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DIRECT PRODUCTS OF ORDERED ABELIAN GROUPS
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Abstract. In this paper we study some theories of direct products of ordered abelian
groups.

1. Introduction

In [1], Komori showed that the direct product of Z and Q admits elimination of quantifiers
in a language, where Z (Q) is the ordered abelian group of integers (of rational numbers).
Extending this, Weispfenning [7] showed that the direct product of finitely many copies of
Z admits elimination of quantifiers in a language L, and the direct product of finitely many
copies of Z and one Q admits elimination of quantifiers in the same language L. In this
paper, we show the converse of them. We also show that the algebraic closure over the
above structures satisfies the Exchange Principle.

2. Preliminaries

Let N be the set of natural numbers. Let Z be the ordered abelian group of integers. Let
Q be the ordered abelian group of rational numbers. Let k ∈ N \ {0}.

Suppose that L = {0, 1(1), 1(2), . . . , 1(k),+,−, 0 < ∗, n | ∗}n>0, where 0 < ∗ and n | ∗ are
unary relation symbols. For each i with 1 ≤ i ≤ k, the terms t+ · · ·+ t and 1(i) + · · ·+ 1(i)

(t and 1(i) repeated n times) are written as nt and n(i), respectively. The term t+ (−s) is
written as t− s. The formula 0 < t− s is written as s < t. The formulas s < t ∧ t < u and
s < t ∨ s = t are written as s < t < u and s ≤ t, respectively.

We now give some axioms for ordered abelian groups.
(1) The axioms for abelian groups:

∀x∀y∀z((x+ y) + z = x+ (y + z));
∀x(x+ 0 = x);
∀x(x− x = 0);
∀x∀y(x+ y = y + x).

(2) The axioms for a linear ordering compatible with group structures:
∀x(x = 0 ∨ 0 < x ∨ 0 < −x);
∀x(¬(0 < x ∧ 0 < −x));
∀x∀y(0 < x ∧ 0 < y → 0 < x+ y).

(3) The axioms for a semi-discrete ordering:
0 < 2(i+1) < 1(i) for each i with 1 ≤ i ≤ k − 1;
∀x(2x < 1(i) ∨ 1(i) < 2x) for each i with 1 ≤ i ≤ k.

(4) The axioms for infinitesimals:
∀x(2x < 1(i) → nx < 1(i)) for each i with 1 ≤ i ≤ k and n ≥ 2.

(5) ∀x(n | x↔ ∃y∃z(−1(k) < 2z < 1(k) ∧ x = ny + z)) for each n > 0.
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(6) ∀x( ∨
0≤q1,...,qk≤n−1(n | x+ q

(1)
1 + · · · + q

(k)
k )

)
for each n > 1.

(7) The axioms for divisible infinitesimals:
∀x(−1(k) < 2x < 1(k) → ∃y(x = ny)) for each n > 1.

(8) The axiom for discrete ordering:
∀x(¬(0 < x < 1(k))).

(9) The axiom for existence of infinitesimals:
∃x(0 < x < 1(k)).

Let SSk := (1) ∪ (2) ∪ (3) ∪ (4) ∪ (5) ∪ (6). Let DCk := SSk ∪ (7) ∪ (8) and SCk :=
SSk∪(7)∪(9). We consider the lexicographic order from left to right on the ordered abelian
group Zk = Z× · · · ×Z (Z repeated k times). We similarly consider the lexicographic order
on the ordered abelian group Zk × Q. In the ordered abelian group Zk, we interpret 1(1),
1(2), . . . , 1(k) as (1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1). In the ordered abelian group
Zk × Q, we interpret 1(1), 1(2), . . . , 1(k) as (1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1, 0).
Then Zk is a model of DCk, and Zk ×Q is a model of SCk. Weispfenning showed that both
ThL(Zk) and ThL(Zk × Q) admit elimination of quantifiers.

In section three, we show that both DCk and SCk admit elimination of quantifiers and
that they are complete. We show the converse of Weispfenning’s results. Namely, we show
that if M is a model of SSk and Th(M) admits elimination of quantifiers, then M is a
model of either DCk or SCk.

In section four, we show that for each model M of either DCk or SCk, the algebraic
closure over M satisfies the Exchange Principle.

I would like to thank Associate Professor Katsumi Tanaka for useful discussions.

3. Quantifier eliminable ordered abelian groups

To show that both DCk and SCk admit elimination of quantifiers, we first prove some
lemmas needed later.

Lemma 1. Let 1 ≤ i ≤ k. Then, the formula ∀x∀y(−1(i) < 2x < 1(i) ∧ −1(i) < 2y <
1(i) → −1(i) < 2(x+ y) < 1(i)) holds in SSk.

Proof. Without loss of generality, we may assume that 0 < 2x < 1(i) and 0 < 2y < 1(i) hold.
Suppose for a contradiction that 1(i) < 2(x+y) holds. Then we have 2{1(i)−(x+y)} < 1(i).
Thus, by Axiom (4), we have 5{1(i) − (x+ y)} < 1(i). Therefore 4(i) < 5x+ 5y holds. Now
0 < 2x < 1(i) and 0 < 2y < 1(i) hold. Thus, by Axiom (4), we have 0 < 5x < 1(i) and
0 < 5y < 1(i). Therefore it follows 5x+ 5y < 2(i), a contradiction.

Lemma 2. Let 1 ≤ i ≤ k − 1 and n > 0. Then, the formula ∀x( − 1(i) < 2x < 1(i) →
∨

0≤qi+1,...,qk≤n−1(n | x+ q
(i+1)
i+1 + · · · + q

(k)
k )

)
holds in SSk.

Proof. Without loss of generality, we may assume i = 1. By Axiom (6), there exist q1, . . . , qk
with 0 ≤ q1, . . . , qk ≤ n− 1 such that n | x + q

(1)
1 + · · · + q

(k)
k holds. Thus, there exist y, z

such that we have −1(k) < 2z < 1(k) and x + q
(1)
1 + · · · + q

(k)
k = ny + z. Suppose for a

contradiction that q1 �= 0.
Let 2y < 1(1) hold. Then, by 2ny < 1(1), we have

2(x+ q
(2)
2 + · · · + q

(k)
k − z) = 2ny − 2q(1)1

< 1(1) − 2q(1)1 ≤ −1(1).

Now 2(x+ q
(2)
2 + · · · + q

(k)
k − z) > −1(1) holds, a contradiction.
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Let 1(1) < 2y hold. Then, we have 2(1(1) − y) < 1(1). Hence, we have 2n(1) − 1(1) < 2ny.
Thus it follows

2(x+ q
(2)
2 + · · · + q

(k)
k − z) = 2ny − 2q(1)1

> 2n(1) − 1(1) − 2q(1)1 ≥ 1(1).

Now 2(x+ q
(2)
2 + · · · + q

(k)
k − z) < 1(1) holds, a contradiction. Therefore we get q1 = 0.

Lemma 3. Let 1 ≤ i < j ≤ k and n > 0. Then, the formula ∀x(1(i) < 2x → 1(i) <
2(x− n(j))) holds in SSk

Proof. Suppose for a contradiction that 2(x − n(j)) < 1(i) holds. Then we have 2x <
1(i) + 2n(j). Thus, it follows 10x < 6(i). Now, by 1(i) < 2x, we have 2(1(i) − x) < 1(i). By
Axiom (4), it follows 10(i) − 10x < 1(i). Therefore 9(i) < 10x holds, a contradiction.

Using the above lemmas, we show the following.

Proposition 4. Both DCk and SCk admit elimination of quantifiers.

Proof. Let ∃xϕ be a formula, where ϕ is a quantifier-free formula. We may assume that ϕ
is the form ψ1 ∧ · · · ∧ ψn, where each ψi is an atomic formula or the negation of an atomic
formula. In addition, ψi is of one of the forms t = s, ¬(t = s), 0 < t, ¬(0 < t), n | t or
¬(n | t). Moreover t = s, ¬(t = s), ¬(0 < t) and ¬(n | t) are equivalent to t − s = 0,
0 < t− s∨ 0 < s− t, t = 0∨ 0 < −t and n | t+1(1) ∨ · · · ∨n | t+(n− 1)(1) + · · ·+(n− 1)(k),
respectively. Thus, we may assume that each ψi is of one of the forms t = 0, 0 < t or n | t.

Now, each term t can be written in the form px+ s with p ∈ Z and s a term which does
not contain x. Therefore ∃xϕ can be written as

∃x(p1x < t1 ∧ · · · ∧ pix < ti ∧ u1 < q1x ∧ · · · ∧ uj < qjx

∧r1x = v1 ∧ · · · ∧ rlx = vl ∧ n1 | s1x+ w1 ∧ · · · ∧ nm | smx+ wm),

where p1, . . . , pi, q1, . . . , qj , r1, . . . , rl, s1, . . . , sm, n1, . . . , nm ∈ N \ {0} and
t1, . . . , ti, u1, . . . , uj , v1, . . . , vl, w1, . . . , wm are terms which do not contain x.

Let p be the least common multiple of p1, . . . , pi, q1, . . . , qj , r1, . . . , rl, s1, . . . , sm. Then
we may assume that ∃xϕ is equivalent to

∃x(x < t1 ∧ · · · ∧ x < ti ∧ u1 < x ∧ · · · ∧ uj < x

∧x = v1 ∧ · · · ∧ x = vl ∧ n1 | x+ w1 ∧ · · · ∧ nm | x+ wm ∧ ∃y(x = py)).

Now, by Axiom (7), ∃y(x = py) is equivalent to p | x.
If l ≥ 1 holds, ∃xϕ is equivalent to

v1 < t1 ∧ · · · ∧ v1 < ti ∧ u1 < v1 ∧ · · · ∧ uj < v1

∧v1 = v2 ∧ · · · ∧ v1 = vl ∧ n1 | v1 + w1 ∧ · · · ∧ nm | v1 + wm ∧ p | v1.
Thus, we may assume l = 0. Moreover we may assume i, j ≤ 1. Let n be the least common
multiple of n1, . . . nm, p.

Suppose that i = 0. Let Aq1,...,qk
be a formula

n1 | q(1)1 + · · · + q
(k)
k + u1 + w1 ∧ · · · ∧ nm | q(1)1 + · · · + q

(k)
k + u1 + wm

∧p | q(1)1 + · · · + q
(k)
k + u1,

where 0 ≤ q1, . . . , qk < n. Then, ∃xϕ is equivalent to
∨

0≤q1,...,qk<nAq1,...,qk
.
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On the other hand, suppose that i = 1. Let Bq1,...,qk
be a formula

∃y(0 < ny + q
(1)
1 + · · · + q

(k)
k < t1 − u1) ∧ n1 | q(1)1 + · · · + q

(k)
k + u1 + w1

∧ · · · ∧ nm | q(1)1 + · · · + q
(k)
k + u1 + wm ∧ p | q(1)1 + · · · + q

(k)
k + u1,

where 0 ≤ q1, . . . , qk < n. Then, ∃xϕ is equivalent to
∨

0≤q1,...,qk<nBq1,...,qk
. Hence, we may

show that ∃y(0 < ny + q
(1)
1 + · · · + q

(k)
k < t) is equivalent to some quantifier-free formula.

Claim 1. For each k′ with 1 ≤ k′ ≤ k − 1, let q1 = · · · = qk′−1 = 0 and qk′ �= 0. Then,
∃y(0 < ny + q

(1)
1 + · · · + q

(k)
k < t) is equivalent to 2(q(k

′)
k′ − t) < 1(k′).

Without loss of generality, we may assume k′ = 1.
Suppose that there exists y such that 0 < ny + q

(1)
1 + · · · + q

(k)
k < t holds. If −1(1) < 2y

holds, by −1(1) < 2ny, we have −1(1) + 2q(1)1 + · · · + 2q(k)
k < 2ny + 2q(1)1 + · · · + 2q(k)

k < 2t.
By −1(1) + 2q(1)1 ≤ −1(1) + 2q(1)1 + · · · + 2q(k)

k , we have 2(q(1)1 − t) < 1(1), as desired. If
2y < −1(1) holds, by Lemma 3, we have 2(y + 1(2) + · · · + 1(k)) < −1(1). Thus 2(1(1) +
y + 1(2) + · · · + 1(k)) < 1(1) holds. Hence, by n(1(1) + y + 1(2) + · · · + 1(k)) < 1(1), we have
(n − 1)(1) + ny + n(2) + · · · + n(k) < 0. However it follows 0 < ny + q

(1)
1 + · · · + q

(k)
k <

ny + (n− 1)(1) + n(2) + · · · + n(k) < 0, a contradiction.
On the other hand, suppose that 2(q(1)1 − t) < 1(1) holds. If q(1)1 − t ≤ 0 holds, we

have 0 < −n(2) + q
(1)
1 + · · · + q

(k)
k < t, as desired. If 0 < q

(1)
1 − t holds, we have 0 <

2(q(1)1 − t) < 1(1). Hence, by Lemma 2, there exist α2, . . . , αk with 0 ≤ α2, . . . , αk ≤ n− 1
such that n | q(1)1 − t + α

(2)
2 + · · · + α

(k)
k holds. Thus, there exists y such that we have

q
(1)
1 − t+ α

(2)
2 + · · · + α

(k)
k = ny. Hence we obtain q

(1)
1 − ny = t− α

(2)
2 − · · · − α

(k)
k . Now,

by 1(1) < 2t, we have 0 < t− α
(2)
2 − · · · − α

(k)
k − n(2) + q

(2)
2 + · · ·+ q

(k)
k = q

(1)
1 − ny − n(2) +

q
(2)
2 + · · ·+ q

(k)
k < q

(1)
1 − ny ≤ t. Hence it follows 0 < n(−y− 1(2)) + q

(1)
1 + · · ·+ q

(k)
k < t, as

desired. Therefore we prove Claim 1.
Claim 2. Let q1 = · · · = qk = 0. Then, in DCk or SCk, ∃y(0 < ny + q

(1)
1 + · · · + q

(k)
k < t)

is equivalent to n(k) < t or 0 < t, respectively.
It is clear for DCk.
We consider in the case of SCk. If ∃y(0 < ny < t) holds, we obtain 0 < t. On the

other hand, let 0 < t hold. In the case of 1(k) ≤ t, by Axiom (9), there exists y such
that 0 < 2y < 1(k) holds. Then we have 0 < ny < 1(k). Thus, it follows 0 < ny < t, as
desired. In the case of 0 < t < 1(k), we have 0 < 1(k) − t < 1(k). If t < 1(k) − t holds, then
0 < 2t < 1(k) holds. Thus, there exists y > 0 such that t = (n+ 1)y holds. Hence it follows
0 < ny = t− y < t, as desired. If 1(k) − t < t holds, then 0 < 2(1(k) − t) < 1(k) holds. Thus,
there exists y > 0 such that ny = 1(k) − t holds. Hence it follows 0 < ny < t, as desired.
Therefore we prove Claim 2.
Claim 3. Let q1 = · · · = qk−1 = 0 and qk �= 0. Then, in DCk or SCk, ∃y(0 < ny + q

(1)
1 +

· · · + q
(k)
k < t) is equivalent to q(k)

k < t or 2(q(k)
k − t) < 1(k), respectively.

First, we consider in the case of DCk. If q(k)
k < t holds, clearly ∃y(0 < ny + q

(k)
k < t)

holds. On the other hand, suppose that there exists y such that 0 < ny + q
(k)
k < t holds. If

y ≥ 0 holds, then q
(k)
k ≤ ny + q

(k)
k < t holds, as desired. If y < 0 holds, by Axiom (8), we

have y ≤ −1(k). Thus, it follows 0 < ny + q
(k)
k ≤ −n(k) + q

(k)
k < 0, a contradiction. Hence,

in the case of DCk, Claim 3 holds.
Next, we consider in the case of SCk.
Suppose that there exists y such that 0 < ny + q

(k)
k < t holds. If −1(k) < 2y holds, by

−1(k) < 2ny, we have −1(k) + 2q(k)
k < 2ny + 2q(k)

k < 2t. Thus it follows 2(q(k)
k − t) < 1(k),
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as desired. If 2y < −1(k) holds, we have 2(y+1(k)) < 1(k). Hence, by n(y+1(k)) < 1(k), we
have ny+(n−1)(k) < 0. However, 0 < ny+q(k)

k ≤ ny+(n−1)(k) < 0 holds, a contradiction.
On the other hand, suppose that 2(q(k)

k − t) < 1(k).
Let q(k)

k ≤ t hold. By Axiom (9), there exists y such that −1(k) < 2y < 0 holds. Hence,
by −1(k) < ny < 0, we have 0 ≤ −1(k) + q

(k)
k < ny + q

(k)
k < q

(k)
k ≤ t, as desired.

Let t < q
(k)
k hold. By 0 < 2(q(k)

k − t) < 1(k), there exists y with 0 < y < q
(k)
k − t < 1(k)

such that q(k)
k − t = (n− 1)y holds. Again, by 2(q(k)

k − t) < 1(k), we have ny < 1(k). Thus,
we obtain 0 < 1(k) − ny ≤ q

(k)
k − ny = t− y < t, as desired. Therefore we prove Claim 3.

By Claims 1 through 3, ∃y(0 < ny+q
(1)
1 + · · ·+q

(k)
k < t) is equivalent to some quantifier-

free formula. Therefore, ∃xϕ is equivalent to some quantifier-free formula, as desired.

Proposition 5. Both DCk and SCk are complete.
Namely, DCk = ThL(Zk) and SCk = ThL(Zk × Q).

Proof. Let M be a model of DCk. Suppose that f : Zk → M by f(n1, . . . , nk) = n
(1)M

1 +

· · · + n
(k)M

k . Then f is an embedding. Thus, by Proposition 4, DCk is complete. Similarly
SCk is complete.

Lemma 6. Let ψ(x) be a quantifier-free formula with one free variable x. Suppose that
M |= SSk. Then

(i) either M |= ψ(a) for each a with 0 < 2a < 1(k), or M |= ¬ψ(a) for each 0 < 2a < 1(k);
(ii) either M |= ψ(a) for each a with −1(k) < 2a < 0, or M |= ¬ψ(a) for each −1(k) <

2a < 0.

Proof. (i) Let ψ(x) be a quantifier-free formula with one free variable x. The formula ψ(x)
is equivalent to a boolean combination of formulas which is of the forms px = q

(1)
1 +· · ·+q(k)

k ,
px < q

(1)
1 + · · ·+ q

(k)
k , q(1)1 + · · ·+ q

(k)
k < px or m | px+ q

(1)
1 + · · ·+ q

(k)
k , where p,m ∈ N\ {0}

and q1, . . . , qk ∈ Z.
Let M |= pa = q

(1)
1 + · · · + q

(k)
k for some 0 < 2a < 1(k). Then we have 0 < pa < 1(k), a

contradiction.
Let M |= pa < q

(1)
1 + · · · + q

(k)
k for some 0 < 2a < 1(k). Then, by 0 < pa, we have

1(k) ≤ q
(1)
1 + · · · + q

(k)
k . Thus, M |= pa < q

(1)
1 + · · · + q

(k)
k for each 0 < 2a < 1(k).

Let M |= q
(1)
1 + · · · + q

(k)
k < pa for some 0 < 2a < 1(k). Then, by pa < 1(k), we have

q
(1)
1 + · · · + q

(k)
k ≤ 0. Thus, M |= q

(1)
1 + · · · + q

(k)
k < pa for each 0 < 2a < 1(k).

Let M |= m | pa + q
(1)
1 + · · · + q

(k)
k for some 0 < 2a < 1(k). Then, by 0 < pa < 1(k),

there exist n1, . . . , nk ∈ Z such that q1 = mn1, . . . , qk = mnk. Thus, we have M |= m |
pa+ q

(1)
1 + · · · + q

(k)
k for each 0 < 2a < 1(k). This completes the proof of (i). (ii) Similarly,

we can prove this.

We show the converse of Weispfenning’s results.

Theorem 7. Let M be a model of SSk. Suppose that Th(M) admits elimination of quan-
tifiers. Then M is a model of either DCk or SCk. Namely, we have either M ≡ Zk or
M ≡ Zk × Q.

Proof. First, suppose that Axiom (8) holds in M . Then Axiom (7) holds in M . Thus, M
is a model of DCk.
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Secondly, suppose that Axiom (9) holds in M . Let n ∈ N \ {0}. Because Th(M) admits
elimination of quantifiers, there exists a quantifier-free formula ψn(x) such that

Th(M) |= ∀x[(−1(k) < 2x < 1(k) → ∃y(x = ny)) ↔ ψn(x)].

Now M |= ψn(a) if 2a < −1(k), 1(k) < 2a or a = 0. Let 0 < 2a < 1(k) hold. Then
M |= ψn(na). Let −1(k) < 2a < 0 hold. Then M |= ψn(na). Hence, by Lemma 6,
M |= ψ(a) if −1(k) < 2a < 0 or 0 < 2a < 1(k). It follows from this that M |= ψ(a) for each
a ∈M . Thus Axiom (7) holds in M . Therefore, M is a model of SCk.

4. Exchange principle

In this section, we show that for each model M of either DCk or SCk, algebraic closure
over M satisfies the Exchange Principle.

Let L be a language and M an L-structure. Finite tuples of variables are denoted
by x, y, . . . . Finite tuples of elements from M are denoted by a, b, . . . . For a tuple a =
(a1, . . . , an) from M , we simply write a ∈M instead of a ∈Mn.

Let A ⊆ M . We say that a ∈ M is algebraic over A if there exists an L-formula ϕ(x, y)
and b ∈ A such that M |= ϕ(a, b) and {c ∈ M | M |= ϕ(c, b)} is finite. For A ⊆ M , the
algebraic closure of A in M , denoted acl(A), is given by {a ∈M | a is algebraic over A}.
Definition 8 (Exchange Principle). Let L be a language and M an L-structure. We say
that the algebraic closure over M satisfies the Exchange Principle if A ⊆M , a, b ∈M and
a ∈ acl(A ∪ {b}) \ acl(A), then b ∈ acl(A ∪ {a}).

Let M be a model of either DCk or SCk. Let A ⊆ M . Suppose that 〈A〉 := {α ∈ M |
there exists a ∈ A, a term t(x) and m ∈ N such that mα = t(a)}.

We first prove the following lemma.

Lemma 9. Let M be a model of either DCk or SCk, and let A ⊆M . Then 〈A〉 = acl(A).

Proof. We have 〈A〉 ⊆ acl(A). We show that acl(A) ⊆ 〈A〉. As both DCk and SCk

admit elimination of quantifiers, an L(A)-formula with one free variable x is equivalent to
a boolean combination of the forms mx = t(a), t1(a) < m′x < t2(a) or n | lx+ s(a), where
l,m,m′, n ∈ N \ {0}, a ∈ A and t, t1, t2, s are terms which do not contain x.

First, let M be a model of DCk and A a subset of M .
Claim 1. Let D := {x ∈M | t1(a) < m′x < t2(a)} be finite and α an element of D. Then
α is an element of 〈A〉.

Since D is finite, there exists p ∈ N such that we have m′α = t2(a) − p(k). Hence it
follows α ∈ 〈A〉.
Claim 2. Let D be infinite. Then E := {x ∈ M | t1(a) < m′x < t2(a) ∧ n | lx + s(a)} is
empty or infinite.

Let E be non-empty. Let α be an element of E. Suppose that p is a multiple of n. Then
we have α+ p(k) ∈ E. Thus, E is infinite.

By Claims 1 and 2, if α ∈ acl(A), then α ∈ 〈A〉.
Secondly, let M be a model of SCk and A a subset of M .

Claim 3. E is empty or infinite.
Let E be non-empty. Let α be an element of E. Without loss of generality, we may

assume m′ = n. Now, there exists β ∈ M with 0 < 2β < 1(k) such that we have nα <
nα+ n2β < t2(a). Then, we obtain n | l(α+ nβ) + s(a). Thus, α+ nβ is an element of E.
Iterating this process, it follows that E is infinite.

By Claim 3, if α ∈ acl(A), then α ∈ 〈A〉.
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Theorem 10. Let M be a model of either DCk or SCk Then the algebraic closure over M
satisfies the Exchange Principle.

Proof. Let M be a model of either DCk or SCk. Let A ⊆ M , a, b ∈ M and a ∈ acl(A ∪
{b}) \ acl(A). By Lemma 9, there exists a ∈ A, a term t(x) and m,n ∈ Z \ {0} such that
ma = t(a) + nb holds. Thus nb = ma− t(a) holds. It follows b ∈ acl(A ∪ {a}).
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Bulletin de la Société Mathématique de Belgique, Ser. B, 33 (1981), 131–155.

Department of Mathematics, Faculty of Science, Okayama University 1-1, Naka 3-chome,

Tsushima, Okayama 700-8530, Japan

E-mail address: htanaka@math.okayama-u.ac.jp


