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Abstract. We introduce a new class of operator means, called chaotic ones, which is
a proper extension of that of Kubo and Ando [9]. From this point of view, we define
chaotically quasi-arithmetic means and discussed inequalities in this class like Cooper’s
classical results [2].

1 Introduction. It is known that the power mean

Mr(a, b) =
(

ar + br

2

)1/r

is increasing for real numbers r, which was discussed systematically by R.Cooper [2]. He
also gave conditions for ordering among so-called quasi-arithmetic means:

Qf(a, b) = f−1

(
f(a) + f(b)

2

)
.

In this note, we consider similar conditions for ordering among operator means to Cooper’s.
A typical theory of operator means is established by Kubo and Ando [9]. For positive

operators on a Hilbert space, a binary operation m is called Kubo-Ando mean if m satisfies
the following axioms:

monotonicity: A1 ≤ A2 and B1 ≤ B2 imply A1mB1 ≤ A2 mB2.

semi-continuity: An ↓ A and Bn ↓ B imply An m Bn ↓ AmB.

transformer inequality: T ∗(AmB)T ≤ (T ∗AT )m(T ∗BT ).

normalization: AmA = A.
It is easy to show the transformer equality if T is invertible. In particular, we have:

homogeneity: α(AmB) = (αA)m(αB) for every positive number α.
For an operator mean m, the corresponding numerical function fm(x) = 1mx is operator

monotone:
0 ≤ A ≤ B implies fm(A) ≤ fm(B).

This correspondence m �→ fm is bijective. In fact, if f is a continuous nonnegative operator
monotone function on [0,∞) with f(1) = 1, then a binary operation m defined by

AmB = A1/2
(
I mA−1/2BA−1/2

)
A1/2 = A1/2f

(
A−1/2BA−1/2

)
A1/2

for positive invertible operators A and B induces an operator mean. As typical Kubo-Ando
means, the power ones �r,t are defined by

A �r,t B = A1/2
(
(1 − t)I + t(A−1/2BA−1/2)r

)1/r

A1/2
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for 0 � t � 1 and −1 � r � 1 (For |r| > 1, they cannot be Kubo-Ando means and are often
denoted by �r,t). These means �r,t are monotone increasing for r in the usual operator order
since the ordering for Kubo-Ando means is obtained by that of the numerical functions.
Thus we obtain the Kubo-Ando geometric mean

A �t B = lim
r→0

A �r,t B = A1/2(A−1/2BA−1/2)tA1/2

as a monotone convergence limit. Thus, the Kubo-Ando mean is one of natural extensions
of numerical ones and is closely related to the usual operator order, but its ordering is
obtained by the numerical case.

On the other hand, the chaotic order �, that is, log A ≥ log B, has been deserves our
attention even for the operator inequality for the usual order [3, 4, 5]. So we consider
another class of operator means including the chaotically geometric mean:

A♦♦♦ tB = exp
(
(1 − t) log A + t log B

)
which is a special case of chaotic power means:

A♦♦♦r,tB =
(
(1 − t)Ar + tBr

)1/r
.

(The reason why we use this name is that they are chaotic means in the sense in the next
section. ) Moreover this class should include chaotically quasi-arithmetic means:

Amf,tB = f−1
(
(1 − t)f(A) + tf(B)

)
for a monotone function f with some conditions and 0 � t � 1.

So we introduce a class of operator means, called chaotic means, for positive (invertible)
operators on a Hilbert space and show ordering results of Cooper’s type.

2 Chaotic means. A sequence {An} of positive (invertible) operators is called chaot-
ically decreasing and denoted by An � if An � An+1 for all n. If a chaotically decreasing
sequence {An} is lower bounded; log An ≥ c for some scalar c, then it converges to some pos-
itive (invertible) operator A, which is denoted by An � A. Now, following the Kubo-Ando
theory, we define a chaotic mean m as a binary operation on positive operators satisfying:

monotonicity: A ≤ C and B ≤ D imply AmB � CmD.

semi-continuity: An ↓ A and Bn ↓ B imply An mBn � AmB.

normalization: AmA = A.

Clearly, all Kubo-Ando means are chaotic ones.
A real function f is called chaotically monotone if

0 ≤ A ≤ B implies f(A) � f(B).

We define chaotically quasi-arithmetic means so that they should belong to chaotic ones:
Let f (resp. −f ) be a non-constant operator monotone function on (0,∞) such that f−1

(resp. 1/f−1) is chaotically monotone. Then, for 0 � t � 1,

Amf,tB = f−1
(
(1 − t)f(A) + tf(B)

)
is called chaotically quasi-arithmetic means. This class of means is considered as a subclass
of (numerical) quasi-arithmetic ones. Hardy, Littlewood and Pólya [8] showed that only
homogeneous quasi-arithmetic means are power ones, which is the reason we cannot add
the transformer inequality to the above axioms. They also showed the invariance under
affine transformations for quasi-arithmetic means, which shows immediately:
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Lemma 2.1. All chaotically quasi-arithmetic means mf,t are invariant under all affine
transformations for f :

mαf+β,t = mf,t

for all real numbers α 	= 0 and β.

Thus we may assume that f(1) = 1 if necessary. Moreover they are chaotic means as
we desired:

Lemma 2.2. All chaotically quasi-arithmetic means mf,t are chaotic ones.

Proof. We have only to show the monotonicity and the normalization. Suppose A ≤ C and
B ≤ D. Since f (resp. −f ) is operator monotone, we have

(1 − t)f(A) + tf(B) ≤ (1 − t)f(C) + tf(B)
(
resp. ≥ (1 − t)f(C) + tf(B)

)
,

and hence, by the operator monotonicity of log f−1 (resp. − log f−1),

log f−1
(
(1 − t)f(A) + tf(B)

) ≤ log f−1
(
(1 − t)f(C) + tf(B)

)
,

which implies the monotonicity. The normalization follows from

Amf,tA = f−1
(
(1 − t)f(A) + tf(A)

)
= f−1

(
f(A)

)
= A. �

The following result is already shown:

Corollary 2.3. A function G(r) = A♦♦♦r,tB is chaotically monotone, [6]:

A♦♦♦r,tB � A♦♦♦s,tB if r < s.

In particular, G(r) is monotone increasing in the usual order for |r| � 1, [1].

Thereby, as a monotone convergence limit, we have easily

A♦♦♦0,tB ≡ lim
r→0

A♦♦♦r,tB = exp
(
(1 − t) log A + t log B

)
= A♦♦♦ tB.

At the end of this section, we give an example of nonhomogeneous chaotically quasi-
arithmetic means, which is induced by the function Fr(x) = xr + 2xr/2 for −1 � r � 1.
Since

F−1
r (x) =

(√
1 + x − 1

)2/r
,

and log(F−1
r (x)) = 2

r log(
√

1 + x − 1) is operator monotone, we have

AmFr ,tB =
(√

I + (1 − t)(Ar + 2Ar/2) + t(Br + 2Br/2) − I

)2/r

is a quasi-arithmetic operator mean.
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3 Monotonicity. Now we observe of ordrings of Cooper’s type. We also have the
similar result to Corollary 2.3 by the following general property:

Theorem 3.1. If one of the following conditions is satisfied, then Amf,tB � Amg,tB:
(i) g is operator monotone and g ◦ f−1 is operator convex.

(i’) −g is operator monotone and g ◦ f−1 is operator concave.

(ii) f is operator monotone and f ◦ g−1 is operator concave.

(ii’) −f is operator monotone and f ◦ g−1 is operator convex.

Proof. Suppose (i). Then, by the assumption of the quasi-arithmetic operator mean,
log ◦g−1 is operator monotone. It follows from Jensen’s operator inequality (see [7] in detail)
that

g ◦ f−1 ((1 − t)f(A) + tf(B)) ≤ (1− t)g ◦ f−1(f(A))+ tg ◦ f−1(f(B) = (1− t)g(A)+ tg(B).

Thereby we have

log(Amg,tB) = log ◦g−1 ((1 − t)g(A) + tg(B))

≥ log ◦g−1
(
g ◦ f−1 ((1 − t)f(A) + tf(B))

)
= log(Amf,tB),

and hence Amf,tB � Amg,tB. We also show the other cases. �

Corollary 3.2. A function

H(r) = AmFr ,tB =
(√

I + (1 − t)(Ar + 2Ar/2) + t(Br + 2Br/2) − I

)2/r

is chaotically monotone:

AmFr ,tB � AmFs,tB if r < s ∈ [−1, 1].

Proof. Let −1 � r < s < 0. Then, by (i’) of the above theorem, it suffices to show Fs ◦F−1
r

is operator concave for since −Fs is operator monotone. We have

Fs(F−1
r (x)) = (

√
1 + x − 1)2s/r + 2(

√
1 + x − 1)s/r =

(
(
√

1 + x − 1)s/r + 1
)2

− 1.

By 0 < s/r < 1, the function h(y) =
(
(
√

y − 1)s/r + 1
)2

is operator monotone on (0,∞)
since

Arg(
√

z − 1)s/r � Arg(
√

z − 1)

for Imz > 0, which implies that Argh(z) � Argz. Consequently h leaves the upper half
plane invariant. Therefore h is also operator concave, and so is Fs ◦ F−1

r . Similarly we can
show the case 0 < r < s � 1 by (ii) of the above theorem. �

4 Concluding Remarks. Finally we consider quasi-arithmetic Kubo-Ando means: Let
f be a nonnegative (nonconstant) operator monotone function on (0,∞) with f(1) = 1.
Put

Amf,tB = A1/2f−1
(
1 − t + tf(A−1/2BA−1/2)

)
A1/2.

Then Amf,tB is a Kubo-Ando mean by the following confirmation:

Lemma 4.1. f̃t(x) = f−1
(
1 − t + tf(x)

)
is operator monotone.
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Proof. Considering analytic continuation to the upper half plane U = {z|Imz > 0}, we
have 0 < Argf(z) < π for all z ∈ U . Since

Argf(z) � Arg
(
1 − t + tf(x)

)
> 0,

we have
1 − t + tf(z) ∈ f(U)

and consequently f̃t(z) ∈ U for all z ∈ U , which implies f̃t is operator monotone. �

Since an operator (1− t)I + tf(A−1/2BA−1/2) belongs to a commutative algebra gener-
ated by A−1/2BA−1/2, we easily have the order mf,t ≤ mg,t holds, that is,

Amf,tB ≤ Amg,tB for all A and B ≥ 0

if and only if
f̃t(x) � g̃t(x) for all x > 0.

So we have the following ordering of Cooper’s type immediately:

Theorem 4.2. mf,t ≤ mg,t if and only if f(g−1(x)) is concave (, or g(f−1(x)) is convex).

Proof. Suppose mf,t ≤ mg,t, that is,

f̃t(x) � g̃t(x)

for all x > 0. Then

(1 − t)f(g−1(1)) + tf(g−1(g(x))) = 1 − t + tf(x) � f
(
g−1

(
1 − t + tg(x)

))
,

which implies f(g−1(x)) is concave. �
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