that we have δ1 ≤ Cl ≤ δ2 when the Cr0,γ-norm of all the coefficients of a
hyperbolic polynomial P (t, τ) are equal or inferior to M .

For the proof of Proposition 3.1 we prepare two lemmas.

Lemma 3.2. Let a(t) be a real valued function belonging to Ck,α([−t0, t0]) with a positive
integer k, 0 < α ≤ 1 and t0 > 0.

If we have with some δ0 ∈ (0, t0] and some constant C0

|a(t)| ≤ C0 (t ∈ [−δ0, δ0]),

then we have the estimate of the derivative a(j)(0) (1 ≤ j ≤ k); for 0 < δ ≤ δ0

|a(j)(0)| ≤ Γ(C0 + ‖a(·)‖Ċk,αδk+α)δ−j ,(3.5)

where the constant Γ depends only on k and α.
If we have with some δ0 ∈ (0, t0]

a(t) ≥ 0 (t ∈ [−δ0, δ0]),

then we have the following estimate ; for 0 < δ ≤ δ0

|a(1)(0)| ≤ a(0)δ−1 +
k∑

j=2

|a(j)(0)|δ
j−1

j!
+ ‖a(·)‖Ċk,αδk+α−1.(3.6)
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Proof. From Taylor’s formula

a(t) =
k∑

j=0

a(j)(0)
j!

tj +
tk

(k − 1)!

∫ 1

0

(1 − τ)k−1(a(k)(tτ) − a(k)(0)) dτ,(3.7)

we see that for t ∈ [−δ, δ]

|
k∑

j=0

a(j)(0)
j!

tj − a(t)| ≤ ‖a(·)‖Ċk,αδk+α.

When |a(t)| ≤ C0 (|t| ≤ δ0), for δ ∈ (0, δ] we get

|
k∑

j=1

tj

j!
a(j)(0)| ≤ 2C0 + ‖a(·)‖Ċk,αδk+α (t ∈ [−δ, δ]).

Hence by picking t = lδ/k (l = 1, . . . , k), we see a(j)(0)δj

j!kj satisfy the following linear equa-
tions; for l = 1, . . . , k

k∑
j=1

lj
a(j)(0)δj

j!kj
= Dl,

where we have |Dl| ≤ 2C0 + ‖a(·)‖Ċk,αδk+α Since k × k matrix whose (l, j) element is lj

has its inverse whose (i, j) element we denote by di,j , we have

a(j)(0)δj

j!kj
=

k∑
l=1

dj,lDl

from which we obtain the estimates (3.5).
If a(t) ≥ 0, we have from (3.7)

−a(1)(0)
t

|t| ≤ a(0)|t|−1 +
k∑

j=2

|a(j)(0)| |t|
j−1

j!
+ ‖a(·)‖Ċk,α|t|k+α−1

from which we obtain the estimate (3.6).

Next we show the following lemma.

Lemma 3.3. Under the setting of Proposition 3.1, let l ∈ M with 0 ≤ l < k0 and
h ∈ {l + 1, . . . , m}. Assume that there exists a positive constant Cl ∈ (0, 1] satisfying
Cl(|al|/|al|)|(

1
l−l

)max{1, h
r0+γ } ≤ t0 such that we have

∣∣∣∣A(t)
al

∣∣∣∣ ≤ K

∣∣∣∣al

al

∣∣∣∣
h−l

l−l

, |t| ≤ Cl

∣∣∣∣al

al

∣∣∣∣
( 1

l−l
)max{1, h

r0+γ }
(3.8)

where A(t) ∈ Cr0,γ([−t0, t0])) with a positive integer r0 and γ.
Then we have

|A(j)(0)| ≤ D|al|
∣∣∣∣al

al

∣∣∣∣
1

l−l
(h−l−j max{1, h

r0+γ })
(3.9)

for j = 1, . . . , min{r0, h − 1}. Here the constant D depends only on Cl, K, Cr0,γ-norm of
A(t) and the degree m of hyperbolic polynomial τm +

∑m

h=1 ahτm−h.
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Proof. First we remark that we have

|al|l ≤ D00|al|l.(3.10)

Indeed when 0 < l < k0, (2.11) and a0 = 1 imply (3.10) with D00 = K, while in the
case where l = 0, we obtain (3.10) with D00 = 1 from a0 = 1. From (3.8) and (3.5)
applied to A(t) with k = min{h − 1, r0} and α = min{h, r0 + γ} − k we obtain, noting
k + α = min{h, r0 + γ}, for j = 1, · · · , min{h − 1, r0}∣∣∣∣A(j)(0)

al

∣∣∣∣ ≤ Γ(K
∣∣∣∣al

al

∣∣∣∣
h−l

l−l

δ−j +
‖A‖Ċk,α

|al| δmin{h,r0+γ}−j)(3.11)

with δ = Cl

∣∣∣al

al

∣∣∣ 1
l−l

max{1, h
r0+γ }

. Since max{1, h
r0+γ }min{h, r0 + γ} = h, (3.10) implies

δmin{h,r0+γ} ≤ C
min{h,r0+γ}
l D

1
l−l

00 |al|
∣∣∣∣al

al

∣∣∣∣
h−l

l−l

.

Then we obtain (3.9) with D given by

D = Γ(KC−j
l + C

min{h,r0+γ}−j
l D

1
l−l

00 ‖A‖Ċk,α).

Proof of Proposition 3.1. In this proof we denote positive constants, that are not less than
1, depending only on the degree of p(t, τ) by K and we use Γ and Γ with some suffix in
order to denote positives constants that depend only on r0 + γ: the index of the regularity
of the coefficients Aj(t) (1 ≤ j ≤ m). Furthermore C, C with some suffix, D and D with
some suffix are used in order to denote positives constants that may depend also on the
Cr0,γ-norm of the coefficients Aj(t) (1 ≤ j ≤ m). Here D or D with some suffix are used to
denote positive constants which are bounded by the Cr0,γ norms of coefficients Aj(t), while
C or C with some suffix are used for positive constants that are inferior or equal to 1 and
whose inverses are bounded by the Cr0,γ norms of coefficients Aj(t).

Considering, if necessary, the linear change of the variable t, we assume that

t0 = 1.

Then Aj(t) ∈ Cr0,γ([−1, 1]). Recall

aj = Aj(0) and a
(l)
j =

dlAj

dtl
(0).

Note a0 = 1 and that we have |a0
a0
|1/0 = max{| a1

a0
|, |a2

a0
|1/2} from (2.9). Then from (2.12),

we have for any l ∈ M with l < k0

( |al|
|al|
) 1

l−l ≤ D0(3.12)

where D0 = K max{|a1|, |a2|1/2}.
First we consider the case where l = 0.
When 0, 1 ∈ M, that is to say 0 = 1, we have |a2| < |a1|2 and a1 �= 0. Since A1(t) ∈

C0,1([−1, 1]), we see that, with C1,1 = min{ 1
1+2‖A1(·)‖Ċ0,1

, 1
1+|a1|}, |A1(t)− a1| ≤ |a1|

2 when
|t| ≤ C1,1|a1|. Here we remark that C1,1|a1| ≤ 1.
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Hence

∣∣A1(t)
a1

− 1
∣∣≤ 1

2
, |t| ≤ C1,1|a1|.(3.13)

Then A1(t)2 ≤ 4a2
1 when |t| ≤ C1,1|a1|. Since (2.1) implies 2A2(t) ≤ A1(t)2, we see that

4a2
1 − 2A2(t) ≥ 0, |t| ≤ C1,1|a1|.(3.14)

Note A2(t) ∈ Cr0,γ([−1, 1]) and

|4a2
1 − 2A2(0)| = |4a2

1 − 2a2| ≤ 6a1
2.(3.15)

In the case where 2 ≥ r0 + γ, since r0 ≥ 1 and 1 ≥ γ > 0, we have r0 = 1. Taylor’s
formula (3.7) with k = 1 and α = γ, implies

|A2(t) − a2| ≤ |a(1)
2 t| + ‖A2(·)‖Ċr0,γ |t|r0+γ , |t| ≤ 1,.(3.16)

From (3.15) we see that the estimate (3.6) applied to 4a2
1−2A2(t) with k = 1 and α = γ

and δ = (C1,1|a1|)
2

r0+γ implies, with D1,1 = (3 + C2
1,1‖A2(·)‖Ċr0,γ )C

− 2
r0+γ

1,1 ,

|a(1)
2 | ≤ D1,1|a1|2−

2
r0+γ .

Then we see that with C1,2 = min{ 1
1+2D1,1+2‖A2(·)‖Ċr0,γ

, 1
(1+|a1|)2 },

|A2(t) − a2| ≤ a2
1 when |t| ≤ C1,2|a1|

2
r0+γ

where we remark that (1 + |a1|)2C1,2 ≤ 1 and 2
r0+γ ≤ 2 show that C1,2|a1|

2
r0+γ ≤ 1. Hence

we have

|A2(t)| ≤ 2a2
1, |t| ≤ C1,2|a1|

2
r0+γ .

If 2 ≤ r0 + γ, we see from (3.6) applied to 4a2
1 − 2A2(t) with k = α = 1 and δ = C1,1|a1|,

(3.14) and (3.15) that, with D1,2 = (3C−1
1,1 + C1,1‖A2(·)‖Ċ1,1)

|a(1)
2 | ≤ D1,2|a1|

which and the following estimate drawn from Taylor’s formula (3.7) with k = α = 1

|A2(t) − a2| ≤ |a(1)
2 t| + ‖A2(·)‖Ċ1,1 |t|2, |t| ≤ 1(3.17)

imply with C1,3 = min{ 1
1+2D1,2+2‖A2(·)‖Ċ1,1

, 1
1+|a1|} that satisfies C1,3|a1| ≤ 1,

|A2(t) − a2| ≤ a2
1, |t| ≤ C1,3|a1|.

Then

|A2(t)| ≤ 2a2
1, |t| ≤ C1,3|a1|.

Therefore with

C0 =

{
min{C1,1(1 + |a1|)−1, C1,2} (2 ≥ r0 + γ)
min{C1,1, C1,3} (2 ≤ r0 + γ),
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we see that ∣∣∣∣A1(t)
a1

− 1
∣∣∣∣ ≤ 1

2
, |t| ≤ C0|a1|max{1, 1

r0+γ },(3.18)

and

max{|A1(t)|, |A2(t)| 12 } ≤ 2|a1|, |t| ≤ C0|a1|max{1, 2
r0+γ }.

The estimate above and (2.2) implies that for j = 2, . . . , m

|Aj(t)| ≤ K|a1|j when |t| ≤ C0|a1|max{1, 2
r0+γ }.

Putting

C0,0 =
C0

(1 + |a1|)m

we see that C0,0 ≤ C0 and C0,0|a1|max{1, j
r0+γ } ≤ C0|a1|max{1, 2

r0+γ } when 2 ≤ j ≤ m. Hence

we have C0,0|a1|max{1, j
r0+γ } ≤ 1 (1 ≤ j ≤ m) and following estimates;∣∣∣∣A1(t)

a1
− 1
∣∣∣∣ ≤ 1

2
, |t| ≤ C0,0|a1|max{1, 1

r0+γ },

max{|A1(t)|, |A2(t)| 12 } ≤ 2|a1|, |t| ≤ C0,0|a1|max{1, 2
r0+γ }

and

|Aj(t)| ≤ K|a1|j |t| ≤ C0,0|a1|max{1, j
r0+γ }.

when 1 ≤ j ≤ m.
On the other hand, when 0, 2 ∈ M and 1 /∈ M, that is to say, 0 = 2, we have |a2

1| ≤ |a2|
and a2 �= 0. Since A1(t) ∈ C0,1([−1, 1]), we have with C2,1 = min{ 1

1+2‖A1(·)‖Ċ0,1
, 1

1+|a2|},
which implies C2,1|a2|1/2 ≤ 1,

|A1(t) − a1| ≤ |a2| 12 , |t| ≤ C2,1|a2| 12 .

Then

A1(t)2 ≤ 4|a2|, |t| ≤ C2,1|a2| 12 .(3.19)

Since (2.1) implies 2A2(t) ≤ A1(t)2, we see that

4|a2| − 2A2(t) ≥ 0, |t| ≤ C2,1|a2| 12 .(3.20)

Note A2(t) ∈ Cr0,γ([−1, 1]) and

|4|a2| − 2A2(0)| = |4|a2| − 2a2| ≤ 6|a2|.(3.21)

In the case where 2 ≥ r0 + γ, the estimate (3.6) applied to 4|a2| − 2A2(t) with k = r0 = 1,

α = γ and δ = (C2,1|a2|1/2)
2

r0+γ implies that with D2,1 = (3 + C2
2,1‖A2(·)‖Ċr0,γ )C

− 2
r0+γ

2,1

|a(1)
2 | ≤ D2,1|a2|1−

1
r0+γ
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from which and (3.16) we see that with C2,2 = min{ 1
1+4D2,1+4‖A2(·)‖Ċr0,γ

, 1
1+|a2|}, that

satisfies C2,2(1 + |a2|) ≤ 1,

|A2(t) − a2| ≤ 1
2
|a2|, |t| ≤ C2,2|a2|

1
r0+γ .(3.22)

If 2 ≤ r0 + γ, the estimate (3.6) applied to 4|a2| − 2A2(t) with k = α = 1 and δ =
C2,1|a2| 12 , (3.20) and (3.21) imply that with D2,2 = (3C−1

2,1 + C2,1‖A2(·)‖Ċ1,1)

|a(1)
2 | ≤ D2,2|a2| 12

from which and (3.17) we obtain with C2,3 = min{ 1
1+4D2,2+4‖A2(·)‖Ċ1,1

, 1
1+|a2|}, that satisfies

C2,3|a2| ≤ 1,

|A2(t) − a2| ≤ 1
2
|a2|, |t| ≤ C2,3|a2| 12 .(3.23)

Therefore with

C0 =

{
min{C2,1(1 + |a2|)−1, C2,2} (2 ≥ r0 + γ)
min{C2,1, C2,3} (2 ≤ r0 + γ),

we see that, when |t| ≤ C0|a2|max{ 1
2 , 1

r0+γ }

max{|A1(t)|, |A2(t)| 12 } ≤ 2|a2| 12 .

The estimates above and (2.2) show that for j = 2, . . . , m

|Aj(t)| ≤ K|a2|
j
2 , |t| ≤ C0|a2|max{ 1

2 , 1
r0+γ }.

Putting

C0,0 =
C0

(1 + |a2|)m

we see that C0,0 ≤ C0 and C0,0|a2|
1
2 max{1, j

r0+γ } ≤ C0|a2|
1
2 max{1, 2

r0+γ } when 2 ≤ j ≤ m.

Hence C0,0|a2|
1
2 max{1, j

r0+γ } ≤ 1 when 1 ≤ j ≤ m. Then it follows from (3.19), (3.22), (3.23)
and the estimates above that we have following estimates;∣∣∣∣A2(t)

a2
− 1
∣∣∣∣ ≤ 1

2
, |t| ≤ C0,0|a2|

1
2 max{1, 2

r0+γ },

max{|A1(t)|, |A2(t)| 12 } ≤ 2|a2| 12 , |t| ≤ C0,0|a2|
1
2 max{1, 2

r0+γ }

and

|Aj(t)| ≤ K|a2|
j
2 |t| ≤ C0,0|a2|

1
2 max{1, j

r0+γ }.

when 1 ≤ j ≤ m.
Then we see that the assertion of Proposition 3.1 is valid when l = 0.
In the following , by the induction we show that the assertion for l of Proposition 3.1 is

valid.
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Let l0 ∈ M with 0 < l0 < k0. Assume that the assertion of Proposition 3.1 for l ∈ M
with 0 ≤ l < l0 is valid. Then the assumption of Lemma 3.3 with t0 = 1 is satisfied for
l ∈ M with 0 < l < l0 and A(t) = Ah(t) with l + 1 ≤ h ≤ m.

We see from (2.9), (2.11) and (2.12)

max{
∣∣∣∣al0+1

al0

∣∣∣∣ ,
∣∣∣∣al0+2

al0

∣∣∣∣
1
2

} =
∣∣∣∣al0

al0

∣∣∣∣
1

l0−l0
,(3.24)

|al0
|l0 ≤ K|al0|l0(3.25)

and

∣∣∣∣al0

al0

∣∣∣∣
1

l0−l0 ≤ K

∣∣∣∣∣al0

al0

∣∣∣∣∣
1

l0−l0

.(3.26)

Since (l0) = l0, we see from (3.9) with l = l0, h = l0 + 1 and A(t) = Al0+1(t) that

|a(j)
l0+1| ≤ D|al0 |

∣∣∣∣∣al0

al0

∣∣∣∣∣
1

l0−l0
(l0+1−l0−j max{1,

l0+1
r0+γ }

from which and (3.26) we see

|a(j)
l0+1| ≤ DK|al0 |

∣∣∣∣al0

al0

∣∣∣∣
1

l0−l0
(1−j max{1,

l0+1
r0+γ })

(3.27)

for j = 1, . . . , min{l0, r0}.
We see from Taylor’s formula (3.7) that, with k = min{l0, r0} and α = min{l0 + 1, r0 +

γ} − k,

|Al0+1(t) − al0+1| ≤
( k∑

j=1

|a(j)
l0+1||t|j + ‖Al0+1(·)‖Ċk+α |t|min{l0+1,r0+γ})(3.28)

when |t| ≤ 1. Noting that (3.25) implies (|al0
|/|al0 |)(l0)/(l0−l0) ≤ K|al0 |, we see from (3.27)

that, when |t| ≤ δ
∣∣∣al0
al0

∣∣∣ 1
l0−l0

max{1,
l0+1
r0+γ }

with δ > 0, the right hand side of (3.28) is not
larger than

( k∑
j=1

DKδj + ‖Al0+1(·)‖Ċk+αKδmin{l0+1,r0+γ})|al0 |
∣∣∣∣al0

al0

∣∣∣∣
1

l0−l0

which is not larger than 1
2 |al0 |

∣∣∣al0
al0

∣∣∣ 1
l0−l0 if δ ≤ 1 and

2(kDK + ‖Al0+1(·)‖Ċk+αK)δ ≤ 1.

Noting (3.12) with l = l0, we see that

|Al0+1(t) − al0+1| ≤ 1
2
|al0 |

∣∣∣∣al0

al0

∣∣∣∣
1

l0−l0
(3.29)
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when |t| ≤ C1

( |al0
|

|al0 |
) 1

l0−l0
max{1,

l0+1
r0+γ } with

C1 = min{ 1
(1 + D0)(l0+1)

,
1

2(kDK + ‖Al0+1(·)‖Ċk+αK)
}.

Here we note

C1

( |al0
|

|al0 |
) 1

l0−l0
max{1,

l0+1
r0+γ } ≤ 1.

On the other hand, from (3.9) with h = l0 + 2, l = l0 and A(t) = Al0+2(t), we have

|a(j)
l0+2| ≤ D|al0 |

∣∣∣∣∣al0

al0

∣∣∣∣∣
1

l0−l0
(l0+2−l0−j max{1,

l0+2
r0+γ })

from which and (3.26) we see

|a(j)
l0+2| ≤ DK|al0 |

∣∣∣∣al0

al0

∣∣∣∣
1

l0−l0
(2−j max{1,

l0+2
r0+γ })

(3.30)

for j = 2, . . . , min{l0 + 1, r0}.
Since we assume that the assertion of Proposition 3.1 for l = l0 is valid, we have∣∣∣∣Al0(t)

al0

− 1
∣∣∣∣ ≤ 1

2
(3.31)

when |t| ≤ Cl0

(|al0 |/|al0 |
)max{1,l0/(r0+γ)}/(l0−l0). Note that from (3.26) and (3.12) with l =

l0 we see that, when |t| ≤ Cl0

(1+K)l0(1+D0)

(|al0
|/|al0 |

)max{1,(l0+1)/(r0+γ)}/(l0−l0), the estimate
(3.31) holds. Then by setting

C2 = min{C1,
Cl0

(1 + K)l0(1 + D0)
},

we see that (3.29) and (3.31) hold when |t| ≤ C2

( |al0
|

|al0 |
) 1

l0−l0
max{1,

l0+1
r0+γ }. We see from (3.31)

that Al0(t) �= 0 when |t| ≤ C2

( |al0
|

|al0 |
) 1

l0−l0
max{1,

l0+1
r0+γ }, which and (2.3) implies

(
Al0+1(t)
Al0(t)

)2

− Al0+2(t)
Al0(t)

≥ 0.(3.32)

We see from (3.24) that |al0+1| ≤ |al0 |(|al0
|/|al0 |)1/(l0−l0). Then we see from (3.29), (3.31)

and (3.32) that we have

8
∣∣∣∣al0

al0

∣∣∣∣
2

l0−l0 − Al0+2(t)
al0

≥ 0(3.33)

when |t| ≤ C2

( |al0
|

|al0 |
) 1

l0−l0
max{1,

l0+1
r0+γ }. Then, noting (3.24), it follows from (3.6) applied to

(3.33) with k = min{l0 + 1, r0}, α = min{l0 + 2, r0 + γ} − k and

δ = δ1(|al0
|/|al0 |)max{1,

l0+2
r0+γ }/(l0−l0)
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that

(3.34)

∣∣∣∣∣a
(1)
l0+2

al0

∣∣∣∣∣ ≤ (9
∣∣∣∣al0

al0

∣∣∣∣
2

l0−l0
δ−1
1 +

k∑
j=2

|a(j)
l0+2|
|al0 |

∣∣∣∣al0

al0

∣∣∣∣
j

l0−l0
max{1,

l0+2
r0+γ }

δj−1
1

+
1

|al0 |
‖Al0+2(·)‖Ċk+α

∣∣∣∣al0

al0

∣∣∣∣
l0+2
l0−l0

δ
min{l0+2,r0+γ}−1
1

) ∣∣∣∣al0

al0

∣∣∣∣
− 1

l0−l0
max{1,

l0+2
r0+γ }

where δ1 = C2/(1 + D0). Here we note that the estimate (3.12) with l = l0 implies

δ1(|al0
|/|al0 |)max{1,

l0+2
r0+γ }/(l0−l0) is less than C2(|al0

|/|al0 |)max{1,
l0+1
r0+γ }/(l0−l0). Noting that

we have (|al0
|/|al0 |)l0/(l0−l0) ≤ (K + 1)|al0 | from (3.25), we see from (3.30) that the right

hand side of (3.34) is not larger than

D2

∣∣∣∣al0

al0

∣∣∣∣
1

l0−l0
(2−max{1,

l0+2
r0+γ })

(3.35)

with

D2 = 9δ−1
1 +

k∑
j=2

δj−1
1 DK + ‖Al0+2(·)‖Ċk+αδ

min{l0+2,r0+γ}−1
1 (K + 1).

Then we have |a(1)
l0+2| ≤ D2|al0 |(|al0

|/|al0 |)(2−max{1,
l0+2
r0+γ })/(l0−l0), ¿from which and Taylor’s

formula (3.7), taking account of (3.30), we see that, with k = min{l0 + 1, r0} and α =
min{l0 + 2, r0 + γ} − k,

(3.36) |Al0+2(t) − al0+2| ≤

D3|al0 |
∣∣∣∣al0

al0

∣∣∣∣
2

l0−l0
k∑

j=1

|t|j
∣∣∣∣al0

al0

∣∣∣∣
1

l0−l0
(−j max{1,

l0+2
r0+γ })

+ ‖Al0+2(·)‖Ċk+α |t|min{l0+2,r0+γ}, |t| ≤ 1

where

D3 = D2 + DK max{0, k − 1}.

Again we remark that min{l0 + 2, r0 + γ}max{1, (l0 + 2)/(r0 + γ)} is equal to l0 + 2 and
(|al0

|/|al0 |)l0/(l0−l0) ≤ (K+1)|al0|. Then when |t| ≤ δ2(|al0
|/|al0 |)max{1,(l0+2)/(r0+γ)}/(l0−l0),

the right hand side of (3.36) is not larger than

(
D3

k∑
j=1

δj
2 + ‖Al0+2(·)‖Ċk+α(K + 1)δmin{l0+2,r0+γ}

2

)|al0 |
( |al0

|
|al0 |

) 2
l0−l0

.

Therefore we see that

|Al0+2(t) − al0+2| ≤ 1
2
|al0 |

( |al0
|

|al0 |
) 2

l0−l0

(3.37)
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when |t| ≤ C3(|al0
|/|al0 |)max{1,(l0+2)/(r0+γ)} where

C3 = min{ 1
(1 + D0)l0+2

,
1

2(D3k + ‖Al0+2(·)‖Ċk+α(K + 1))
}.

Here we note that C3 ≤ 1 and that the estimate (3.12) with l = l0 implies that
C3(|al0

|/|al0 |)max{1,(l0+2)/(r0+γ)} ≤ 1. Furthermore we obtain for j ≥ 1

1
(1 + D0)

( |al0
|

|al0 |
) 1

l0−l0
max{1, j+1

r0+γ }
≤
( |al0

|
|al0 |

) 1
l0−l0

max{1, j
r0+γ }

.

Thus by setting

Cl0 =
1

(1 + D0)m
min{C2, C3}

we see that

Cl0

( |al0
|

|al0 |
) 1

l0−l0
max{1, j

r0+γ }
≤ C2

( |al0
|

|al0 |
) 1

l0−l0
max{1,

l0+1
r0+γ }

≤ 1(3.38)

for j = l0 + 1, . . . , m and

Cl0

( |al0
|

|al0 |
) 1

l0−l0
max{1, j

r0+γ }
≤ C3

( |al0
|

|al0 |
) 1

l0−l0
max{1,

l0+2
r0+γ }

≤ 1(3.39)

for j = l0 + 2, . . . , m. Then when |t| ≤ Cl0

( |al0
|

|al0 |
) 1

l0−l0
max{1,

l0+2
r0+γ }

, we have (3.29),(3.31)
and (3.37).

Taking account of (2.9), we see that max{|al0+1|/|al0 |, (|al0+2|/|al0 |) 1
2 } is equal to

(|al0
|/|al0 |)1/(l0−l0). Thus we obtain from (3.29) and (3.37)

∣∣∣∣Al0+1(t)
al0

∣∣∣∣ ≤ 2
( |al0

|
|al0 |

) 1
l0−l0(3.40)

and ∣∣∣∣Al0+2(t)
al0

∣∣∣∣ ≤ 2
( |al0

|
|al0 |

) 2
l0−l0(3.41)

which and (3.31) imply that

max{
∣∣∣∣Al0+1(t)

Al0(t)

∣∣∣∣ ,
∣∣∣∣Al0+2(t)

Al0(t)

∣∣∣∣
1
2

} ≤ 4
( |al0

|
|al0 |

) 1
l0−l0

when |t| ≤ Cl0

( |al0
|

|al0 |
) 1

l0−l0
max{1,

l0+2
r0+γ }

. Therefore, taking account of (3.31), (3.38), (3.39),
(3.40) and (3.41), we obtain from (2.3)

∣∣∣∣Ah(t)
al0

∣∣∣∣ ≤ K

∣∣∣∣al0

al0

∣∣∣∣
h−l0
l0−l0

, h = l0 + 1, . . . , m
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when |t| ≤ Cl0

( |al0
|

|al0 |
) 1

l0−l0
max{1, h

r0+γ }
. Finally we see from (3.29) and (3.37) that if l0 =

l0 + 1, we have ∣∣∣∣Al0+1(t)
al0+1

− 1
∣∣∣∣ ≤ 1

2

when |t| ≤ Cl0

( |al0
|

|al0 |
) 1

l0−l0
max{1,

l0+1
r0+γ }

otherwise we have∣∣∣∣Al0+2(t)
al0+2

− 1
∣∣∣∣ ≤ 1

2

when |t| ≤ Cl0

( |al0
|

|al0 |
) 1

l0−l0
max{1,

l0+2
r0+γ }

. Then we see that the assertion of Proposition 3.1 is
valid for l = l0. Then the proof of Proposition 3.1 is completed.

Next we show a lemma on the behavior of coefficients Aj(t) for j > k0.

Lemma 3.4. Under the same setting as in Proposition 3.1, without the restriction k0 > 0,
we assume k0 ≤ m − 2. Then we have

a
(j)
h = 0

when j ≤ r0 and h − j max{1, 2
r0+γ } > k0.

Proof. We use the same notations as in the proof of Proposition 3.1. By the definition of
k0, we have ak0 �= 0 and ah = 0 for h ≥ k0 + 1. Then, from the continuity of Ak0(t) we see
that there exists C > 0 such that∣∣∣∣Ak0(t)

ak0

− 1
∣∣∣∣ ≤ 1

2
, |t| ≤ C.

Hence from (2.3), we get (
Ak0+1(t)
Ak0(t)

)2

− Ak0+2(t)
Ak0(t)

≥ 0 |t| ≤ C.

Since Ak0+1(0) = ak0+1 = 0, we have |Ak0+1(t)| ≤ D|t|. Then we have

4D2t2

a2
k0

− Ak0+2(t)
ak0

≥ 0 |t| ≤ C,

which and Ak0+2(0) = ak0+2 = 0 imply that a
(1)
k0+2 = 0. Then, since Ak0+2(t) belongs to

Cr0+γ([−t0, t0]), we have |Ak0+2(t)| ≤ D|t|min{2,r0+γ}. Hence we have

max{
∣∣∣∣Ak0+1(t)

Ak0 (t)

∣∣∣∣ ,
∣∣∣∣Ak0+2(t)

Ak0(t)

∣∣∣∣
1
2

} ≤ D
|ak0 | + 1
|ak0 |

|t|min{1,
r0+γ

2 }, |t| ≤ C.

Then from (2.4) we obtain for h = k0 + 1, . . . , m∣∣∣∣Ah(t)
ak0

∣∣∣∣ ≤ D
(1 + |ak0 |

|ak0|

)h−k0 |t|(h−k0)min{1,
r0+γ

2 }, |t| ≤ C.

Hence we have A
(j)
h (0) = 0 when j ≤ r0 and j < (h − k0)min{1, r0+γ

2 }. Then

a
(j)
h = 0 when j ≤ r0 and h − j max{1,

2
r0 + γ

} > k0.
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4 Proof of Theorem 1.1 First we show the following lemma.

Lemma 4.1. Let m be a positive integer and T > 0. Let

p(t, τ) = τm +
m∑

h=1

Ah(t)τm−h

be a hyperbolic polynomial in τ whose coefficients Ah(t) belong to Cr0,γ([−T, T ]) with a
positive integer r0 and < γ ≤ 1. For any S satisfying 0 < S < T , there exists a positive
constant C such that we have for j = 1, . . . , min{m − 1, r0}∣∣∣∣∣∂

j
t p(t, τ)
p(t, τ)

∣∣∣∣∣ ≤ C|�τ |−j max{1, m
r0+γ }

,(4.1)

when |t| ≤ S and τ ∈ C\R satisfies |�τ | ≤ 1.
Here the constant C, that may depend on S, can be chosen uniformly for a bounded

family of coefficients Ah(t) in Cr0,γ([−T, T ]) as long as p(t, τ) is hyperbolic.

Remark 4.1. Since p(t, τ) is hyperbolic in τ , we have the factorization:

p(t, τ) =
m∏

l=1

(τ − λl(t))(4.2)

with λl(t) ∈ R. Hence |p(t, τ)| ≥ |�τ |m. For j = 1, . . . , r0 we have

|∂j
t p(t, τ)| ≤ D(|τ | + 1)m−1 |t| ≤ T.

Set D0 = max|t|≤T (A1(t)2 − 2A2(t)). Then we see from (2.7) that for j = 1, . . . , m

|λl(t)| ≤ D
1
2
0 |t| ≤ T.

Then it follows from (4.2) that |p(t, τ)| ≥ 2−m|τ |m when |τ | ≥ 2D
1
2
0 and |t| ≤ T . Therefore

we have for j = 1, . . . , r0∣∣∣∣∣∂
j
t p(t, τ)
p(t, τ)

∣∣∣∣∣ ≤
{

D|�τ |−m when �τ �= 0, |τ | ≤ 2D
1
2
0 and |t| ≤ T

D|τ |−1 when |τ | ≥ 2D
1
2
0 and |t| ≤ T .

(4.3)

Proof of Lemma 4.1. When m = 1, (4.3) implies (4.1). In the following we assume m ≥ 2.

Taking account of the remark above, we have only consider the case |�τ | ≤ 2D
1
2
0 . For

s ∈ [−S, S] and τ0 ∈ [−2D
1
2
0 , 2D

1
2
0 ] we set

ps,τ0(t, τ) = p(s + t, τ0 + τ).

Then ps,τ0(t, τ) is hyperbolic and we have

ps,τ0(t, τ) = τm +
m∑

h=1

Ah,s,τ0(t)τ
m−h

where
{Ah,s,τ0(t) | h = 1, . . . , m s ∈ [−S, S] and τ0 ∈ [−2D

1
2
0 , 2D

1
2
0 ]}
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is a bounded set in Cr0,γ([−t0, t0]) with t0 = T − S.
Set

ah = Ah,s,τ0(0) and a
(j)
h = A

(j)
h,s,τ0

(0).

Since ps,τ0(0, τ) = τm +
∑m

h=1 ahτm−h is hyperbolic, we have ps,τ0(0, τ) =
∏m

l=1(τ − λl)
with λl ∈ R. Then we see from (2.6) that for real µ

|ps,τ0(0, iµ)| ≥ 2−m
m∏

l=1

(|µ| + |λl|)

≥ 2−m(|µ|m +
m∑

h=1

|ah||µ|m−h).(4.4)

Now we show for j = 1, . . . , min{m − 1, r0},∣∣∣∣∣∂
j
t ps,τ0(0, iµ)
ps,τ0(0, iµ)

∣∣∣∣∣ ≤ D|µ|−j max{1, m
r0+γ }, 0 < |µ| ≤ 1.(4.5)

In order to draw the estimate above, we consider the estimate of |a(j)
h µm−h/ps,τ0(0, iµ)|.

Let k0 be the largest h satisfying ah �= 0. Let M be a subset of {0, 1, . . . , k0} defined in
Lemma 2.4 applied to our ps,τ0(0, τ) = τm +

∑m
h=1 ahτm−h. First we remark that it follows

from Lemma 3.4 that

a
(j)
h = 0

when j ≥ 1 and h−k0 > j max{1, h
r0+γ }. For we see that j ≥ 1 and h−k0 > j max{1, h

r0+γ }
imply h ≥ 2 and j ≤ r0. On the other hand, when min{m − 1, r0} ≥ j ≥ 1 and h −
j max{1, h

r0+γ } ≤ 0, noting |µ|−h ≤ |µ|−j max{1, m
r0+γ } for |µ| ≤ 1, and (4.4), we obtain∣∣∣∣∣ a

(j)
h µm−h

ps,τ0(0, iµ)

∣∣∣∣∣ ≤ 2m|a(j)
h ||µ|−j max{1, m

r0+γ }, |µ| ≤ 1.

Finally in the case where min{m − 1, r0} ≥ j ≥ 1 and k0 ≥ h − j max{1, h
r0+γ } > 0, there

exists l ∈ M such that we have

l < h − j max{1,
h

r0 + γ
} ≤ l.(4.6)

Thanks to (3.4) of Proposition 3.1, we have
∣∣∣∣Ah,s,τ0(t)

al

∣∣∣∣ ≤ K

∣∣∣∣al

al

∣∣∣∣
h−l

l−l

when |t| ≤ C
∣∣al

al

∣∣ 1
l−l

max{1, h
r0+γ }

. From (3.5) applied to Ah,s,τ0(t) with k = min{h − 1, r0}
and α = min{h, r0 + γ} − k with

δ = C
∣∣al

al

∣∣ 1
l−l

max{1, h
r0+γ }

we obtain

|a(j)
h | ≤ Γ

(
K|al|

∣∣∣∣al

al

∣∣∣∣
h−l

l−l

+ ‖Ah,s,τ0(·)‖Ċk,αδmin{h,r0+γ})δ−j .
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Just as the proof of Proposition 3.1, we obtain from (2.11)∣∣∣∣al

al

∣∣∣∣
h

≤ K|al|l−l

∣∣∣∣al

al

∣∣∣∣
h−l

.

Then

|a(j)
h | ≤ D|al|

∣∣∣∣al

al

∣∣∣∣
1

l−l
(h−l−j max{1, h

r0+γ })

with

D = Γ(K + K
1

l−l ‖Ah,s,τ0(·)‖Ċk,αCmin{h,r0+γ})C−j .

Since (4.6) implies

1 ≥ 1
l − l

(h − l − j max{1,
h

r0 + γ
}) > 0,

we have

|a(j)
h | ≤ D|al|1−σ|al|σ

with

σ =
1

l − l
(h − l − j max{1,

h

r0 + γ
}).

Hence by Young’s inequality we have

|a(j)
h ||µ|m−h

|al||µ|m−l + |al||µ|m−l
≤ D|µ|−h+(1−σ)l+σl.

Since −h + (1− σ)l + σl = −j max{1, h
r0+γ }, ¿from the estimate above and (4.4) we obtain

|a(j)
h ||µ|m−h

|ps,τ0(0, iµ)| ≤ D|µ|−j max{1, h
r0+γ },

since h ≤ m

≤ D|µ|−j max{1, m
r0+γ }, |µ| ≤ 1.

Then we have the desired estimate (4.5).
Since, according to Proposition 3.1, the constant above D can be chosen uniformly when

|s| ≤ S and |τ0| ≤ 2D
1
2
0 , we obtain from (4.5), for j = 1, . . . , min{m − 1, r0},∣∣∣∣∣∂

j
t p(t, τ)
p(t, τ)

∣∣∣∣∣ ≤ D|�τ |−j max{1, m
r0+γ }

when |s| ≤ S, |�τ | ≤ 2D
1
2
0 and 0 < |�τ | ≤ 1. We remark that the constant D can be chosen

uniformly for a bounded family of coefficients Aj(t) in Cr0,γ([−T, T ]), for Proposition 3.1
claims that the constant C appearing in the argument above has an estimate δ1 ≤ C ≤ δ2

by using two positive constants δ1 and δ2 that can be chosen uniformly for a bounded family
of coefficients Ah(t) in Cr0,γ([−T, T ]) although they may depend on S.
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The following lemma is obvious.

Lemma 4.2. Let

P (t, τ) = τM +
M∑

h=1

Ah(t)τM−h

be a hyperbolic polynomial in τ whose coefficients Ah(t) ∈ Cr0,γ([−T, T ]) with a positive
integer r0 and γ ∈ (0, 1]. We assume that the multiplicity of its roots is at most m with
m < M . That is to say, assuming that

P (t, τ) =
M∏
l=1

(τ − λl(t))

where λ1(t) ≤ λ2(t) ≤ · · · ≤ λM (t), we suppose that there exists a positive constant ∆ such
that we have

λm+l(t) − λl(t) ≥ ∆(4.7)

for l = 1, . . . , M −m and t ∈ [−T, T ]. Then there exists a positive constant δ such that for
any s ∈ [−T, T ], we have a decomposition

P (t, τ) =
Ms∏
k=1

pk,s(t, τ) t ∈ [−T, T ] ∩ [s − δ, s + δ]

where each polynomial pk,s(t, τ) has coefficients in Cr0,γ([−T, T ] ∩ [s − δ, s + δ]) and the
degree at most m. Furthermore for a bounded family of Ah(t) in Cr0,γ([−T, T ]), we have
uniform Cr0,γ estimates of coefficients of pk,s(t, τ) if P (t, τ) is hyperbolic and we have
uniform estimates (4.7).

Proof. For the completeness we give a proof. Since in the case where M = 1 the assertion of
Lemma 4.2 is evident, we assume M ≥ 2,. Let D0 = max|t|≤T (|A1(t)2−2A2(t)| 12 ). Then we
have |λl(t)| ≤ D0. It follows we from (4.7) that for s ∈ [−T, T ], there exist l1, l2, . . . , lsM =
M such that l1 < l2 < · · · < lsM = M , l1 ≤ m, lk+1 − lk ≤ m (k = 1, · · · , sM − 1) and
λlk+1(s)− λlk(s) ≥ ∆

m+1 (k = 1, . . . , sM − 1). Let νk = λlk+1(s)+λlk
(s)

2 (k = 1, . . . , sM − 1).

Then we have |P (s, νk)| ≥ ( ∆
2(m+1)

)M
. Since |P (t, τ) − P (s, τ)| ≤ D|t − s|(|τ | + 1)M−1, we

see that

|P (t, νk)| ≥ 1
2
( ∆
2(m + 1)

)M
, t ∈ [−T, T ] ∩ [s − δ, s + δ]

if δ > 0 satisfies

D(D0 + 1)M−1δ ≤ 1
2
( ∆
2(m + 1)

)M
.

Hence

pk,s(t, τ) =
lk∏

l=lk−1+1

(τ − λl(t))
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with l0 = 0, satisfies desired properties. For
∑lk

l=lk−1+1 λl(t)r (r = 1, . . . , lk − lk−1 − 1)

can be given by the contour integral of τr∂τ P (t,τ)
P (t,τ) along a closed curve, enclosing only λl(t)

(l = lk−1, . . . , lk), on which we have

|P (t, τ)| ≥ 1
2
( ∆
2(m + 1)

)M
.

Then we see that the coefficients of pk,s(t, τ) belong to Cr0,γ([−T, T ] ∩ [s − δ, s + δ]).

We see that Theorem 1.1 follows immediately from Lemma 4.1 and Lemma 4.2. Indeed,
according to Lemma 4.2, we see that ∂j

t P (t, τ)/P (t, τ)) with j ≤ min{m−1, r0} is given by a
sum of products ∂jk

t pk,s(t, τ)/pk,s(t, τ) with
∑

1≤k≤Ms
jk = j. Since the degree of pk,s(t, τ)

is not larger than m, we see from Lemma 4.1 and (4.3) that |∂jk
t pk,s(t, τ)/pk,s(t, τ)| is not

larger than D|�τ |−jk max{1,m/(r0+γ)} when 0 < |�τ | ≤ 1. Then we have the estimate (1.1).

5 Proof of Corollaries 1.2 and 1.3 We prove Corollary 1.2 using Theorem 1.1. As the
proof of Theorem 1.1, we have only consider the case of |�τ | ≤ 2D0 where

D0 = max
(t,x)∈[−T,T ]×[−L,L]

√
M(A2

1(t, x) − 2A2(t, x)).

Let

P (t, x, τ) =τM +
M∑

h=1

Ah(t, x)τM−h

=
M∏
l=1

(τ − λl(t, x))

where λ1(t, x) ≤ . . . ≤ λM (t, x). Since Ah(t, x) is continuous in [−T, T ] × [−L, L] and the
multiplicity of roots is at most m, we see that, if m < M ,

C1 = min
l=1,... ,M−m (t,x)∈[−T,T ]×[−L,L]

(λl+m(t, x) − λl(t, x))(5.1)

is positive. Then Theorem 1.1 shows that for any S ∈ (0, T ) and L0 ∈ (0, L) there exists a
positive constant C such that for j = 1, . . . , min{m − 1, r0}∣∣∣∣∣∂

j
t P (t, x, τ)
P (t, x, τ)

∣∣∣∣∣ ≤ C|�τ |−j max{1, m
r0+γ0

} (t, x) ∈ [−S, S] × [−L, L](5.2)

and for κ = 1, . . . , min{m − 1, r1}∣∣∣∣∂κ
xP (t, x, τ)
P (t, x, τ)

∣∣∣∣ ≤ C|�τ |−κ max{1, m
r1+γ1

} (t, x) ∈ [−T, T ]× [−L0, L0](5.3)

when τ ∈ C with �τ ∈ [−1, 1]. We note that the hyperbolicity of P (t, x, τ) and the
assumption on the multiplicity of roots (5.1) imply

|P (t, x, τ + iµ)| ≥ (C1

2
)M−m|µ|m(5.4)
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when τ ∈ R and µ ∈ [−1, 1]. For µ ∈ [−(L − L0), L − L0] ∩ [−1, 1], τ ∈ [−2D0, 2D0] and
(t, x) ∈ [−T, T ]× [−L0, L0] we define a function f(y) on [−1, 1] by

f(y) = P (t, x + y|µ|max{1, m
r1+γ1

}, τ + iµ).

By Taylor ’s formula (3.7) with k = min{m − 1, r1} and α = min{m, r1 + γ1} − k, we
have for y ∈ [−1, 1]

|f(y)| ≤ |f(0)| +
k∑

j=1

|f (j)(0)| + ‖f (·)‖Ċk,α.

Since (5.3) implies, for j = 0, . . . , m − 1,

|f (j)(0)| ≤ C|P (t, x, τ + iµ)|,

noting ‖f (·)‖Ċk,α([−1,1]) ≤ D|µ|max{1, m
r1+γ1

}min{m,r1+γ1} = D|µ|m, we obtain from (5.4)

|P (t, x + y|µ|max{1, m
r1+γ1

}
, τ + iµ)| ≤ D|P (t, x, τ + iµ)|.(5.5)

For (t, x) ∈ [−S, S]× [−L0, L0], µ ∈ [−(L − L0), L − L0] ∩ [−1, 1], τ ∈ [−2D0, 2D0] and
j = 1, . . . , min{m − 1, r0} we define a function gj(y) on [−1, 1] by

gj(y) = ∂j
t P (t, x + y|µ|max{1, m

r1+γ1
}
, τ + iµ).

Then from (5.2) and (5.5) we obtain

|gj(y)| ≤ D|µ|−j max{1, m
r0+γ0

}|P (t, x, τ + iµ)| |y| ≤ 1.

Hence from (3.5) applied to gj(y) with k = min{m − 1, r1}, α = min{m, r1 + γ1} and
δ = 1 we see that for κ = 1, . . . , min{m − 1, r1}

|g(κ)
j (0)| ≤ Γ(D|µ|−j max{1, m

r0+γ0
}|P (t, x, τ + iµ)| + ‖gj(·)‖Ċk,α).

Since k + α = min{m, r1 + γ1}, we have

‖gj(·)‖Ċk,α ≤ D|µ|max{1, m
r1+γ1

}min{m,r1+γ1}

= D|µ|m
≤ D|P (t, x, τ + iµ)|

Then we have

|∂κ
x∂j

t P (t, x, τ + iµ)| ≤ D|µ|−κ max{1, m
r1+γ1

}(|µ|−j max{1, m
r0+γ0

} + 1
)|P (t, x, τ + iµ)|.

Noting |µ| ≤ 1, we obtain the desired estimate when |µ| ≤ min{L − L0, 1}. In the cse of
L − L0 < 1, the estimate for L − L0 < |µ| ≤ 1 follows from (5.4). The proof of Corollary
1.2 is completed.

Proof of Corollary 1.3.
First note that for a(t) ∈ C1,γ([0, 2T ]) with T > 0, the function ã(t) defined by

ã(t) = a(|t|1+γ), |t| ≤ (2T )
1

1+γ

belongs to C1,γ([−(2T )
1

1+γ , (2T )
1

1+γ ]). For we have ||t|γ − |s|γ | ≤ |t − s|γ if 0 < γ ≤ 1.
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Near t = T , we consider the hyperbolic polynomial P̃ (s, τ) defined by

P̃ (s, τ) = P (T − |s|1+γ , τ) |s| ≤ (2T )
1

1+γ .

Theorem 1.1 shows that ∣∣∣∣∣∂sP̃ (s, τ)
P̃ (s, τ)

∣∣∣∣∣ ≤ C|�τ |−max{1, m
1+γ }

when |s| ≤ T
1

1+γ and τ ∈ C with |�τ | ≤ 1. Since we have

∂sP̃ (s, τ) = −(1 + γ)sγ∂tP (T − s1+γ , τ)

for s > 0, we see that

∂tP (t, τ) =
−1

1 + γ
(T − t)−

γ
1+γ ∂sP̃ (s, τ)

with s = (T − t)
1

1+γ if T > t ≥ 0. Then we get the estimate (1.4) when T > t ≥ 0. Similarly
we obtain the estimate (1.4) when 0 ≥ t > −T . The proof of Corollary 1.3 is completed.

We remark that the proof of Corollary 1.3 can be applied to a hyperbolic polynomial
with several parameters as that considered in Corollary 1.2.

6 Proof of Theorem 1.4 According to Lemma 4.2, it is sufficient to prove the following
Proposition.

Proposition 6.1. Let m be a positive integer and T > 0. Let

p(t, τ) = τm +
m∑

h=1

Ah(t)τm−j

be a hyperbolic polynomial with coefficients Ah(t) ∈ Cr0,γ([−T, T ]) with a positive integer
r0 and γ ∈ (0, 1].

Let λl(t) (l = 1, . . . , m) be roots of p(t, τ) numbered in increasing order λl(t) ≥ λl−1(t)
(l = 1, . . . , m − 1).

Then for any S ∈ (0, T ), we see that λj(t) ∈ C0,min{1,
r0+γ

m }([−S, S]) for j = 1, . . . , m.
Here C0,min{1,

r0+γ
m }-norm of the roots λl(t) in [−S, S] is uniformly bounded for a bounded

family of Ah(t) in Cr0,γ([−T, T ]) as long as p(t, τ) is hyperbolic.

Proof. Since it is evident in the case of m = 1, in the following we assume m ≥ 2. Set
t0 = T − S. For any s ∈ [−S, S] and any root λl0(s) (l0 = 1, . . . , m) of p(s, τ), set

ps,l0(t, τ) = p(t + s, τ + λl0(s)) = τm +
m∑

h=1

As,l0,h(t)τm−j .

Then we see that ps,l0(0, 0) = 0. We remark that {As,l0,h(t) | s ∈ [−S, S], l0, h = 1, . . . , m}
is a bounded set in Cr0,γ([−t0, t0]). Proposition 6.1 follows from the following lemma.

Lemma 6.2. Let m be a positive integer greater than 1 and t0 > 0. Let

p(t, τ) = τm +
m∑

h=1

Ah(t)τm−h
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be a hyperbolic polynomial with coefficients Ah(t) ∈ Cr0,γ([−t0, t0]). with a positive integer
r0 and γ ∈ (0, 1]

Assume p(0, 0) = 0. Then there exists a constant C ∈ (0, t0] such that for any σ ∈ (0, 1]
we have some constant ν ∈ (0, 1] so that

p(t, νσ) �= 0 and p(t,−νσ) �= 0 when |t| ≤ Cσmax{1, m
ro+γ }.

Here for a bounded family of Aj(t) in Cr0,γ([−t0, t0]), the constant above C has the
estimate σ1 ≤ C ≤ σ2 with some positive σ1 and σ2, as long as p(t, τ) is hyperbolic.

Now assuming that Lemma 6.2 is valid, we continue the proof of Proposition 6.1. Indeed
applying Lemma 6.2 to ps,j0(t, τ) and noting ps,j0(t, λj0(t + s) − λj0(s)) = 0, we see from
the continuity of λj0(t) that there exists a positive constant C ∈ (0, t0] such that for any
σ ∈ (0, 1], we have

|λj0(t + s) − λj0(s)| ≤ σ, |t| ≤ Cσmax{1, m
r0+γ }.

Then we have

|λj0(t) − λj0 (s)| ≤ D|t − s|min{1,
r0+γ

m } when t, s ∈ [−S, S] satisfy |t − s| ≤ C

with D = C−min{1,
r0+γ

m }. Hence we see that λj0(t) ∈ C0,min{1,
r0+γ

m }([−S, S]). According to
Lemma 6.2, the constant above D can be chosen uniformly for a bounded family of Aj(t)
in Cr0,γ([−T, T ]). Then we are done.

In the following we give two proofs of Lemma 6.2. First one uses Proposition 3.1. Second
one depends only on Theorem 1.1.

First proof of Lemma 6.2. Set ah = Ah(0) and a
(j)
h = A

(j)
h (0) with a0 = A0(t) = 1. Let

k0 be the largest h satisfying ah �= 0. Since p(0, 0) = 0, we see that k0 < m. Let M be
the subset of {0, . . . , k0} satisfying the properties mentioned in Lemma 2.4 applied to our
polynomial τm +

∑m
h=1 ahτm−l. Recall that for the element l in M satisfying l < k0, l is

the smallest element of M ∩ {l + 1, . . . , k0}, while for the element l in M satisfying 0 < l,
l is the largest element of M ∩ {0, . . . , l − 1}. We note that (l) = l. Using the constant
K appearing in Lemma 2.5 and Proposition 3.1 applied to p(0, τ) and p(t, τ) respectively,
where we assume K ≥ (3m3)m taking (2.5) of Lemma 2.2 into account, we set

Kl = (8K + 2)(45(K + 1)3)l(6.1)

for l ∈ M. Then K0 = 8K + 2.
First we consider the case where k0 > 0. For σ ∈ (0, 1], let l0 be the smallest element

l ∈ M satisfying ∣∣∣∣al

al

∣∣∣∣
1

l−l ≤ σ

Kl
.

If l0 = 0, noting a0 = 1 we have |a0|1/0 ≤ σ/K0. The estimate (3.4) of Proposition 3.1
implies, for j = 1, . . . , m,

|Ah(t)| ≤ K|a0|
h
0 , |t| ≤ C|a0|

1
0

max{1, h
r0+γ }.(6.2)

Lemma 3.3 with l = 0 and A(t) = Ah(t) implies

|a(j)
h | ≤ D|a0|

1
0
(h−j max{1, h

r0+γ }) for j = 1, . . . , min{h − 1, r0}.
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Noting h − j max{1, h
r0+γ } ≥ 0 for j = 1, . . . , min{h − 1, r0} and |a0|1/0 ≤ σ/K0, we have

|a(j)
h | ≤ Dσ(h−j max{1, h

r0+γ }).

Then by Taylor’s formula (3.7) with k = min{h− 1, r0} and α = min{h, r0 + γ}− k, noting
min{h, r0 + γ}max{1, h

r0+γ } = h, we get

|Ah(t) − ah| ≤ Dσhµ

when |t| ≤ µσmax{1, h
r0+γ } where µ ≤ min{1, t0}. Note that (6.2) and |a0|1/0 ≤ σ/K0 imply

|ah| ≤ K σh

Kh
0
. We see that with C0 = min{ 1

(D+1)Km
0

, 1, t0}

|Ah(t)| ≤ 2
Kσh

Kh
0

, |t| ≤ C0σ
max{1, h

r0+γ }.

Hence it follows from K0 = 8K + 2 and σ ∈ (0, 1], we see that

m∑
h=1

|Ah(t)||σ|m−h ≤ σm

2

when |t| ≤ C0σ
max{1, m

r0+γ }. Therefore we have

|p(t, τ) − τm| ≤ |τ |m
2

when τ = ±σ and |t| ≤ C0σ
max{1, m

r0+γ }, from which we see

p(t, σ) �= 0 and p(t,−σ) �= 0(6.3)

when |t| ≤ C0σ
max{1, m

r0+γ }.
If 0 < l0 < l0 ≤ k0, then

∣∣∣∣al0

al0

∣∣∣∣
1

l0−l0 ≤ σ

Kl0

(6.4)

∣∣∣∣al

al

∣∣∣∣
1

l−l

>
σ

Kl
(6.5)

for l < l0 in M. Then, since Kl < Kl+1 and a0 = 1, we have from (6.5)

|al0 | ≥
(

σ

Kl0

)l0

.(6.6)

We remark that from (3.1), (3.2), (3.3) and (3.4) with l = l0 and l = l0 we obtain

max{
∣∣∣∣Al0(t)

al0

− 1
∣∣∣∣ ,
∣∣∣∣∣Al0

(t)
al0

− 1

∣∣∣∣∣} ≤ 1
2
, |t| ≤ C

∣∣al0

al0

∣∣ 1
l0−l0

max{1,
l0

r0+γ }
,(6.7)

max{
∣∣∣∣Al0+1(t)

Al0(t)

∣∣∣∣ ,
∣∣∣∣Al0+2(t)

Al0(t)

∣∣∣∣
1
2

} ≤ 4
∣∣∣∣al0

al0

∣∣∣∣
1

l0−l0
, |t| ≤ C

∣∣al0

al0

∣∣ 1
l0−l0

max{1,
l0+2
r0+γ }(6.8)
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and

∣∣∣∣Ah(t)
al0

∣∣∣∣ ≤ K

∣∣∣∣al0

al0

∣∣∣∣
h−l0
l0−l0

h = l0 + 1, . . . , m(6.9)

when |t| ≤ C
∣∣al0
al0

∣∣max{1, h
r0+γ }/(l0−l0), and

max{
∣∣∣∣∣Al0(t)

al0

− 1

∣∣∣∣∣ ,
∣∣∣∣Al0(t)

al0

− 1
∣∣∣∣} ≤ 1

2
, |t| ≤ C

∣∣al0

al0

∣∣ 1
l0−l0

max{1,
l0

r0+γ }
,(6.10)

max{
∣∣∣∣∣Al0+1(t)

Al0(t)

∣∣∣∣∣ ,
∣∣∣∣∣Al0+2(t)

Al0(t)

∣∣∣∣∣
1
2

} ≤ 4

∣∣∣∣∣al0

al0

∣∣∣∣∣
1

l0−l0

, |t| ≤ C
∣∣al0

al0

∣∣ 1
l0−l0

max{1,
l0+2
r0+γ }

(6.11)

and

∣∣∣∣∣Ah(t)
al0

∣∣∣∣∣ ≤ K

∣∣∣∣∣al0

al0

∣∣∣∣∣
h−l0
l0−l0

h = l0 + 1, . . . , m(6.12)

when |t| ≤ C
∣∣al0
al0

∣∣max{1, h
r0+γ }/(l0−l0).

Now we show

max{
∣∣∣∣Al0−1(t)

Al0(t)

∣∣∣∣ ,
∣∣∣∣Al0−2(t)

Al0(t)

∣∣∣∣
1
2

} ≤ 16(K + 1)
∣∣∣∣al0

al0

∣∣∣∣
1

l0−l0

(6.13)

when |t| ≤ C
(

σ
Kl0

)max{1, m
r0+γ }where A−1(t) = 0. Indeed if l0 = 1, we see that (6.13) follows

from (6.6) and (6.10). Next consider the case where l0 > 1. If l0 = l0 − 2, we see from
(6.10) and (6.11) that

max{
∣∣∣∣Al0−1(t)

Al0(t)

∣∣∣∣ ,
∣∣∣∣Al0−2(t)

Al0(t)

∣∣∣∣
1
2

} ≤ 16
∣∣∣∣al0

al0

∣∣∣∣
1

l0−l0

(6.14)

when |t| ≤ C
∣∣∣al0
al0

∣∣∣ 1
l0−l0

max{1,
l0+2
r0+γ }

. Hence from σ
Kl

≤ 1 and (6.5) we obtain (6.13). Simi-

larly, in the case where l0 = l0 − 1 and l0 − 1 = l0 − 2, note that (3.1) with l = l0 − 2 and
(6.10) imply

|Al0−2(t)| ≤ 2|al0−2|, |Al0−1(t)| ≤ 2|al0−1|, 1
2
|al0 | ≤ |Al0(t)|(6.15)

when |t| ≤ C min{|al0−1

al0−2
|max{1,

l0−1
r0+γ }, | al0

al0−1
|max{1,

l0
r0+γ }}. Since l0 − 2, l0 − 1 ∈ M, the

property 3) of M in Lemma 2.4 implies |al0−2al0 | < a2
l0−1. Then we obtain (6.13) from (6.5)

and (6.15).
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In the case where l0 = l0 − 1 and l0 − 1 = l0 − 3, (3.4) with l = l0 − 3 and h = l0 − 2
imply ∣∣∣∣Al0−2(t)

al0−3

∣∣∣∣ ≤ K

∣∣∣∣al0−1

al0−3

∣∣∣∣
1
2

, |t| ≤ C

∣∣∣∣al0−1

al0−3

∣∣∣∣
1
2 max{1,

l0−2
r0+γ }

,

while we obtain
∣∣ al0
al0−1

∣∣ ≤ K
∣∣al0−1

al0−3

∣∣ 12 from (2.12). Then we see from (6.5) and (6.10) that
(6.13) is valid. For we have

∣∣∣∣Al0−2(t)
Al0(t)

∣∣∣∣ ≤ 2K

∣∣∣∣∣al0−1al0−3

a2
l0

∣∣∣∣∣
1
2

≤ 2K2

∣∣∣∣al0−1

al0

∣∣∣∣
2

,

from which we obtain

max{
∣∣∣∣Al0−1(t)

Al0(t)

∣∣∣∣ ,
∣∣∣∣Al0−2(t)

Al0(t)

∣∣∣∣
1
2

} ≤ 4(K + 1)
∣∣∣∣al0−1

al0

∣∣∣∣
when |t| ≤ C min{

∣∣∣al0−1

al0−3

∣∣∣ 12 max{1,
l0−2
r0+γ }

,
∣∣∣ al0
al0−1

∣∣∣max{1,
l0

r0+γ }
}. Thus we obtain (6.13).

We note that it follows from (6.13) and (2.5) that for h = 0, 1, . . . , l0 − 1 we have∣∣∣∣Ah(t)
Al0(t)

∣∣∣∣ ≤ K
(
16(K + 1)

∣∣∣∣al0

al0

∣∣∣∣
1

l0−l0 )l0−h

from (6.5) with l = l0

≤ K
(
16(K + 1)

Kl0

σ

)l0−h

when |t| ≤ C
(

σ
Kl0

)max{1, m
r0+γ }. Then with some νl0 ∈ (0, 1] that will be determined later,

l0−1∑
h=0

|Ah(t)||νl0σ|m−h ≤ (
l0−1∑
h=0

K
(
16(K + 1)Kl0νl0

)l0−h)|Al0(t)||νl0σ|m−l0 ,(6.16)

if 16(K + 1)2Kl0νl0 ≤ 1
4

≤ 1
3
|Al0(t)||νl0σ|m−l0(6.17)

when |t| ≤ C
(

σ
Kl0

)max{1, m
r0+γ }.

On the other hand, applying Lemma 3.3 with l = l0 to (6.9)
we obtain, for h = l0 + 1, . . . , m and j = 1, . . . , min{h − 1, r0},

|a(j)
h | ≤ D|al0 |

∣∣∣∣al0

al0

∣∣∣∣
1

l0−l0
(h−l0−j max{1, h

r0+γ })
,(6.18)

while, applying Lemma 3.3 with l = l0 to (6.12) we obtain, for h = l0 + 1, . . . , m and
j = 1, . . . , min{h − 1, r0},

|a(j)
h | ≤ D|al0 |

∣∣∣∣∣al0

al0

∣∣∣∣∣
1

l0−l0
(h−l0−j max{1, h

r0+γ })
,(6.19)
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where we used |al0 | = |al0 |(|al0 |/|al0 |)(l0−l0)/(l0−l0). We remark that from (6.4) and (6.5)

with l = l0 we see (|al0
|/|al0 |)

1
l0−l0 ≤ δ/Kl0 and (|al0 |/|al0 |)−

1
l0−l0 ≤ (δ/Kl0)−1. The

estimates above , (6.18) and (6.19) imply that, if h = l0 + 1, . . . , m and j = 1, . . . , min{h−
1, r0} we have

|a(j)
h | ≤ D|al0 |σh−l0−j max{1, h

r0+γ }
.(6.20)

Indeed if h − l0 − j max{1, h/(r0 + γ)} ≥ 0, we obtain (6.20) from (6.4) and (6.18). If
h − l0 − j max{1, h/(r0 + γ)} < 0, we obtain (6.20) from (6.19) and (6.5) with l = l0.

Therefore Taylor’s formula (3.7) with k = min{h − 1, r0} and α = min{h, r0 + γ} − k,
(6.20) and (6.6) show

|Ah(t) − ah| ≤ D|al0 |
⎛
⎝ k∑

j=1

σh−l0(|t|σ−max{1, h
r0+γ })j + σ−l0 |t|min{h,r0+γ}

⎞
⎠

when |t| ≤ t0. Since min{h, r0 + γ}max{1, h
r0+γ } = h, we see

σ−l0 |t|min{h,r0+γ} = σh−l0
(
|t|σ−max{1, h

r0+γ })min{h,r0+γ}
.

Hence if |t| ≤ min{ 1
2 , K

8DKm
l0

, t0}σmax{1, m
r0+γ }, noting |t|1+κσ(−1−κ)max{1, m

r0+γ } is less than

or equal to K
8DKm

l0
2−κ for any κ > 0, we have

|Ah(t) − ah| ≤ K

Km
l0

|al0 |σh−l0 .

From (6.4) and (6.9) we obtain

|ah| ≤ K|al0|
( σ

Kl0

)h−l0
.

Then we have for h = l0 + 1, . . . , m

|Ah(t)| ≤ 2K |al0|
( σ

Kl0

)h−l0

when |t| ≤ min{ 1
2 , K

8DKm
l0

, t0}σmax{1, m
r0+γ }. Since we see from (6.10), (6.5) with l = l0 and

Kl0 ≥ Kl0 ≥ 1 that

|al0 | ≤ 2|Al0(t)|, |t| ≤ C
( σ

Kl0

)max{1, m
r0+γ }

,

we have for h = l0 + 1, . . . , m

|Ah(t)| ≤ 4K |Al0(t)|
( σ

Kl0

)h−l0

when |t| ≤ min{ 1
2 , K

8DKm
l0

, t0, CKl0
−max{1, m

r0+γ }}σmax{1, m
r0+γ }. Then we obtain

m∑
h=l0+1

|Ah(t)||νl0σ|m−h ≤4K(
m∑

h=l0+1

( 1
Kl0νl0

)h−l0)|Al0(t)||νl0σ|m−l0 ,
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if
4K + 1
νl0Kl0

≤ 1
4

≤ 1
3
|Al0(t)||νl0σ|m−l0(6.21)

when |t| ≤ min{ 1
2 , K

8DKm
l0

, t0, CK
−max{1, m

r0+γ }
l0

}σmax{1, m
r0+γ }

. Noting that

Kl = (8K + 2)(45(K + 1)3)l, we see that by picking

νl0 =
1

43(K + 1)2Kl0

,

we have

νl0Kl0 = 42(K + 1),

which implies

42(K + 1)2Kl0νl0 =
1
4

and
4K + 1
νl0Kl0

≤ 1
4
.

Therefore, since (6.10) implies Al0(t) �= 0 for |t| ≤ CK
−max{1, m

r0+γ }
l0

σ
max{1, m

r0+γ }, from
(6.17) and (6.21) we obtain

|p(t,±νl0σ)| ≥ 1
3
|Al0(t)||νl0σ|m−l0 > 0(6.22)

when |t| ≤ min{ 1
2 , K

8DKm
l0

, t0, CK
−max{1, m

r0+γ }
l0

}σmax{1, m
r0+γ }.

Next consider the case where l0 = k0. In this case we have for l < k0 in M

∣∣∣∣al

al

∣∣∣∣
1

l−l

>
σ

Kl
.(6.23)

Then |ak0 | ≥ ( σ
Kk0

)k0 from (6.6). From (3.1), (3.2), (3.3) and (3.4) we obtain

max{
∣∣∣∣∣Ak0(t)

ak0

− 1

∣∣∣∣∣ ,
∣∣∣∣Ak0(t)

ak0

− 1
∣∣∣∣} ≤ 1

2
, |t| ≤ C

∣∣ak0

ak0

∣∣ 1
k0−k0

max{1,
k0

r0+γ }
,(6.24)

max{
∣∣∣∣∣Ak0+1(t)

Ak0(t)

∣∣∣∣∣ ,
∣∣∣∣∣Ak0+2(t)

Ak0(t)

∣∣∣∣∣
1
2

} ≤ 4

∣∣∣∣∣ak0

ak0

∣∣∣∣∣
1

k0−k0

, |t| ≤ C
∣∣ak0

ak0

∣∣ 1
k0−k0

max{1,
k0+2
r0+γ }

(6.25)

and

∣∣∣∣∣Ah(t)
ak0

∣∣∣∣∣ ≤ K

∣∣∣∣∣ak0

ak0

∣∣∣∣∣
h−k0

k0−k0

h = k0 + 1, . . . , m(6.26)

when |t| ≤ C
∣∣ak0
ak0

∣∣ 1
k0−k0

max{1, h
r0+γ }

.
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Since the estimate (6.16) with l0 = k0 is derived from (6.24) and (6.25) as the case where
0 < l0 < k0, we have for h = 0, 1, . . . , k0 − 1

∣∣∣∣ Ah(t)
Ak0(t)

∣∣∣∣ ≤ K
(
16(K + 1)

∣∣∣∣ak0

ak0

∣∣∣∣
1

k0−k0 )k0−h
,

(6.23) with l = k0 implies

≤ K
(
16(K + 1)

Kk0

σ

)k0−h

when |t| ≤ C
(

σ
Kk0

)max{1, m
r0+γ }. Then with some νk0 ∈ (0, 1] that will be determined later,

k0−1∑
h=0

|Ah(t)||νk0σ|m−h ≤ (
k0−1∑
h=0

K
(
16(K + 1)Kk0νk0

)k0−h)|Ak0(t)||νk0σ|m−k0 ,

if 16(K + 1)2Kk0νk0 ≤ 1
4

≤ 1
3
|Ak0(t)||νk0σ|m−k0(6.27)

when |t| ≤ C
(

σ
Kk0

)max{1, m
r0+γ }.

Furthermore, as the derivation of the estimate (6.20), we obtain (6.19) with l0 = k0 for
h = k0 + 1, . . . , m and j = 1, . . . , min{h − 1, r0} from Lemma 3.3 applied to (6.26) with
l = k0. Then if h = k0+1, . . . , m, j = 1, . . . , min{h−1, r0} and h−k0−j max{1, h

r0+γ } ≤ 0,
we obtain from (6.23) with l = k0

|a(j)
h | ≤ D|ak0 |σh−k0−j max{1, h

r0+γ }
.(6.28)

While Lemma 3.4 shows that a
(j)
h = 0 when h > k0 and h − k0 > j max{1, h

r0+γ }. Hence
(6.28) holds for any j = 1, . . . , min{h − 1, r0}. Then from Taylor’s formula (3.7) with
k = min{h − 1, r0} and α = min{h, r0 + γ} and the estimate |ak0 | ≥ ( σ

Kk0
)k0 , we get for

h > k0

|Ah(t)| ≤ D|ak0 |σh−k0(
k∑

j=1

(|t|σ−max{1, h
r0+γ })j

+ (|t|σ−max{1, h
r0+γ })min{h,r0+γ}), |t| ≤ t0.

Here we note ak = 0 for h > k0. When |t| ≤ min{ 1
2 , 1

8DKm
k0

, t0}σmax{1, m
r0+γ }, we have

|Ah(t)| ≤ 1
Km

k0

|ak0 |σh−k0 .

Since we see from (6.24), (6.5) with l = k0 and Kk0 ≥ Kk0 ≥ 1 that

|ak0 | ≤ 2|Ak0(t)|, |t| ≤ C
( σ

Kk0

)max{1, m
r0+γ }

.
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Hence we have for h = k0 + 1, . . . , m

|Ah(t)| ≤ 2|Ak0(t)|
( σ

Kk0

)h−k0

when |t| ≤ min{ 1
2 , K

8DKm
k0

, CKk0
−max{1, m

r0+γ }}σmax{1, m
r0+γ }. Then we see that

m∑
h=k0+1

|Ah(t)|νk0σ|m−h ≤ 2|Ak0(t)|(νk0σ)m−k0

m∑
h=k0+1

( 1
νk0Kk0

)h−k0
,

if 1
νk0Kk0

≤ 1
8

≤ 1
3
|Ak0(t)|(νk0σ)m−k0(6.29)

when |t| ≤ min{ 1
2 , K

8DKm
k0

, t0, CKk0
−max{1, m

r0+γ }}σmax{1, m
r0+γ }. Since, by picking

νk0 =
1

43(K + 1)2Kk0

,

we have from Kk0 = 45(K + 1)3Kk0

42(K + 1)2νk0Kk0 =
1
4

and νk0Kk0 ≥ 42.

Hence from (6.27) and (6.29) we obtain

|p(t,±νk0σ)| ≥ 1
3
|Ak0(t)|(νk0σ)m−k0 > 0

when|t| ≤ min{ 1
2 , K

8DKm
k0

, t0, CKk0
−max{1, m

r0+γ }}σmax{1, m
r0+γ }

. Here we used Ak0(t) �= 0

when |t| ≤ CKk0
−max{1, m

r0+γ }σmax{1, m
r0+γ }, which follows from (6.24).

Thus , when k0 > 0, we see from (6.3), (6.22) and (6) that the assertion of Lemma 6.2
is valid by choosing min{C0,

1
2 , K

8DKm
k0

, t0, CKk0
−max{1, m

r0+γ }} as the constant C.

Finally consider the case where k0 = 0. In this case, we have ah = 0 for h = 1, . . . , m.
Hence |A1(t)| ≤ D|t| when |t| ≤ t0. Furthermore Lemma 3.4 shows that a

(j)
h = 0 when

h > j max{1, h
r0+γ }. Then we see that a

(j)
h = 0 when h ≥ 1 and j < min{h, r0 + γ}. For

Ah(t) with h ≥ 2, Taylor’s formula (3.7) with k = min{h−1, r0} and α = min{h, r0 +γ}−k
implies

|Ah(t)| ≤ D|t|min{h,r0+γ}

when |t| ≤ t0. Hence, when |τ | ≤ 1 and |t| ≤ t0,

(6.30)
m∑

h=1

|Ah(t)||τ |m−h

≤ D|τ |m( ∑
1≤h≤min{r0,m}

(|t||τ |−1)h + (m − min{m, r0})|t|min{m,r0+γ}|τ |−m
)
.

Then when |τ | ≤ 1 and |t| ≤ min{ 1
5(D+1) ,

1
4m(D+1) , t0}|τ |max{1, m

r0+γ }, we have |p(t, τ) −
τm| ≤ 1

2 |τ |m. Therefore for any σ ∈ (0, 1] we see that p(t, σ) �= 0 and p(t,−σ) �= 0
when |t| ≤ min{ 1

5(D+1) ,
1

4m(D+1) , t0}σmax{1, m
r0+γ }. Then in the case where k0 = 0 also, the

assertion of Lemma 6.2 is valid. The proof is completed.
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Next we give the proof of Lemma 6.2 using only the result of Theorem 1.1.

Second proof of Lemma 6.2. For σ ∈ (0, 1], set

Ij = (− jσ

m + 1
,− (j − 1)σ

m + 1
) ∪ (

(j − 1)σ
m + 1

,
jσ

m + 1
)

for j = 1, . . . , m+1. Then since the degree of p(0, τ) is m, there exists a j0 ∈ {1, . . . , m+1}
so that we have no root of p(0, τ) in the set Ij0 . Then we see by setting τ0 = (2j0−1)σ

2m+2 that

p(0, τ) �= 0, |τ − τ0| <
σ

2m + 2
.(6.31)

and

p(0, τ) �= 0, |τ + τ0| <
σ

2m + 2
.

Set τ− = τ0 − σ
4m+4 , τ+ = τ0 + σ

4m+4 , ξ− = τ− + i tan( π
4(m+1) )

σ
4m+4 and ξ+ = τ+ +

i tan( π
4(m+1) )

σ
4m+4 .

Let Γ be the line segment joining ξ− and ξ+ in the complex plane with the orientation
from ξ+ to ξ−. Then for each λ ∈ R we see that arg(τ −λ) increases when τ moves from ξ+

to ξ− along Γ. We denote this total change of argument by ∆(λ) that is a positive number.
Then we have

∆(λ)

{
≤ π

4m+4 λ ≥ τ0 + σ
2m+2 or λ ≤ τ0 − σ

2m+2

= (2m+1)π
2m+2 λ = τ0.

Let

T (t) = �
∫

Γ

∂τp(t, τ)
p(t, τ)

dτ..

Then if p(t, τ0) = 0, we have T (t) ≥ (2m+1)π
2m+2 . On the other hand we see from (6.31) that

T (0) ≤ mπ
4m+4 . Hence if p(t, τ0) = 0, then we have

T (t) − T (0) ≥ (3m + 2)π
4m + 4

.(6.32)

Since

∂tT (t) = �
∫

Γ

(∂t∂τp(t, τ)
∂τp(t, τ)

∂τp(t, τ)
p(t, τ)

− ∂tp(t, τ)
p(t, τ)

∂τp(t, τ)
p(t, τ)

)
dτ

From hyperbolicity of p(t, τ), we have∣∣∣∣∂τp(t, τ)
p(t, τ)

∣∣∣∣ ≤ m

tan( π
4(m+1))

σ
4m+4

for τ ∈ Γ.

According to Theorem 1.1 applied to p(t, τ) and ∂τp(t, τ), we have∣∣∣∣∂tp(t, τ)
p(t, τ)

∣∣∣∣ ≤ D

σmax{1, m
r0+γ } and

∣∣∣∣∂t∂τp(t, τ)
∂τp(t, τ)

∣∣∣∣ ≤ D

σ
max{1, m−1

r0+γ } .
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Since the length of Γ is σ
2m+2 , we have |∂tT (t)| ≤ D/(σmax{1, m

r0+γ }). Hence when |t| ≤
πσ

max{1, m
r0+γ

}

4(m+1)D ,

|T (t) − T (0)| ≤ π

4(m + 1)
.

Then we see from (6.32) that

p(t, τ0) �= 0, |t| ≤ πσmax{1, m
r0+γ }

4(m + 1)D
.

Similar argument can be applied to τ = −τ0. Then we have

p(t,±τ0) �= 0, |t| ≤ πσmax{1, m
r0+γ }

4(m + 1)D
.

Then for any σ ∈ (0, 1] there exists j0 ∈ {1, . . . , m + 1} such that we have

p(t,±2j0 + 1
2m + 2

σ) �= 0, |t| ≤ πσmax{1, m
r0+γ }

4(m + 1)D
.

The proof of Lemma 6.2 is completed.

7 Proof of Theorem 1.1 based on Theorem 1.4 In this section, we prove Theorem
1.1 assuming that Theorem 1.4 is valid. That is to say, assuming the Hölder continuity of
roots, we show the estimate (1.1). From the argument of the section 4, we see that it is
sufficient to show Lemma 4.1 under the assumption that Theorem 1.4 is valid.

Let λl(t) (l = 1, . . . , m) be roots of a polynomial p(t, τ) = τm +
∑m

h=1 Ah(t)τm−h

satisfying the assumptions of Lemma 4.1. Since the multiplicity of roots is at most m and
Ah(t) ∈ Cr0,γ([−T, T ]), we see from Theorem 1.4 that roots λl(t) (l = 1, . . . , m) are locally
Hölder continuous of order min{1, r0+γ

m } on (−T, T ). Let δ = min{1, r0+γ
m }, S ∈ (T

2 , T ) and
d = T−S

2 . Then we have

|λl(t) − λl(s)| ≤ C|t − s|δ(7.1)

for l = 1, . . . , m and t, s ∈ [−S − d, S + d]. Let χ(s) be a real-valued C∞ function on R

satisfying

χ(s) = 0 |s| ≥ 1

and
∫

skχ(s) ds =

{
1 k = 0
0 k = 1, . . . , r0.

(7.2)

According to Remark 4.1, we have only to show the estimate (4.1) when |�τ | ≤ D and
0 < |�τ | ≤ 1 with some constant D. We set

ρ = C0|�τ |−δ−1

with some constant C0 ≥ 1/d that will be chosen later.
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Let for t ∈ [−S, S]

p̃(t, τ) =
∫

ρχ(ρ(t − s))p(s, τ) ds

and

λ̃l(t) =
∫

ρχ(ρ(t − s))λl(s) ds l = 1, . . . , m.

We note that t ∈ [−S, S] and χ(ρ(t − s)) �= 0 imply |s| ≤ S + d. Then we get from (7.1)

|λ̃l(t) − λl(t)| ≤ Cρ−δ(7.3)

and ∣∣∣∣∣d
j λ̃l(t)
dtj

∣∣∣∣∣ ≤ Cρ−δ+j j ≥ 1(7.4)

when t ∈ [−S, S].
Since Ah(t) ∈ Cr0,γ([−T, T ]), we see from (7.2) that

Ãh(t) =
∫

ρχ(ρ(t − s))Ah(s) ds

satisfies ∣∣∣∣∣d
jÃh(t)
dtj

− djAh(t)
dtj

∣∣∣∣∣ ≤ Cρ−(r0+γ)+j j = 0, . . . , r0

when t ∈ [−S, S]. Then we see that

p̃(t, τ) = τm +
m∑

h=1

Ãh(t)τm−h

and ∣∣∣∂j
t p(t, τ) − ∂j

t p̃(t, τ))
∣∣∣ ≤ Cρ−(r0+γ)+j j = 0, . . . , r0

when t ∈ [−S, S], |�τ | ≤ D and |�τ | ≤ 1. Since |p(t, τ)| ≥ |�τ |m and δ−1(r0 + γ) ≥ m, we
see that ∣∣∣∂j

t p(t, τ) − ∂j
t p̃(t, τ))

∣∣∣ ≤ C|p(t, τ)|ρj j = 0, . . . , r0.(7.5)

Let

˜̃p(t, τ) =
m∏

l=1

(τ − λ̃l(t)).(7.6)

Then we have

p(s, τ) = ˜̃p(t, τ) +
∑

Θ�{1,... ,m}
CΘ(s, t)˜̃pΘ(t, τ)(7.7)
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where

CΘ(s, t) =
∏

l∈{1,... ,m}\Θ
(λ̃l(t) − λl(s))

and

˜̃pΘ(t, τ) =
∏
l∈Θ

(τ − λ̃l(t)).

Noting that (7.1) and (7.3) imply

|CΘ(s, t)| ≤ C(|t − s|δ + ρ−δ)m−|Θ|(7.8)

and that

|˜̃pΘ(t, τ)| ≤ |˜̃p(t, τ)|
|�τ |m−|Θ| ,(7.9)

we see that

|p(t, τ) − ˜̃p(t, τ)| ≤ C|˜̃p(t, τ)| ρ
−δ

|�τ | (1 +
ρ−δ

|�τ | )
m−1.

We see from ρ−δ = C−δ
0 |�τ | that with a large C0 we have

|p(t, τ) − ˜̃p(t, τ)| ≤ 1
2
|˜̃p(t, τ)|.(7.10)

By the definition of p̃(t, τ), we see from (7.7) that

p̃(t, τ) = ˜̃p(t, τ) +
∑

Θ�{1,... ,m}
C̃Θ(t)˜̃pΘ(t, τ)(7.11)

where

C̃Θ(t) =
∫

ρχ(ρ(t − s))CΘ(s, t) ds.

We obtain from (7.4) and (7.8) ∣∣∣∣∣d
jC̃Θ(t)
dtj

∣∣∣∣∣ ≤ Cρj−δ(m−|Θ|).(7.12)

From the definition of ˜̃p(t, τ) and (7.4) we see that for j ≥ 1

∂j
t
˜̃p(t, τ) =

∑
Θ�{1,... ,m}

DΘ,j(t)˜̃pΘ(t, τ)

where

|DΘ,j(t)| ≤ Cρj−δ(m−|Θ|),
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from which and (7.9) we have

|∂j
t
˜̃p(t, τ)| ≤ Cρj |˜̃p(t, τ)|.(7.13)

Similarly we have

|∂j
t
˜̃pΘ(t, τ)| ≤ Cρj |˜̃pΘ(t, τ)|.(7.14)

Noting that (7.9) implies ρ−δ(m−Θ)|˜̃pΘ(t, τ)| ≤ C|˜̃p(t, τ)|, we see that it follows from (7.11),
(7.12), (7.13) and (7.14) that

|∂j
t p̃(t, τ)| ≤ Cρj |˜̃p(t, τ)|.

The estimate above, (7.5) and (7.10) imply the desired estimates∣∣∣∣∣∂
j
t p(t, τ)
p(t, τ)

∣∣∣∣∣ ≤ C|�τ |−jδ−1

when 0 ≤ j ≤ r0, |�τ | ≤ D, 0 < |�τ | ≤ 1 and |t| ≤ S. Then Lemma 4.1 is proven under
the assumption that Theorem 1.4 is valid.
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