DIRECT PRODUCTS OF ORDERED ABELIAN GROUPS

HIROSHI TANAKA

Received August 3, 2005; revised January 16, 2006

Abstract

In this paper we study some theories of direct products of ordered abelian groups.

1. Introduction

In [1], Komori showed that the direct product of \mathbb{Z} and \mathbb{Q} admits elimination of quantifiers in a language, where $\mathbb{Z}(\mathbb{Q})$ is the ordered abelian group of integers (of rational numbers). Extending this, Weispfenning [7] showed that the direct product of finitely many copies of \mathbb{Z} admits elimination of quantifiers in a language L, and the direct product of finitely many copies of \mathbb{Z} and one \mathbb{Q} admits elimination of quantifiers in the same language L. In this paper, we show the converse of them. We also show that the algebraic closure over the above structures satisfies the Exchange Principle.

2. Preliminaries

Let \mathbb{N} be the set of natural numbers. Let \mathbb{Z} be the ordered abelian group of integers. Let \mathbb{Q} be the ordered abelian group of rational numbers. Let $k \in \mathbb{N} \backslash\{0\}$.

Suppose that $L=\left\{0,1^{(1)}, 1^{(2)}, \ldots, 1^{(k)},+,-, 0<*, n \mid *\right\}_{n>0}$, where $0<*$ and $n \mid *$ are unary relation symbols. For each i with $1 \leq i \leq k$, the terms $t+\cdots+t$ and $1^{(i)}+\cdots+1^{(i)}$ $\left(t\right.$ and $1^{(i)}$ repeated n times) are written as $n t$ and $n^{(i)}$, respectively. The term $t+(-s)$ is written as $t-s$. The formula $0<t-s$ is written as $s<t$. The formulas $s<t \wedge t<u$ and $s<t \vee s=t$ are written as $s<t<u$ and $s \leq t$, respectively.

We now give some axioms for ordered abelian groups.
(1) The axioms for abelian groups:
$\forall x \forall y \forall z((x+y)+z=x+(y+z))$;
$\forall x(x+0=x)$;
$\forall x(x-x=0)$;
$\forall x \forall y(x+y=y+x)$.
(2) The axioms for a linear ordering compatible with group structures:
$\forall x(x=0 \vee 0<x \vee 0<-x)$;
$\forall x(\neg(0<x \wedge 0<-x))$;
$\forall x \forall y(0<x \wedge 0<y \rightarrow 0<x+y)$.
(3) The axioms for a semi-discrete ordering:
$0<2^{(i+1)}<1^{(i)}$ for each i with $1 \leq i \leq k-1$;
$\forall x\left(2 x<1^{(i)} \vee 1^{(i)}<2 x\right)$ for each i with $1 \leq i \leq k$.
(4) The axioms for infinitesimals:
$\forall x\left(2 x<1^{(i)} \rightarrow n x<1^{(i)}\right)$ for each i with $1 \leq i \leq k$ and $n \geq 2$.
(5) $\forall x\left(n \mid x \leftrightarrow \exists y \exists z\left(-1^{(k)}<2 z<1^{(k)} \wedge x=n y+z\right)\right)$ for each $n>0$.

[^0](6) $\forall x\left(\bigvee_{0 \leq q_{1}, \ldots, q_{k} \leq n-1}\left(n \mid x+q_{1}^{(1)}+\cdots+q_{k}^{(k)}\right)\right)$ for each $n>1$.
(7) The axioms for divisible infinitesimals: $\forall x\left(-1^{(k)}<2 x<1^{(k)} \rightarrow \exists y(x=n y)\right)$ for each $n>1$.
(8) The axiom for discrete ordering: $\forall x\left(\neg\left(0<x<1^{(k)}\right)\right)$.
(9) The axiom for existence of infinitesimals: $\exists x\left(0<x<1^{(k)}\right)$.
Let $S S_{k}:=(1) \cup(2) \cup(3) \cup(4) \cup(5) \cup(6)$. Let $D C_{k}:=S S_{k} \cup(7) \cup(8)$ and $S C_{k}:=$ $S S_{k} \cup(7) \cup(9)$. We consider the lexicographic order from left to right on the ordered abelian group $\mathbb{Z}^{k}=\mathbb{Z} \times \cdots \times \mathbb{Z}$ (\mathbb{Z} repeated k times). We similarly consider the lexicographic order on the ordered abelian group $\mathbb{Z}^{k} \times \mathbb{Q}$. In the ordered abelian group \mathbb{Z}^{k}, we interpret $1^{(1)}$, $1^{(2)}, \ldots, 1^{(k)}$ as $(1,0, \ldots, 0),(0,1,0, \ldots, 0), \ldots,(0, \ldots, 0,1)$. In the ordered abelian group $\mathbb{Z}^{k} \times \mathbb{Q}$, we interpret $1^{(1)}, 1^{(2)}, \ldots, 1^{(k)}$ as $(1,0, \ldots, 0),(0,1,0, \ldots, 0), \ldots,(0, \ldots, 0,1,0)$. Then \mathbb{Z}^{k} is a model of $D C_{k}$, and $\mathbb{Z}^{k} \times \mathbb{Q}$ is a model of $S C_{k}$. Weispfenning showed that both $\mathrm{Th}_{L}\left(\mathbb{Z}^{k}\right)$ and $\mathrm{Th}_{L}\left(\mathbb{Z}^{k} \times \mathbb{Q}\right)$ admit elimination of quantifiers.

In section three, we show that both $D C_{k}$ and $S C_{k}$ admit elimination of quantifiers and that they are complete. We show the converse of Weispfenning's results. Namely, we show that if M is a model of $S S_{k}$ and $\operatorname{Th}(M)$ admits elimination of quantifiers, then M is a model of either $D C_{k}$ or $S C_{k}$.

In section four, we show that for each model M of either $D C_{k}$ or $S C_{k}$, the algebraic closure over M satisfies the Exchange Principle.

I would like to thank Associate Professor Katsumi Tanaka for useful discussions.

3. Quantifier eliminable ordered abelian groups

To show that both $D C_{k}$ and $S C_{k}$ admit elimination of quantifiers, we first prove some lemmas needed later.

Lemma 1. Let $1 \leq i \leq k$. Then, the formula $\forall x \forall y\left(-1^{(i)}<2 x<1^{(i)} \wedge-1^{(i)}<2 y<\right.$ $\left.1^{(i)} \rightarrow-1^{(i)}<2(x+y)<1^{(i)}\right)$ holds in $S S_{k}$.

Proof. Without loss of generality, we may assume that $0<2 x<1^{(i)}$ and $0<2 y<1^{(i)}$ hold. Suppose for a contradiction that $1^{(i)}<2(x+y)$ holds. Then we have $2\left\{1^{(i)}-(x+y)\right\}<1^{(i)}$. Thus, by Axiom (4), we have $5\left\{1^{(i)}-(x+y)\right\}<1^{(i)}$. Therefore $4^{(i)}<5 x+5 y$ holds. Now $0<2 x<1^{(i)}$ and $0<2 y<1^{(i)}$ hold. Thus, by Axiom (4), we have $0<5 x<1^{(i)}$ and $0<5 y<1^{(i)}$. Therefore it follows $5 x+5 y<2^{(i)}$, a contradiction.

Lemma 2. Let $1 \leq i \leq k-1$ and $n>0$. Then, the formula $\forall x\left(-1^{(i)}<2 x<1^{(i)} \rightarrow\right.$ $\left.\bigvee_{0 \leq q_{i+1}, \ldots, q_{k} \leq n-1}\left(n \mid x+q_{i+1}^{(i+1)}+\cdots+q_{k}^{(k)}\right)\right)$ holds in $S S_{k}$.
Proof. Without loss of generality, we may assume $i=1$. By Axiom (6), there exist q_{1}, \ldots, q_{k} with $0 \leq q_{1}, \ldots, q_{k} \leq n-1$ such that $n \mid x+q_{1}^{(1)}+\cdots+q_{k}^{(k)}$ holds. Thus, there exist y, z such that we have $-1^{(k)}<2 z<1^{(k)}$ and $x+q_{1}^{(1)}+\cdots+q_{k}^{(k)}=n y+z$. Suppose for a contradiction that $q_{1} \neq 0$.

Let $2 y<1^{(1)}$ hold. Then, by $2 n y<1^{(1)}$, we have

$$
\begin{aligned}
2\left(x+q_{2}^{(2)}+\cdots+q_{k}^{(k)}-z\right) & =2 n y-2 q_{1}^{(1)} \\
& <1^{(1)}-2 q_{1}^{(1)} \leq-1^{(1)}
\end{aligned}
$$

Now $2\left(x+q_{2}^{(2)}+\cdots+q_{k}^{(k)}-z\right)>-1^{(1)}$ holds, a contradiction.

Let $1^{(1)}<2 y$ hold. Then, we have $2\left(1^{(1)}-y\right)<1^{(1)}$. Hence, we have $2 n^{(1)}-1^{(1)}<2 n y$. Thus it follows

$$
\begin{aligned}
2\left(x+q_{2}^{(2)}+\cdots+q_{k}^{(k)}-z\right) & =2 n y-2 q_{1}^{(1)} \\
& >2 n^{(1)}-1^{(1)}-2 q_{1}^{(1)} \geq 1^{(1)}
\end{aligned}
$$

Now $2\left(x+q_{2}^{(2)}+\cdots+q_{k}^{(k)}-z\right)<1^{(1)}$ holds, a contradiction. Therefore we get $q_{1}=0$.
Lemma 3. Let $1 \leq i<j \leq k$ and $n>0$. Then, the formula $\forall x\left(1^{(i)}<2 x \rightarrow 1^{(i)}<\right.$ $\left.2\left(x-n^{(j)}\right)\right)$ holds in $S S_{k}$

Proof. Suppose for a contradiction that $2\left(x-n^{(j)}\right)<1^{(i)}$ holds. Then we have $2 x<$ $1^{(i)}+2 n^{(j)}$. Thus, it follows $10 x<6^{(i)}$. Now, by $1^{(i)}<2 x$, we have $2\left(1^{(i)}-x\right)<1^{(i)}$. By Axiom (4), it follows $10^{(i)}-10 x<1^{(i)}$. Therefore $9^{(i)}<10 x$ holds, a contradiction.

Using the above lemmas, we show the following.
Proposition 4. Both $D C_{k}$ and $S C_{k}$ admit elimination of quantifiers.
Proof. Let $\exists x \varphi$ be a formula, where φ is a quantifier-free formula. We may assume that φ is the form $\psi_{1} \wedge \cdots \wedge \psi_{n}$, where each ψ_{i} is an atomic formula or the negation of an atomic formula. In addition, ψ_{i} is of one of the forms $t=s, \neg(t=s), 0<t, \neg(0<t), n \mid t$ or $\neg(n \mid t)$. Moreover $t=s, \neg(t=s), \neg(0<t)$ and $\neg(n \mid t)$ are equivalent to $t-s=0$, $0<t-s \vee 0<s-t, t=0 \vee 0<-t$ and $n\left|t+1^{(1)} \vee \cdots \vee n\right| t+(n-1)^{(1)}+\cdots+(n-1)^{(k)}$, respectively. Thus, we may assume that each ψ_{i} is of one of the forms $t=0,0<t$ or $n \mid t$.

Now, each term t can be written in the form $p x+s$ with $p \in \mathbb{Z}$ and s a term which does not contain x. Therefore $\exists x \varphi$ can be written as

$$
\begin{aligned}
& \exists x\left(p_{1} x<t_{1} \wedge \cdots \wedge p_{i} x<t_{i} \wedge u_{1}<q_{1} x \wedge \cdots \wedge u_{j}<q_{j} x\right. \\
& \left.\quad \wedge r_{1} x=v_{1} \wedge \cdots \wedge r_{l} x=v_{l} \wedge n_{1}\left|s_{1} x+w_{1} \wedge \cdots \wedge n_{m}\right| s_{m} x+w_{m}\right)
\end{aligned}
$$

where $p_{1}, \ldots, p_{i}, q_{1}, \ldots, q_{j}, r_{1}, \ldots, r_{l}, s_{1}, \ldots, s_{m}, n_{1}, \ldots, n_{m} \in \mathbb{N} \backslash\{0\}$ and $t_{1}, \ldots, t_{i}, u_{1}, \ldots, u_{j}, v_{1}, \ldots, v_{l}, w_{1}, \ldots, w_{m}$ are terms which do not contain x.

Let p be the least common multiple of $p_{1}, \ldots, p_{i}, q_{1}, \ldots, q_{j}, r_{1}, \ldots, r_{l}, s_{1}, \ldots, s_{m}$. Then we may assume that $\exists x \varphi$ is equivalent to

$$
\begin{aligned}
& \exists x\left(x<t_{1} \wedge \cdots \wedge x<t_{i} \wedge u_{1}<x \wedge \cdots \wedge u_{j}<x\right. \\
& \left.\quad \wedge x=v_{1} \wedge \cdots \wedge x=v_{l} \wedge n_{1}\left|x+w_{1} \wedge \cdots \wedge n_{m}\right| x+w_{m} \wedge \exists y(x=p y)\right)
\end{aligned}
$$

Now, by Axiom (7), $\exists y(x=p y)$ is equivalent to $p \mid x$.
If $l \geq 1$ holds, $\exists x \varphi$ is equivalent to

$$
\begin{aligned}
& v_{1}<t_{1} \wedge \cdots \wedge v_{1}<t_{i} \wedge u_{1}<v_{1} \wedge \cdots \wedge u_{j}<v_{1} \\
& \wedge v_{1}=v_{2} \wedge \cdots \wedge v_{1}=v_{l} \wedge n_{1}\left|v_{1}+w_{1} \wedge \cdots \wedge n_{m}\right| v_{1}+w_{m} \wedge p \mid v_{1}
\end{aligned}
$$

Thus, we may assume $l=0$. Moreover we may assume $i, j \leq 1$. Let n be the least common multiple of $n_{1}, \ldots n_{m}, p$.

Suppose that $i=0$. Let $A_{q_{1}, \ldots, q_{k}}$ be a formula

$$
\begin{aligned}
& \quad n_{1}\left|q_{1}^{(1)}+\cdots+q_{k}^{(k)}+u_{1}+w_{1} \wedge \cdots \wedge n_{m}\right| q_{1}^{(1)}+\cdots+q_{k}^{(k)}+u_{1}+w_{m} \\
& \wedge p \mid q_{1}^{(1)}+\cdots+q_{k}^{(k)}+u_{1}
\end{aligned}
$$

where $0 \leq q_{1}, \ldots, q_{k}<n$. Then, $\exists x \varphi$ is equivalent to $\bigvee_{0 \leq q_{1}, \ldots, q_{k}<n} A_{q_{1}, \ldots, q_{k}}$.

On the other hand, suppose that $i=1$. Let $B_{q_{1}, \ldots, q_{k}}$ be a formula

$$
\begin{aligned}
& \exists y\left(0<n y+q_{1}^{(1)}+\cdots+q_{k}^{(k)}<t_{1}-u_{1}\right) \wedge n_{1} \mid q_{1}^{(1)}+\cdots+q_{k}^{(k)}+u_{1}+w_{1} \\
& \wedge \cdots \wedge n_{m}\left|q_{1}^{(1)}+\cdots+q_{k}^{(k)}+u_{1}+w_{m} \wedge p\right| q_{1}^{(1)}+\cdots+q_{k}^{(k)}+u_{1}
\end{aligned}
$$

where $0 \leq q_{1}, \ldots, q_{k}<n$. Then, $\exists x \varphi$ is equivalent to $\bigvee_{0 \leq q_{1}, \ldots, q_{k}<n} B_{q_{1}, \ldots, q_{k}}$. Hence, we may show that $\exists y\left(0<n y+q_{1}^{(1)}+\cdots+q_{k}^{(k)}<t\right)$ is equivalent to some quantifier-free formula.
Claim 1. For each k^{\prime} with $1 \leq k^{\prime} \leq k-1$, let $q_{1}=\cdots=q_{k^{\prime}-1}=0$ and $q_{k^{\prime}} \neq 0$. Then, $\exists y\left(0<n y+q_{1}^{(1)}+\cdots+q_{k}^{(k)}<t\right)$ is equivalent to $2\left(q_{k^{\prime}}^{\left(k^{\prime}\right)}-t\right)<1^{\left(k^{\prime}\right)}$.

Without loss of generality, we may assume $k^{\prime}=1$.
Suppose that there exists y such that $0<n y+q_{1}^{(1)}+\cdots+q_{k}^{(k)}<t$ holds. If $-1^{(1)}<2 y$ holds, by $-1^{(1)}<2 n y$, we have $-1^{(1)}+2 q_{1}^{(1)}+\cdots+2 q_{k}^{(k)}<2 n y+2 q_{1}^{(1)}+\cdots+2 q_{k}^{(k)}<2 t$. By $-1^{(1)}+2 q_{1}^{(1)} \leq-1^{(1)}+2 q_{1}^{(1)}+\cdots+2 q_{k}^{(k)}$, we have $2\left(q_{1}^{(1)}-t\right)<1^{(1)}$, as desired. If $2 y<-1^{(1)}$ holds, by Lemma 3, we have $2\left(y+1^{(2)}+\cdots+1^{(k)}\right)<-1^{(1)}$. Thus $2\left(1^{(1)}+\right.$ $\left.y+1^{(2)}+\cdots+1^{(k)}\right)<1^{(1)}$ holds. Hence, by $n\left(1^{(1)}+y+1^{(2)}+\cdots+1^{(k)}\right)<1^{(1)}$, we have $(n-1)^{(1)}+n y+n^{(2)}+\cdots+n^{(k)}<0$. However it follows $0<n y+q_{1}^{(1)}+\cdots+q_{k}^{(k)}<$ $n y+(n-1)^{(1)}+n^{(2)}+\cdots+n^{(k)}<0$, a contradiction.

On the other hand, suppose that $2\left(q_{1}^{(1)}-t\right)<1^{(1)}$ holds. If $q_{1}^{(1)}-t \leq 0$ holds, we have $0<-n^{(2)}+q_{1}^{(1)}+\cdots+q_{k}^{(k)}<t$, as desired. If $0<q_{1}^{(1)}-t$ holds, we have $0<$ $2\left(q_{1}^{(1)}-t\right)<1^{(1)}$. Hence, by Lemma 2 , there exist $\alpha_{2}, \ldots, \alpha_{k}$ with $0 \leq \alpha_{2}, \ldots, \alpha_{k} \leq n-1$ such that $n \mid q_{1}^{(1)}-t+\alpha_{2}^{(2)}+\cdots+\alpha_{k}^{(k)}$ holds. Thus, there exists y such that we have $q_{1}^{(1)}-t+\alpha_{2}^{(2)}+\cdots+\alpha_{k}^{(k)}=n y$. Hence we obtain $q_{1}^{(1)}-n y=t-\alpha_{2}^{(2)}-\cdots-\alpha_{k}^{(k)}$. Now, by $1^{(1)}<2 t$, we have $0<t-\alpha_{2}^{(2)}-\cdots-\alpha_{k}^{(k)}-n^{(2)}+q_{2}^{(2)}+\cdots+q_{k}^{(k)}=q_{1}^{(1)}-n y-n^{(2)}+$ $q_{2}^{(2)}+\cdots+q_{k}^{(k)}<q_{1}^{(1)}-n y \leq t$. Hence it follows $0<n\left(-y-1^{(2)}\right)+q_{1}^{(1)}+\cdots+q_{k}^{(k)}<t$, as desired. Therefore we prove Claim 1.
Claim 2. Let $q_{1}=\cdots=q_{k}=0$. Then, in $D C_{k}$ or $S C_{k}, \exists y\left(0<n y+q_{1}^{(1)}+\cdots+q_{k}^{(k)}<t\right)$ is equivalent to $n^{(k)}<t$ or $0<t$, respectively.

It is clear for $D C_{k}$.
We consider in the case of $S C_{k}$. If $\exists y(0<n y<t)$ holds, we obtain $0<t$. On the other hand, let $0<t$ hold. In the case of $1^{(k)} \leq t$, by Axiom (9), there exists y such that $0<2 y<1^{(k)}$ holds. Then we have $0<n y<1^{(k)}$. Thus, it follows $0<n y<t$, as desired. In the case of $0<t<1^{(k)}$, we have $0<1^{(k)}-t<1^{(k)}$. If $t<1^{(k)}-t$ holds, then $0<2 t<1^{(k)}$ holds. Thus, there exists $y>0$ such that $t=(n+1) y$ holds. Hence it follows $0<n y=t-y<t$, as desired. If $1^{(k)}-t<t$ holds, then $0<2\left(1^{(k)}-t\right)<1^{(k)}$ holds. Thus, there exists $y>0$ such that $n y=1^{(k)}-t$ holds. Hence it follows $0<n y<t$, as desired. Therefore we prove Claim 2.
Claim 3. Let $q_{1}=\cdots=q_{k-1}=0$ and $q_{k} \neq 0$. Then, in $D C_{k}$ or $S C_{k}, \exists y\left(0<n y+q_{1}^{(1)}+\right.$ $\left.\cdots+q_{k}^{(k)}<t\right)$ is equivalent to $q_{k}^{(k)}<t$ or $2\left(q_{k}^{(k)}-t\right)<1^{(k)}$, respectively.

First, we consider in the case of $D C_{k}$. If $q_{k}^{(k)}<t$ holds, clearly $\exists y\left(0<n y+q_{k}^{(k)}<t\right)$ holds. On the other hand, suppose that there exists y such that $0<n y+q_{k}^{(k)}<t$ holds. If $y \geq 0$ holds, then $q_{k}^{(k)} \leq n y+q_{k}^{(k)}<t$ holds, as desired. If $y<0$ holds, by Axiom (8), we have $y \leq-1^{(k)}$. Thus, it follows $0<n y+q_{k}^{(k)} \leq-n^{(k)}+q_{k}^{(k)}<0$, a contradiction. Hence, in the case of $D C_{k}$, Claim 3 holds.

Next, we consider in the case of $S C_{k}$.
Suppose that there exists y such that $0<n y+q_{k}^{(k)}<t$ holds. If $-1^{(k)}<2 y$ holds, by $-1^{(k)}<2 n y$, we have $-1^{(k)}+2 q_{k}^{(k)}<2 n y+2 q_{k}^{(k)}<2 t$. Thus it follows $2\left(q_{k}^{(k)}-t\right)<1^{(k)}$,
as desired. If $2 y<-1^{(k)}$ holds, we have $2\left(y+1^{(k)}\right)<1^{(k)}$. Hence, by $n\left(y+1^{(k)}\right)<1^{(k)}$, we have $n y+(n-1)^{(k)}<0$. However, $0<n y+q_{k}^{(k)} \leq n y+(n-1)^{(k)}<0$ holds, a contradiction.

On the other hand, suppose that $2\left(q_{k}^{(k)}-t\right)<1^{(k)}$.
Let $q_{k}^{(k)} \leq t$ hold. By Axiom (9), there exists y such that $-1^{(k)}<2 y<0$ holds. Hence, by $-1^{(k)}<n y<0$, we have $0 \leq-1^{(k)}+q_{k}^{(k)}<n y+q_{k}^{(k)}<q_{k}^{(k)} \leq t$, as desired.

Let $t<q_{k}^{(k)}$ hold. By $0<2\left(q_{k}^{(k)}-t\right)<1^{(k)}$, there exists y with $0<y<q_{k}^{(k)}-t<1^{(k)}$ such that $q_{k}^{(k)}-t=(n-1) y$ holds. Again, by $2\left(q_{k}^{(k)}-t\right)<1^{(k)}$, we have $n y<1^{(k)}$. Thus, we obtain $0<1^{(k)}-n y \leq q_{k}^{(k)}-n y=t-y<t$, as desired. Therefore we prove Claim 3.

By Claims 1 through $3, \exists y\left(0<n y+q_{1}^{(1)}+\cdots+q_{k}^{(k)}<t\right)$ is equivalent to some quantifierfree formula. Therefore, $\exists x \varphi$ is equivalent to some quantifier-free formula, as desired.

Proposition 5. Both $D C_{k}$ and $S C_{k}$ are complete.
Namely, $D C_{k}=\operatorname{Th}_{L}\left(\mathbb{Z}^{k}\right)$ and $S C_{k}=\operatorname{Th}_{L}\left(\mathbb{Z}^{k} \times \mathbb{Q}\right)$.
Proof. Let M be a model of $D C_{k}$. Suppose that $f: \mathbb{Z}^{k} \rightarrow M$ by $f\left(n_{1}, \ldots, n_{k}\right)=n_{1}^{(1)^{M}}+$ $\cdots+n_{k}^{(k)^{M}}$. Then f is an embedding. Thus, by Proposition $4, D C_{k}$ is complete. Similarly $S C_{k}$ is complete.

Lemma 6. Let $\psi(x)$ be a quantifier-free formula with one free variable x. Suppose that $M \vDash S S_{k}$. Then
(i) either $M \models \psi(a)$ for each a with $0<2 a<1^{(k)}$, or $M \models \neg \psi(a)$ for each $0<2 a<1^{(k)}$;
(ii) either $M \models \psi(a)$ for each a with $-1^{(k)}<2 a<0$, or $M \models \neg \psi(a)$ for each $-1^{(k)}<$ $2 a<0$.

Proof. (i) Let $\psi(x)$ be a quantifier-free formula with one free variable x. The formula $\psi(x)$ is equivalent to a boolean combination of formulas which is of the forms $p x=q_{1}^{(1)}+\cdots+q_{k}^{(k)}$, $p x<q_{1}^{(1)}+\cdots+q_{k}^{(k)}, q_{1}^{(1)}+\cdots+q_{k}^{(k)}<p x$ or $m \mid p x+q_{1}^{(1)}+\cdots+q_{k}^{(k)}$, where $p, m \in \mathbb{N} \backslash\{0\}$ and $q_{1}, \ldots, q_{k} \in \mathbb{Z}$.

Let $M \models p a=q_{1}^{(1)}+\cdots+q_{k}^{(k)}$ for some $0<2 a<1^{(k)}$. Then we have $0<p a<1^{(k)}$, a contradiction.

Let $M \vDash p a<q_{1}^{(1)}+\cdots+q_{k}^{(k)}$ for some $0<2 a<1^{(k)}$. Then, by $0<p a$, we have $1^{(k)} \leq q_{1}^{(1)}+\cdots+q_{k}^{(k)}$. Thus, $M \models p a<q_{1}^{(1)}+\cdots+q_{k}^{(k)}$ for each $0<2 a<1^{(k)}$.

Let $M \models q_{1}^{(1)}+\cdots+q_{k}^{(k)}<p a$ for some $0<2 a<1^{(k)}$. Then, by $p a<1^{(k)}$, we have $q_{1}^{(1)}+\cdots+q_{k}^{(k)} \leq 0$. Thus, $M \models q_{1}^{(1)}+\cdots+q_{k}^{(k)}<p a$ for each $0<2 a<1^{(k)}$.

Let $M \models m \mid p a+q_{1}^{(1)}+\cdots+q_{k}^{(k)}$ for some $0<2 a<1^{(k)}$. Then, by $0<p a<1^{(k)}$, there exist $n_{1}, \ldots, n_{k} \in \mathbb{Z}$ such that $q_{1}=m n_{1}, \ldots, q_{k}=m n_{k}$. Thus, we have $M \models m \mid$ $p a+q_{1}^{(1)}+\cdots+q_{k}^{(k)}$ for each $0<2 a<1^{(k)}$. This completes the proof of (i). (ii) Similarly, we can prove this.

We show the converse of Weispfenning's results.
Theorem 7. Let M be a model of $S S_{k}$. Suppose that $\operatorname{Th}(M)$ admits elimination of quantifiers. Then M is a model of either $D C_{k}$ or $S C_{k}$. Namely, we have either $M \equiv \mathbb{Z}^{k}$ or $M \equiv \mathbb{Z}^{k} \times \mathbb{Q}$.

Proof. First, suppose that Axiom (8) holds in M. Then Axiom (7) holds in M. Thus, M is a model of $D C_{k}$.

Secondly, suppose that Axiom (9) holds in M. Let $n \in \mathbb{N} \backslash\{0\}$. Because $\operatorname{Th}(M)$ admits elimination of quantifiers, there exists a quantifier-free formula $\psi_{n}(x)$ such that

$$
\operatorname{Th}(M) \models \forall x\left[\left(-1^{(k)}<2 x<1^{(k)} \rightarrow \exists y(x=n y)\right) \leftrightarrow \psi_{n}(x)\right]
$$

Now $M \models \psi_{n}(a)$ if $2 a<-1^{(k)}, 1^{(k)}<2 a$ or $a=0$. Let $0<2 a<1^{(k)}$ hold. Then $M \models \psi_{n}(n a)$. Let $-1^{(k)}<2 a<0$ hold. Then $M \models \psi_{n}(n a)$. Hence, by Lemma 6, $M \models \psi(a)$ if $-1^{(k)}<2 a<0$ or $0<2 a<1^{(k)}$. It follows from this that $M \models \psi(a)$ for each $a \in M$. Thus Axiom (7) holds in M. Therefore, M is a model of $S C_{k}$.

4. Exchange principle

In this section, we show that for each model M of either $D C_{k}$ or $S C_{k}$, algebraic closure over M satisfies the Exchange Principle.

Let \mathcal{L} be a language and M an \mathcal{L}-structure. Finite tuples of variables are denoted by \bar{x}, \bar{y}, \ldots. Finite tuples of elements from M are denoted by \bar{a}, \bar{b}, \ldots. For a tuple $\bar{a}=$ $\left(a_{1}, \ldots, a_{n}\right)$ from M, we simply write $\bar{a} \in M$ instead of $\bar{a} \in M^{n}$.

Let $A \subseteq M$. We say that $a \in M$ is algebraic over A if there exists an \mathcal{L}-formula $\varphi(x, \bar{y})$ and $\bar{b} \in \bar{A}$ such that $M \models \varphi(a, \bar{b})$ and $\{c \in M \mid M \models \varphi(c, \bar{b})\}$ is finite. For $A \subseteq M$, the algebraic closure of A in M, denoted $\operatorname{acl}(A)$, is given by $\{a \in M \mid a$ is algebraic over $A\}$.

Definition 8 (Exchange Principle). Let \mathcal{L} be a language and M an \mathcal{L}-structure. We say that the algebraic closure over M satisfies the Exchange Principle if $A \subseteq M, a, b \in M$ and $a \in \operatorname{acl}(A \cup\{b\}) \backslash \operatorname{acl}(A)$, then $b \in \operatorname{acl}(A \cup\{a\})$.

Let M be a model of either $D C_{k}$ or $S C_{k}$. Let $A \subseteq M$. Suppose that $\langle A\rangle:=\{\alpha \in M \mid$ there exists $\bar{a} \in A$, a term $t(\bar{x})$ and $m \in \mathbb{N}$ such that $\bar{m} \alpha=t(\bar{a})\}$.

We first prove the following lemma.
Lemma 9. Let M be a model of either $D C_{k}$ or $S C_{k}$, and let $A \subseteq M$. Then $\langle A\rangle=\operatorname{acl}(A)$.
Proof. We have $\langle A\rangle \subseteq \operatorname{acl}(A)$. We show that $\operatorname{acl}(A) \subseteq\langle A\rangle$. As both $D C_{k}$ and $S C_{k}$ admit elimination of quantifiers, an $L(A)$-formula with one free variable x is equivalent to a boolean combination of the forms $m x=t(\bar{a}), t_{1}(\bar{a})<m^{\prime} x<t_{2}(\bar{a})$ or $n \mid l x+s(\bar{a})$, where $l, m, m^{\prime}, n \in \mathbb{N} \backslash\{0\}, \bar{a} \in A$ and t, t_{1}, t_{2}, s are terms which do not contain x.

First, let M be a model of $D C_{k}$ and A a subset of M.
Claim 1. Let $D:=\left\{x \in M \mid t_{1}(\bar{a})<m^{\prime} x<t_{2}(\bar{a})\right\}$ be finite and α an element of D. Then α is an element of $\langle A\rangle$.

Since D is finite, there exists $p \in \mathbb{N}$ such that we have $m^{\prime} \alpha=t_{2}(\bar{a})-p^{(k)}$. Hence it follows $\alpha \in\langle A\rangle$.
Claim 2. Let D be infinite. Then $E:=\left\{x \in M\left|t_{1}(\bar{a})<m^{\prime} x<t_{2}(\bar{a}) \wedge n\right| l x+s(\bar{a})\right\}$ is empty or infinite.

Let E be non-empty. Let α be an element of E. Suppose that p is a multiple of n. Then we have $\alpha+p^{(k)} \in E$. Thus, E is infinite.

By Claims 1 and 2, if $\alpha \in \operatorname{acl}(A)$, then $\alpha \in\langle A\rangle$.
Secondly, let M be a model of $S C_{k}$ and A a subset of M.
Claim 3. E is empty or infinite.
Let E be non-empty. Let α be an element of E. Without loss of generality, we may assume $m^{\prime}=n$. Now, there exists $\beta \in M$ with $0<2 \beta<1^{(k)}$ such that we have $n \alpha<$ $n \alpha+n^{2} \beta<t_{2}(\bar{a})$. Then, we obtain $n \mid l(\alpha+n \beta)+s(\bar{a})$. Thus, $\alpha+n \beta$ is an element of E. Iterating this process, it follows that E is infinite.

By Claim 3, if $\alpha \in \operatorname{acl}(A)$, then $\alpha \in\langle A\rangle$.

Theorem 10. Let M be a model of either $D C_{k}$ or $S C_{k}$ Then the algebraic closure over M satisfies the Exchange Principle.

Proof. Let M be a model of either $D C_{k}$ or $S C_{k}$. Let $A \subseteq M, a, b \in M$ and $a \in \operatorname{acl}(A \cup$ $\{b\}) \backslash \operatorname{acl}(A)$. By Lemma 9, there exists $\bar{a} \in A$, a term $t(\bar{x})$ and $m, n \in \mathbb{Z} \backslash\{0\}$ such that $m a=t(\bar{a})+n b$ holds. Thus $n b=m a-t(\bar{a})$ holds. It follows $b \in \operatorname{acl}(A \cup\{a\})$.

References

[1] Y. Komori, Completeness of two theories on ordered abelian groups and embedding relations, Nagoya Math. J., 77 (1980), 33-39.
[2] G. Kreisel and J. L. Krivine, Elements of mathematical logic, North-Holland, Amsterdam, 1967.
[3] D. Marker, Model theory: an introduction, GTM 217, Berlin Heidelberg New York, Springer, 2002.
[4] N. Suzuki, Quantifier elimination results for products of ordered abelian groups, Tsukuba J. Math., 28 (2004), 291-301.
[5] K. Tanaka, On the theory of ordered groups, Kobe J. Math., 5 (1988), 117-122.
[6] H. Tanaka and H. Yokoyama, Quantifier elimination of the products of ordered Abelian groups, Tsukuba J. Math., to appear.
[7] V. Weispfenning, Elimination of quantifiers for certain ordered and lattice-ordered abelian groups, Bulletin de la Société Mathématique de Belgique, Ser. B, 33 (1981), 131-155.

Department of Mathematics, Faculty of Science, Okayama University 1-1, Naka 3-chome, Tsushima, Okayama 700-8530, Japan

E-mail address: htanaka@math.okayama-u.ac.jp

[^0]: 2000 Mathematics Subject Classification. 03C10, 03C64, 06F20.
 Key words and phrases. ordered abelian groups, quantifier elimination.

